mirror of https://github.com/FFmpeg/FFmpeg.git
1938 lines
74 KiB
1938 lines
74 KiB
/* |
|
* Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/intmath.h" |
|
#include "libavutil/log.h" |
|
#include "libavutil/opt.h" |
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "dwt.h" |
|
#include "snow.h" |
|
|
|
#include "rangecoder.h" |
|
#include "mathops.h" |
|
|
|
#include "mpegvideo.h" |
|
#include "h263.h" |
|
|
|
#undef NDEBUG |
|
#include <assert.h> |
|
|
|
#define QUANTIZE2 0 |
|
|
|
#if QUANTIZE2==1 |
|
#define Q2_STEP 8 |
|
|
|
static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){ |
|
SubBand *b= &p->band[level][orientation]; |
|
int x, y; |
|
int xo=0; |
|
int yo=0; |
|
int step= 1 << (s->spatial_decomposition_count - level); |
|
|
|
if(orientation&1) |
|
xo= step>>1; |
|
if(orientation&2) |
|
yo= step>>1; |
|
|
|
//FIXME bias for nonzero ? |
|
//FIXME optimize |
|
memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP)); |
|
for(y=0; y<p->height; y++){ |
|
for(x=0; x<p->width; x++){ |
|
int sx= (x-xo + step/2) / step / Q2_STEP; |
|
int sy= (y-yo + step/2) / step / Q2_STEP; |
|
int v= r0[x + y*p->width] - r1[x + y*p->width]; |
|
assert(sx>=0 && sy>=0 && sx < score_stride); |
|
v= ((v+8)>>4)<<4; |
|
score[sx + sy*score_stride] += v*v; |
|
assert(score[sx + sy*score_stride] >= 0); |
|
} |
|
} |
|
} |
|
|
|
static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){ |
|
int level, orientation; |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer); |
|
|
|
dequantize(s, b, dst, b->stride); |
|
} |
|
} |
|
} |
|
|
|
static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){ |
|
int level, orientation, ys, xs, x, y, pass; |
|
IDWTELEM best_dequant[height * stride]; |
|
IDWTELEM idwt2_buffer[height * stride]; |
|
const int score_stride= (width + 10)/Q2_STEP; |
|
int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size |
|
int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size |
|
int threshold= (s->m.lambda * s->m.lambda) >> 6; |
|
|
|
//FIXME pass the copy cleanly ? |
|
|
|
// memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM)); |
|
ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count); |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); |
|
DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer); |
|
assert(src == b->buf); // code does not depend on this but it is true currently |
|
|
|
quantize(s, b, dst, src, b->stride, s->qbias); |
|
} |
|
} |
|
for(pass=0; pass<1; pass++){ |
|
if(s->qbias == 0) //keyframe |
|
continue; |
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer); |
|
IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); |
|
|
|
for(ys= 0; ys<Q2_STEP; ys++){ |
|
for(xs= 0; xs<Q2_STEP; xs++){ |
|
memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); |
|
dequantize_all(s, p, idwt2_buffer, width, height); |
|
ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count); |
|
find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); |
|
memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); |
|
for(y=ys; y<b->height; y+= Q2_STEP){ |
|
for(x=xs; x<b->width; x+= Q2_STEP){ |
|
if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++; |
|
if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--; |
|
//FIXME try more than just -- |
|
} |
|
} |
|
dequantize_all(s, p, idwt2_buffer, width, height); |
|
ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count); |
|
find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); |
|
for(y=ys; y<b->height; y+= Q2_STEP){ |
|
for(x=xs; x<b->width; x+= Q2_STEP){ |
|
int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride; |
|
if(score[score_idx] <= best_score[score_idx] + threshold){ |
|
best_score[score_idx]= score[score_idx]; |
|
if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++; |
|
if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--; |
|
//FIXME copy instead |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end |
|
} |
|
|
|
#endif /* QUANTIZE2==1 */ |
|
|
|
static av_cold int encode_init(AVCodecContext *avctx) |
|
{ |
|
SnowContext *s = avctx->priv_data; |
|
int plane_index, ret; |
|
|
|
if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){ |
|
av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n" |
|
"Use vstrict=-2 / -strict -2 to use it anyway.\n"); |
|
return -1; |
|
} |
|
|
|
if(avctx->prediction_method == DWT_97 |
|
&& (avctx->flags & CODEC_FLAG_QSCALE) |
|
&& avctx->global_quality == 0){ |
|
av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n"); |
|
return -1; |
|
} |
|
|
|
s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type |
|
|
|
s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4; |
|
s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0; |
|
|
|
for(plane_index=0; plane_index<3; plane_index++){ |
|
s->plane[plane_index].diag_mc= 1; |
|
s->plane[plane_index].htaps= 6; |
|
s->plane[plane_index].hcoeff[0]= 40; |
|
s->plane[plane_index].hcoeff[1]= -10; |
|
s->plane[plane_index].hcoeff[2]= 2; |
|
s->plane[plane_index].fast_mc= 1; |
|
} |
|
|
|
if ((ret = ff_snow_common_init(avctx)) < 0) { |
|
ff_snow_common_end(avctx->priv_data); |
|
return ret; |
|
} |
|
ff_snow_alloc_blocks(s); |
|
|
|
s->version=0; |
|
|
|
s->m.avctx = avctx; |
|
s->m.flags = avctx->flags; |
|
s->m.bit_rate= avctx->bit_rate; |
|
|
|
s->m.me.temp = |
|
s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); |
|
s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); |
|
s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); |
|
s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t)); |
|
ff_h263_encode_init(&s->m); //mv_penalty |
|
|
|
s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1); |
|
|
|
if(avctx->flags&CODEC_FLAG_PASS1){ |
|
if(!avctx->stats_out) |
|
avctx->stats_out = av_mallocz(256); |
|
} |
|
if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){ |
|
if(ff_rate_control_init(&s->m) < 0) |
|
return -1; |
|
} |
|
s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2)); |
|
|
|
avctx->coded_frame= &s->current_picture; |
|
switch(avctx->pix_fmt){ |
|
// case PIX_FMT_YUV444P: |
|
// case PIX_FMT_YUV422P: |
|
case PIX_FMT_YUV420P: |
|
case PIX_FMT_GRAY8: |
|
// case PIX_FMT_YUV411P: |
|
// case PIX_FMT_YUV410P: |
|
s->colorspace_type= 0; |
|
break; |
|
/* case PIX_FMT_RGB32: |
|
s->colorspace= 1; |
|
break;*/ |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n"); |
|
return -1; |
|
} |
|
// avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); |
|
s->chroma_h_shift= 1; |
|
s->chroma_v_shift= 1; |
|
|
|
ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp); |
|
ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp); |
|
|
|
s->avctx->get_buffer(s->avctx, &s->input_picture); |
|
|
|
if(s->avctx->me_method == ME_ITER){ |
|
int i; |
|
int size= s->b_width * s->b_height << 2*s->block_max_depth; |
|
for(i=0; i<s->max_ref_frames; i++){ |
|
s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2])); |
|
s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t)); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
//near copy & paste from dsputil, FIXME |
|
static int pix_sum(uint8_t * pix, int line_size, int w) |
|
{ |
|
int s, i, j; |
|
|
|
s = 0; |
|
for (i = 0; i < w; i++) { |
|
for (j = 0; j < w; j++) { |
|
s += pix[0]; |
|
pix ++; |
|
} |
|
pix += line_size - w; |
|
} |
|
return s; |
|
} |
|
|
|
//near copy & paste from dsputil, FIXME |
|
static int pix_norm1(uint8_t * pix, int line_size, int w) |
|
{ |
|
int s, i, j; |
|
uint32_t *sq = ff_squareTbl + 256; |
|
|
|
s = 0; |
|
for (i = 0; i < w; i++) { |
|
for (j = 0; j < w; j ++) { |
|
s += sq[pix[0]]; |
|
pix ++; |
|
} |
|
pix += line_size - w; |
|
} |
|
return s; |
|
} |
|
|
|
//FIXME copy&paste |
|
#define P_LEFT P[1] |
|
#define P_TOP P[2] |
|
#define P_TOPRIGHT P[3] |
|
#define P_MEDIAN P[4] |
|
#define P_MV1 P[9] |
|
#define FLAG_QPEL 1 //must be 1 |
|
|
|
static int encode_q_branch(SnowContext *s, int level, int x, int y){ |
|
uint8_t p_buffer[1024]; |
|
uint8_t i_buffer[1024]; |
|
uint8_t p_state[sizeof(s->block_state)]; |
|
uint8_t i_state[sizeof(s->block_state)]; |
|
RangeCoder pc, ic; |
|
uint8_t *pbbak= s->c.bytestream; |
|
uint8_t *pbbak_start= s->c.bytestream_start; |
|
int score, score2, iscore, i_len, p_len, block_s, sum, base_bits; |
|
const int w= s->b_width << s->block_max_depth; |
|
const int h= s->b_height << s->block_max_depth; |
|
const int rem_depth= s->block_max_depth - level; |
|
const int index= (x + y*w) << rem_depth; |
|
const int block_w= 1<<(LOG2_MB_SIZE - level); |
|
int trx= (x+1)<<rem_depth; |
|
int try= (y+1)<<rem_depth; |
|
const BlockNode *left = x ? &s->block[index-1] : &null_block; |
|
const BlockNode *top = y ? &s->block[index-w] : &null_block; |
|
const BlockNode *right = trx<w ? &s->block[index+1] : &null_block; |
|
const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block; |
|
const BlockNode *tl = y && x ? &s->block[index-w-1] : left; |
|
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt |
|
int pl = left->color[0]; |
|
int pcb= left->color[1]; |
|
int pcr= left->color[2]; |
|
int pmx, pmy; |
|
int mx=0, my=0; |
|
int l,cr,cb; |
|
const int stride= s->current_picture.linesize[0]; |
|
const int uvstride= s->current_picture.linesize[1]; |
|
uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w, |
|
s->input_picture.data[1] + (x + y*uvstride)*block_w/2, |
|
s->input_picture.data[2] + (x + y*uvstride)*block_w/2}; |
|
int P[10][2]; |
|
int16_t last_mv[3][2]; |
|
int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused |
|
const int shift= 1+qpel; |
|
MotionEstContext *c= &s->m.me; |
|
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); |
|
int mx_context= av_log2(2*FFABS(left->mx - top->mx)); |
|
int my_context= av_log2(2*FFABS(left->my - top->my)); |
|
int s_context= 2*left->level + 2*top->level + tl->level + tr->level; |
|
int ref, best_ref, ref_score, ref_mx, ref_my; |
|
|
|
assert(sizeof(s->block_state) >= 256); |
|
if(s->keyframe){ |
|
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); |
|
return 0; |
|
} |
|
|
|
// clip predictors / edge ? |
|
|
|
P_LEFT[0]= left->mx; |
|
P_LEFT[1]= left->my; |
|
P_TOP [0]= top->mx; |
|
P_TOP [1]= top->my; |
|
P_TOPRIGHT[0]= tr->mx; |
|
P_TOPRIGHT[1]= tr->my; |
|
|
|
last_mv[0][0]= s->block[index].mx; |
|
last_mv[0][1]= s->block[index].my; |
|
last_mv[1][0]= right->mx; |
|
last_mv[1][1]= right->my; |
|
last_mv[2][0]= bottom->mx; |
|
last_mv[2][1]= bottom->my; |
|
|
|
s->m.mb_stride=2; |
|
s->m.mb_x= |
|
s->m.mb_y= 0; |
|
c->skip= 0; |
|
|
|
assert(c-> stride == stride); |
|
assert(c->uvstride == uvstride); |
|
|
|
c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); |
|
c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); |
|
c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); |
|
c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV; |
|
|
|
c->xmin = - x*block_w - 16+3; |
|
c->ymin = - y*block_w - 16+3; |
|
c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; |
|
c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; |
|
|
|
if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift); |
|
if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift); |
|
if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift); |
|
if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift); |
|
if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift); |
|
if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip |
|
if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift); |
|
|
|
P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]); |
|
P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]); |
|
|
|
if (!y) { |
|
c->pred_x= P_LEFT[0]; |
|
c->pred_y= P_LEFT[1]; |
|
} else { |
|
c->pred_x = P_MEDIAN[0]; |
|
c->pred_y = P_MEDIAN[1]; |
|
} |
|
|
|
score= INT_MAX; |
|
best_ref= 0; |
|
for(ref=0; ref<s->ref_frames; ref++){ |
|
init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0); |
|
|
|
ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv, |
|
(1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); |
|
|
|
assert(ref_mx >= c->xmin); |
|
assert(ref_mx <= c->xmax); |
|
assert(ref_my >= c->ymin); |
|
assert(ref_my <= c->ymax); |
|
|
|
ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w); |
|
ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); |
|
ref_score+= 2*av_log2(2*ref)*c->penalty_factor; |
|
if(s->ref_mvs[ref]){ |
|
s->ref_mvs[ref][index][0]= ref_mx; |
|
s->ref_mvs[ref][index][1]= ref_my; |
|
s->ref_scores[ref][index]= ref_score; |
|
} |
|
if(score > ref_score){ |
|
score= ref_score; |
|
best_ref= ref; |
|
mx= ref_mx; |
|
my= ref_my; |
|
} |
|
} |
|
//FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2 |
|
|
|
// subpel search |
|
base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start); |
|
pc= s->c; |
|
pc.bytestream_start= |
|
pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo |
|
memcpy(p_state, s->block_state, sizeof(s->block_state)); |
|
|
|
if(level!=s->block_max_depth) |
|
put_rac(&pc, &p_state[4 + s_context], 1); |
|
put_rac(&pc, &p_state[1 + left->type + top->type], 0); |
|
if(s->ref_frames > 1) |
|
put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0); |
|
pred_mv(s, &pmx, &pmy, best_ref, left, top, tr); |
|
put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1); |
|
put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1); |
|
p_len= pc.bytestream - pc.bytestream_start; |
|
score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT; |
|
|
|
block_s= block_w*block_w; |
|
sum = pix_sum(current_data[0], stride, block_w); |
|
l= (sum + block_s/2)/block_s; |
|
iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; |
|
|
|
block_s= block_w*block_w>>2; |
|
sum = pix_sum(current_data[1], uvstride, block_w>>1); |
|
cb= (sum + block_s/2)/block_s; |
|
// iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; |
|
sum = pix_sum(current_data[2], uvstride, block_w>>1); |
|
cr= (sum + block_s/2)/block_s; |
|
// iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; |
|
|
|
ic= s->c; |
|
ic.bytestream_start= |
|
ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo |
|
memcpy(i_state, s->block_state, sizeof(s->block_state)); |
|
if(level!=s->block_max_depth) |
|
put_rac(&ic, &i_state[4 + s_context], 1); |
|
put_rac(&ic, &i_state[1 + left->type + top->type], 1); |
|
put_symbol(&ic, &i_state[32], l-pl , 1); |
|
put_symbol(&ic, &i_state[64], cb-pcb, 1); |
|
put_symbol(&ic, &i_state[96], cr-pcr, 1); |
|
i_len= ic.bytestream - ic.bytestream_start; |
|
iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT; |
|
|
|
// assert(score==256*256*256*64-1); |
|
assert(iscore < 255*255*256 + s->lambda2*10); |
|
assert(iscore >= 0); |
|
assert(l>=0 && l<=255); |
|
assert(pl>=0 && pl<=255); |
|
|
|
if(level==0){ |
|
int varc= iscore >> 8; |
|
int vard= score >> 8; |
|
if (vard <= 64 || vard < varc) |
|
c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); |
|
else |
|
c->scene_change_score+= s->m.qscale; |
|
} |
|
|
|
if(level!=s->block_max_depth){ |
|
put_rac(&s->c, &s->block_state[4 + s_context], 0); |
|
score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); |
|
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); |
|
score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); |
|
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); |
|
score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead |
|
|
|
if(score2 < score && score2 < iscore) |
|
return score2; |
|
} |
|
|
|
if(iscore < score){ |
|
pred_mv(s, &pmx, &pmy, 0, left, top, tr); |
|
memcpy(pbbak, i_buffer, i_len); |
|
s->c= ic; |
|
s->c.bytestream_start= pbbak_start; |
|
s->c.bytestream= pbbak + i_len; |
|
set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA); |
|
memcpy(s->block_state, i_state, sizeof(s->block_state)); |
|
return iscore; |
|
}else{ |
|
memcpy(pbbak, p_buffer, p_len); |
|
s->c= pc; |
|
s->c.bytestream_start= pbbak_start; |
|
s->c.bytestream= pbbak + p_len; |
|
set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0); |
|
memcpy(s->block_state, p_state, sizeof(s->block_state)); |
|
return score; |
|
} |
|
} |
|
|
|
static void encode_q_branch2(SnowContext *s, int level, int x, int y){ |
|
const int w= s->b_width << s->block_max_depth; |
|
const int rem_depth= s->block_max_depth - level; |
|
const int index= (x + y*w) << rem_depth; |
|
int trx= (x+1)<<rem_depth; |
|
BlockNode *b= &s->block[index]; |
|
const BlockNode *left = x ? &s->block[index-1] : &null_block; |
|
const BlockNode *top = y ? &s->block[index-w] : &null_block; |
|
const BlockNode *tl = y && x ? &s->block[index-w-1] : left; |
|
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt |
|
int pl = left->color[0]; |
|
int pcb= left->color[1]; |
|
int pcr= left->color[2]; |
|
int pmx, pmy; |
|
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); |
|
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref; |
|
int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref; |
|
int s_context= 2*left->level + 2*top->level + tl->level + tr->level; |
|
|
|
if(s->keyframe){ |
|
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); |
|
return; |
|
} |
|
|
|
if(level!=s->block_max_depth){ |
|
if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ |
|
put_rac(&s->c, &s->block_state[4 + s_context], 1); |
|
}else{ |
|
put_rac(&s->c, &s->block_state[4 + s_context], 0); |
|
encode_q_branch2(s, level+1, 2*x+0, 2*y+0); |
|
encode_q_branch2(s, level+1, 2*x+1, 2*y+0); |
|
encode_q_branch2(s, level+1, 2*x+0, 2*y+1); |
|
encode_q_branch2(s, level+1, 2*x+1, 2*y+1); |
|
return; |
|
} |
|
} |
|
if(b->type & BLOCK_INTRA){ |
|
pred_mv(s, &pmx, &pmy, 0, left, top, tr); |
|
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); |
|
put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); |
|
put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); |
|
put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); |
|
set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA); |
|
}else{ |
|
pred_mv(s, &pmx, &pmy, b->ref, left, top, tr); |
|
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); |
|
if(s->ref_frames > 1) |
|
put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0); |
|
put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); |
|
put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); |
|
set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0); |
|
} |
|
} |
|
|
|
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ |
|
int i, x2, y2; |
|
Plane *p= &s->plane[plane_index]; |
|
const int block_size = MB_SIZE >> s->block_max_depth; |
|
const int block_w = plane_index ? block_size/2 : block_size; |
|
const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth]; |
|
const int obmc_stride= plane_index ? block_size : 2*block_size; |
|
const int ref_stride= s->current_picture.linesize[plane_index]; |
|
uint8_t *src= s-> input_picture.data[plane_index]; |
|
IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned |
|
const int b_stride = s->b_width << s->block_max_depth; |
|
const int w= p->width; |
|
const int h= p->height; |
|
int index= mb_x + mb_y*b_stride; |
|
BlockNode *b= &s->block[index]; |
|
BlockNode backup= *b; |
|
int ab=0; |
|
int aa=0; |
|
|
|
b->type|= BLOCK_INTRA; |
|
b->color[plane_index]= 0; |
|
memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM)); |
|
|
|
for(i=0; i<4; i++){ |
|
int mb_x2= mb_x + (i &1) - 1; |
|
int mb_y2= mb_y + (i>>1) - 1; |
|
int x= block_w*mb_x2 + block_w/2; |
|
int y= block_w*mb_y2 + block_w/2; |
|
|
|
add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc, |
|
x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index); |
|
|
|
for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){ |
|
for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){ |
|
int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride; |
|
int obmc_v= obmc[index]; |
|
int d; |
|
if(y<0) obmc_v += obmc[index + block_w*obmc_stride]; |
|
if(x<0) obmc_v += obmc[index + block_w]; |
|
if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride]; |
|
if(x+block_w>w) obmc_v += obmc[index - block_w]; |
|
//FIXME precalculate this or simplify it somehow else |
|
|
|
d = -dst[index] + (1<<(FRAC_BITS-1)); |
|
dst[index] = d; |
|
ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v; |
|
aa += obmc_v * obmc_v; //FIXME precalculate this |
|
} |
|
} |
|
} |
|
*b= backup; |
|
|
|
return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping |
|
} |
|
|
|
static inline int get_block_bits(SnowContext *s, int x, int y, int w){ |
|
const int b_stride = s->b_width << s->block_max_depth; |
|
const int b_height = s->b_height<< s->block_max_depth; |
|
int index= x + y*b_stride; |
|
const BlockNode *b = &s->block[index]; |
|
const BlockNode *left = x ? &s->block[index-1] : &null_block; |
|
const BlockNode *top = y ? &s->block[index-b_stride] : &null_block; |
|
const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; |
|
const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl; |
|
int dmx, dmy; |
|
// int mx_context= av_log2(2*FFABS(left->mx - top->mx)); |
|
// int my_context= av_log2(2*FFABS(left->my - top->my)); |
|
|
|
if(x<0 || x>=b_stride || y>=b_height) |
|
return 0; |
|
/* |
|
1 0 0 |
|
01X 1-2 1 |
|
001XX 3-6 2-3 |
|
0001XXX 7-14 4-7 |
|
00001XXXX 15-30 8-15 |
|
*/ |
|
//FIXME try accurate rate |
|
//FIXME intra and inter predictors if surrounding blocks are not the same type |
|
if(b->type & BLOCK_INTRA){ |
|
return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0])) |
|
+ av_log2(2*FFABS(left->color[1] - b->color[1])) |
|
+ av_log2(2*FFABS(left->color[2] - b->color[2]))); |
|
}else{ |
|
pred_mv(s, &dmx, &dmy, b->ref, left, top, tr); |
|
dmx-= b->mx; |
|
dmy-= b->my; |
|
return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda |
|
+ av_log2(2*FFABS(dmy)) |
|
+ av_log2(2*b->ref)); |
|
} |
|
} |
|
|
|
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){ |
|
Plane *p= &s->plane[plane_index]; |
|
const int block_size = MB_SIZE >> s->block_max_depth; |
|
const int block_w = plane_index ? block_size/2 : block_size; |
|
const int obmc_stride= plane_index ? block_size : 2*block_size; |
|
const int ref_stride= s->current_picture.linesize[plane_index]; |
|
uint8_t *dst= s->current_picture.data[plane_index]; |
|
uint8_t *src= s-> input_picture.data[plane_index]; |
|
IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; |
|
uint8_t *cur = s->scratchbuf; |
|
uint8_t *tmp = s->emu_edge_buffer; |
|
const int b_stride = s->b_width << s->block_max_depth; |
|
const int b_height = s->b_height<< s->block_max_depth; |
|
const int w= p->width; |
|
const int h= p->height; |
|
int distortion; |
|
int rate= 0; |
|
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); |
|
int sx= block_w*mb_x - block_w/2; |
|
int sy= block_w*mb_y - block_w/2; |
|
int x0= FFMAX(0,-sx); |
|
int y0= FFMAX(0,-sy); |
|
int x1= FFMIN(block_w*2, w-sx); |
|
int y1= FFMIN(block_w*2, h-sy); |
|
int i,x,y; |
|
|
|
ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h); |
|
|
|
for(y=y0; y<y1; y++){ |
|
const uint8_t *obmc1= obmc_edged[y]; |
|
const IDWTELEM *pred1 = pred + y*obmc_stride; |
|
uint8_t *cur1 = cur + y*ref_stride; |
|
uint8_t *dst1 = dst + sx + (sy+y)*ref_stride; |
|
for(x=x0; x<x1; x++){ |
|
#if FRAC_BITS >= LOG2_OBMC_MAX |
|
int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX); |
|
#else |
|
int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS); |
|
#endif |
|
v = (v + pred1[x]) >> FRAC_BITS; |
|
if(v&(~255)) v= ~(v>>31); |
|
dst1[x] = v; |
|
} |
|
} |
|
|
|
/* copy the regions where obmc[] = (uint8_t)256 */ |
|
if(LOG2_OBMC_MAX == 8 |
|
&& (mb_x == 0 || mb_x == b_stride-1) |
|
&& (mb_y == 0 || mb_y == b_height-1)){ |
|
if(mb_x == 0) |
|
x1 = block_w; |
|
else |
|
x0 = block_w; |
|
if(mb_y == 0) |
|
y1 = block_w; |
|
else |
|
y0 = block_w; |
|
for(y=y0; y<y1; y++) |
|
memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0); |
|
} |
|
|
|
if(block_w==16){ |
|
/* FIXME rearrange dsputil to fit 32x32 cmp functions */ |
|
/* FIXME check alignment of the cmp wavelet vs the encoding wavelet */ |
|
/* FIXME cmps overlap but do not cover the wavelet's whole support. |
|
* So improving the score of one block is not strictly guaranteed |
|
* to improve the score of the whole frame, thus iterative motion |
|
* estimation does not always converge. */ |
|
if(s->avctx->me_cmp == FF_CMP_W97) |
|
distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); |
|
else if(s->avctx->me_cmp == FF_CMP_W53) |
|
distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); |
|
else{ |
|
distortion = 0; |
|
for(i=0; i<4; i++){ |
|
int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride; |
|
distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16); |
|
} |
|
} |
|
}else{ |
|
assert(block_w==8); |
|
distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2); |
|
} |
|
|
|
if(plane_index==0){ |
|
for(i=0; i<4; i++){ |
|
/* ..RRr |
|
* .RXx. |
|
* rxx.. |
|
*/ |
|
rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1); |
|
} |
|
if(mb_x == b_stride-2) |
|
rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1); |
|
} |
|
return distortion + rate*penalty_factor; |
|
} |
|
|
|
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ |
|
int i, y2; |
|
Plane *p= &s->plane[plane_index]; |
|
const int block_size = MB_SIZE >> s->block_max_depth; |
|
const int block_w = plane_index ? block_size/2 : block_size; |
|
const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth]; |
|
const int obmc_stride= plane_index ? block_size : 2*block_size; |
|
const int ref_stride= s->current_picture.linesize[plane_index]; |
|
uint8_t *dst= s->current_picture.data[plane_index]; |
|
uint8_t *src= s-> input_picture.data[plane_index]; |
|
//FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst |
|
// const has only been removed from zero_dst to suppress a warning |
|
static IDWTELEM zero_dst[4096]; //FIXME |
|
const int b_stride = s->b_width << s->block_max_depth; |
|
const int w= p->width; |
|
const int h= p->height; |
|
int distortion= 0; |
|
int rate= 0; |
|
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); |
|
|
|
for(i=0; i<9; i++){ |
|
int mb_x2= mb_x + (i%3) - 1; |
|
int mb_y2= mb_y + (i/3) - 1; |
|
int x= block_w*mb_x2 + block_w/2; |
|
int y= block_w*mb_y2 + block_w/2; |
|
|
|
add_yblock(s, 0, NULL, zero_dst, dst, obmc, |
|
x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index); |
|
|
|
//FIXME find a cleaner/simpler way to skip the outside stuff |
|
for(y2= y; y2<0; y2++) |
|
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); |
|
for(y2= h; y2<y+block_w; y2++) |
|
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); |
|
if(x<0){ |
|
for(y2= y; y2<y+block_w; y2++) |
|
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x); |
|
} |
|
if(x+block_w > w){ |
|
for(y2= y; y2<y+block_w; y2++) |
|
memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w); |
|
} |
|
|
|
assert(block_w== 8 || block_w==16); |
|
distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w); |
|
} |
|
|
|
if(plane_index==0){ |
|
BlockNode *b= &s->block[mb_x+mb_y*b_stride]; |
|
int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1); |
|
|
|
/* ..RRRr |
|
* .RXXx. |
|
* .RXXx. |
|
* rxxx. |
|
*/ |
|
if(merged) |
|
rate = get_block_bits(s, mb_x, mb_y, 2); |
|
for(i=merged?4:0; i<9; i++){ |
|
static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}}; |
|
rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1); |
|
} |
|
} |
|
return distortion + rate*penalty_factor; |
|
} |
|
|
|
static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ |
|
const int w= b->width; |
|
const int h= b->height; |
|
int x, y; |
|
|
|
if(1){ |
|
int run=0; |
|
int *runs = s->run_buffer; |
|
int run_index=0; |
|
int max_index; |
|
|
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int v, p=0; |
|
int /*ll=0, */l=0, lt=0, t=0, rt=0; |
|
v= src[x + y*stride]; |
|
|
|
if(y){ |
|
t= src[x + (y-1)*stride]; |
|
if(x){ |
|
lt= src[x - 1 + (y-1)*stride]; |
|
} |
|
if(x + 1 < w){ |
|
rt= src[x + 1 + (y-1)*stride]; |
|
} |
|
} |
|
if(x){ |
|
l= src[x - 1 + y*stride]; |
|
/*if(x > 1){ |
|
if(orientation==1) ll= src[y + (x-2)*stride]; |
|
else ll= src[x - 2 + y*stride]; |
|
}*/ |
|
} |
|
if(parent){ |
|
int px= x>>1; |
|
int py= y>>1; |
|
if(px<b->parent->width && py<b->parent->height) |
|
p= parent[px + py*2*stride]; |
|
} |
|
if(!(/*ll|*/l|lt|t|rt|p)){ |
|
if(v){ |
|
runs[run_index++]= run; |
|
run=0; |
|
}else{ |
|
run++; |
|
} |
|
} |
|
} |
|
} |
|
max_index= run_index; |
|
runs[run_index++]= run; |
|
run_index=0; |
|
run= runs[run_index++]; |
|
|
|
put_symbol2(&s->c, b->state[30], max_index, 0); |
|
if(run_index <= max_index) |
|
put_symbol2(&s->c, b->state[1], run, 3); |
|
|
|
for(y=0; y<h; y++){ |
|
if(s->c.bytestream_end - s->c.bytestream < w*40){ |
|
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); |
|
return -1; |
|
} |
|
for(x=0; x<w; x++){ |
|
int v, p=0; |
|
int /*ll=0, */l=0, lt=0, t=0, rt=0; |
|
v= src[x + y*stride]; |
|
|
|
if(y){ |
|
t= src[x + (y-1)*stride]; |
|
if(x){ |
|
lt= src[x - 1 + (y-1)*stride]; |
|
} |
|
if(x + 1 < w){ |
|
rt= src[x + 1 + (y-1)*stride]; |
|
} |
|
} |
|
if(x){ |
|
l= src[x - 1 + y*stride]; |
|
/*if(x > 1){ |
|
if(orientation==1) ll= src[y + (x-2)*stride]; |
|
else ll= src[x - 2 + y*stride]; |
|
}*/ |
|
} |
|
if(parent){ |
|
int px= x>>1; |
|
int py= y>>1; |
|
if(px<b->parent->width && py<b->parent->height) |
|
p= parent[px + py*2*stride]; |
|
} |
|
if(/*ll|*/l|lt|t|rt|p){ |
|
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); |
|
|
|
put_rac(&s->c, &b->state[0][context], !!v); |
|
}else{ |
|
if(!run){ |
|
run= runs[run_index++]; |
|
|
|
if(run_index <= max_index) |
|
put_symbol2(&s->c, b->state[1], run, 3); |
|
assert(v); |
|
}else{ |
|
run--; |
|
assert(!v); |
|
} |
|
} |
|
if(v){ |
|
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); |
|
int l2= 2*FFABS(l) + (l<0); |
|
int t2= 2*FFABS(t) + (t<0); |
|
|
|
put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4); |
|
put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0); |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ |
|
// encode_subband_qtree(s, b, src, parent, stride, orientation); |
|
// encode_subband_z0run(s, b, src, parent, stride, orientation); |
|
return encode_subband_c0run(s, b, src, parent, stride, orientation); |
|
// encode_subband_dzr(s, b, src, parent, stride, orientation); |
|
} |
|
|
|
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ |
|
const int b_stride= s->b_width << s->block_max_depth; |
|
BlockNode *block= &s->block[mb_x + mb_y * b_stride]; |
|
BlockNode backup= *block; |
|
unsigned value; |
|
int rd, index; |
|
|
|
assert(mb_x>=0 && mb_y>=0); |
|
assert(mb_x<b_stride); |
|
|
|
if(intra){ |
|
block->color[0] = p[0]; |
|
block->color[1] = p[1]; |
|
block->color[2] = p[2]; |
|
block->type |= BLOCK_INTRA; |
|
}else{ |
|
index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); |
|
value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12); |
|
if(s->me_cache[index] == value) |
|
return 0; |
|
s->me_cache[index]= value; |
|
|
|
block->mx= p[0]; |
|
block->my= p[1]; |
|
block->type &= ~BLOCK_INTRA; |
|
} |
|
|
|
rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged); |
|
|
|
//FIXME chroma |
|
if(rd < *best_rd){ |
|
*best_rd= rd; |
|
return 1; |
|
}else{ |
|
*block= backup; |
|
return 0; |
|
} |
|
} |
|
|
|
/* special case for int[2] args we discard afterwards, |
|
* fixes compilation problem with gcc 2.95 */ |
|
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ |
|
int p[2] = {p0, p1}; |
|
return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd); |
|
} |
|
|
|
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){ |
|
const int b_stride= s->b_width << s->block_max_depth; |
|
BlockNode *block= &s->block[mb_x + mb_y * b_stride]; |
|
BlockNode backup[4]; |
|
unsigned value; |
|
int rd, index; |
|
|
|
/* We don't initialize backup[] during variable declaration, because |
|
* that fails to compile on MSVC: "cannot convert from 'BlockNode' to |
|
* 'int16_t'". */ |
|
backup[0] = block[0]; |
|
backup[1] = block[1]; |
|
backup[2] = block[b_stride]; |
|
backup[3] = block[b_stride + 1]; |
|
|
|
assert(mb_x>=0 && mb_y>=0); |
|
assert(mb_x<b_stride); |
|
assert(((mb_x|mb_y)&1) == 0); |
|
|
|
index= (p0 + 31*p1) & (ME_CACHE_SIZE-1); |
|
value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12); |
|
if(s->me_cache[index] == value) |
|
return 0; |
|
s->me_cache[index]= value; |
|
|
|
block->mx= p0; |
|
block->my= p1; |
|
block->ref= ref; |
|
block->type &= ~BLOCK_INTRA; |
|
block[1]= block[b_stride]= block[b_stride+1]= *block; |
|
|
|
rd= get_4block_rd(s, mb_x, mb_y, 0); |
|
|
|
//FIXME chroma |
|
if(rd < *best_rd){ |
|
*best_rd= rd; |
|
return 1; |
|
}else{ |
|
block[0]= backup[0]; |
|
block[1]= backup[1]; |
|
block[b_stride]= backup[2]; |
|
block[b_stride+1]= backup[3]; |
|
return 0; |
|
} |
|
} |
|
|
|
static void iterative_me(SnowContext *s){ |
|
int pass, mb_x, mb_y; |
|
const int b_width = s->b_width << s->block_max_depth; |
|
const int b_height= s->b_height << s->block_max_depth; |
|
const int b_stride= b_width; |
|
int color[3]; |
|
|
|
{ |
|
RangeCoder r = s->c; |
|
uint8_t state[sizeof(s->block_state)]; |
|
memcpy(state, s->block_state, sizeof(s->block_state)); |
|
for(mb_y= 0; mb_y<s->b_height; mb_y++) |
|
for(mb_x= 0; mb_x<s->b_width; mb_x++) |
|
encode_q_branch(s, 0, mb_x, mb_y); |
|
s->c = r; |
|
memcpy(s->block_state, state, sizeof(s->block_state)); |
|
} |
|
|
|
for(pass=0; pass<25; pass++){ |
|
int change= 0; |
|
|
|
for(mb_y= 0; mb_y<b_height; mb_y++){ |
|
for(mb_x= 0; mb_x<b_width; mb_x++){ |
|
int dia_change, i, j, ref; |
|
int best_rd= INT_MAX, ref_rd; |
|
BlockNode backup, ref_b; |
|
const int index= mb_x + mb_y * b_stride; |
|
BlockNode *block= &s->block[index]; |
|
BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL; |
|
BlockNode *lb = mb_x ? &s->block[index -1] : NULL; |
|
BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL; |
|
BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL; |
|
BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL; |
|
BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL; |
|
BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL; |
|
BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL; |
|
const int b_w= (MB_SIZE >> s->block_max_depth); |
|
uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2]; |
|
|
|
if(pass && (block->type & BLOCK_OPT)) |
|
continue; |
|
block->type |= BLOCK_OPT; |
|
|
|
backup= *block; |
|
|
|
if(!s->me_cache_generation) |
|
memset(s->me_cache, 0, sizeof(s->me_cache)); |
|
s->me_cache_generation += 1<<22; |
|
|
|
//FIXME precalculate |
|
{ |
|
int x, y; |
|
for (y = 0; y < b_w * 2; y++) |
|
memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2); |
|
if(mb_x==0) |
|
for(y=0; y<b_w*2; y++) |
|
memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w); |
|
if(mb_x==b_stride-1) |
|
for(y=0; y<b_w*2; y++) |
|
memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w); |
|
if(mb_y==0){ |
|
for(x=0; x<b_w*2; x++) |
|
obmc_edged[0][x] += obmc_edged[b_w-1][x]; |
|
for(y=1; y<b_w; y++) |
|
memcpy(obmc_edged[y], obmc_edged[0], b_w*2); |
|
} |
|
if(mb_y==b_height-1){ |
|
for(x=0; x<b_w*2; x++) |
|
obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x]; |
|
for(y=b_w; y<b_w*2-1; y++) |
|
memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2); |
|
} |
|
} |
|
|
|
//skip stuff outside the picture |
|
if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){ |
|
uint8_t *src= s-> input_picture.data[0]; |
|
uint8_t *dst= s->current_picture.data[0]; |
|
const int stride= s->current_picture.linesize[0]; |
|
const int block_w= MB_SIZE >> s->block_max_depth; |
|
const int sx= block_w*mb_x - block_w/2; |
|
const int sy= block_w*mb_y - block_w/2; |
|
const int w= s->plane[0].width; |
|
const int h= s->plane[0].height; |
|
int y; |
|
|
|
for(y=sy; y<0; y++) |
|
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); |
|
for(y=h; y<sy+block_w*2; y++) |
|
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); |
|
if(sx<0){ |
|
for(y=sy; y<sy+block_w*2; y++) |
|
memcpy(dst + sx + y*stride, src + sx + y*stride, -sx); |
|
} |
|
if(sx+block_w*2 > w){ |
|
for(y=sy; y<sy+block_w*2; y++) |
|
memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w); |
|
} |
|
} |
|
|
|
// intra(black) = neighbors' contribution to the current block |
|
for(i=0; i<3; i++) |
|
color[i]= get_dc(s, mb_x, mb_y, i); |
|
|
|
// get previous score (cannot be cached due to OBMC) |
|
if(pass > 0 && (block->type&BLOCK_INTRA)){ |
|
int color0[3]= {block->color[0], block->color[1], block->color[2]}; |
|
check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd); |
|
}else |
|
check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd); |
|
|
|
ref_b= *block; |
|
ref_rd= best_rd; |
|
for(ref=0; ref < s->ref_frames; ref++){ |
|
int16_t (*mvr)[2]= &s->ref_mvs[ref][index]; |
|
if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold |
|
continue; |
|
block->ref= ref; |
|
best_rd= INT_MAX; |
|
|
|
check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd); |
|
check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd); |
|
if(tb) |
|
check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd); |
|
if(lb) |
|
check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd); |
|
if(rb) |
|
check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd); |
|
if(bb) |
|
check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd); |
|
|
|
/* fullpel ME */ |
|
//FIXME avoid subpel interpolation / round to nearest integer |
|
do{ |
|
dia_change=0; |
|
for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){ |
|
for(j=0; j<i; j++){ |
|
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd); |
|
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd); |
|
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd); |
|
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd); |
|
} |
|
} |
|
}while(dia_change); |
|
/* subpel ME */ |
|
do{ |
|
static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; |
|
dia_change=0; |
|
for(i=0; i<8; i++) |
|
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd); |
|
}while(dia_change); |
|
//FIXME or try the standard 2 pass qpel or similar |
|
|
|
mvr[0][0]= block->mx; |
|
mvr[0][1]= block->my; |
|
if(ref_rd > best_rd){ |
|
ref_rd= best_rd; |
|
ref_b= *block; |
|
} |
|
} |
|
best_rd= ref_rd; |
|
*block= ref_b; |
|
check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd); |
|
//FIXME RD style color selection |
|
if(!same_block(block, &backup)){ |
|
if(tb ) tb ->type &= ~BLOCK_OPT; |
|
if(lb ) lb ->type &= ~BLOCK_OPT; |
|
if(rb ) rb ->type &= ~BLOCK_OPT; |
|
if(bb ) bb ->type &= ~BLOCK_OPT; |
|
if(tlb) tlb->type &= ~BLOCK_OPT; |
|
if(trb) trb->type &= ~BLOCK_OPT; |
|
if(blb) blb->type &= ~BLOCK_OPT; |
|
if(brb) brb->type &= ~BLOCK_OPT; |
|
change ++; |
|
} |
|
} |
|
} |
|
av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change); |
|
if(!change) |
|
break; |
|
} |
|
|
|
if(s->block_max_depth == 1){ |
|
int change= 0; |
|
for(mb_y= 0; mb_y<b_height; mb_y+=2){ |
|
for(mb_x= 0; mb_x<b_width; mb_x+=2){ |
|
int i; |
|
int best_rd, init_rd; |
|
const int index= mb_x + mb_y * b_stride; |
|
BlockNode *b[4]; |
|
|
|
b[0]= &s->block[index]; |
|
b[1]= b[0]+1; |
|
b[2]= b[0]+b_stride; |
|
b[3]= b[2]+1; |
|
if(same_block(b[0], b[1]) && |
|
same_block(b[0], b[2]) && |
|
same_block(b[0], b[3])) |
|
continue; |
|
|
|
if(!s->me_cache_generation) |
|
memset(s->me_cache, 0, sizeof(s->me_cache)); |
|
s->me_cache_generation += 1<<22; |
|
|
|
init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0); |
|
|
|
//FIXME more multiref search? |
|
check_4block_inter(s, mb_x, mb_y, |
|
(b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2, |
|
(b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd); |
|
|
|
for(i=0; i<4; i++) |
|
if(!(b[i]->type&BLOCK_INTRA)) |
|
check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd); |
|
|
|
if(init_rd != best_rd) |
|
change++; |
|
} |
|
} |
|
av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4); |
|
} |
|
} |
|
|
|
static void encode_blocks(SnowContext *s, int search){ |
|
int x, y; |
|
int w= s->b_width; |
|
int h= s->b_height; |
|
|
|
if(s->avctx->me_method == ME_ITER && !s->keyframe && search) |
|
iterative_me(s); |
|
|
|
for(y=0; y<h; y++){ |
|
if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit |
|
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); |
|
return; |
|
} |
|
for(x=0; x<w; x++){ |
|
if(s->avctx->me_method == ME_ITER || !search) |
|
encode_q_branch2(s, 0, x, y); |
|
else |
|
encode_q_branch (s, 0, x, y); |
|
} |
|
} |
|
} |
|
|
|
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){ |
|
const int w= b->width; |
|
const int h= b->height; |
|
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); |
|
const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS); |
|
int x,y, thres1, thres2; |
|
|
|
if(s->qlog == LOSSLESS_QLOG){ |
|
for(y=0; y<h; y++) |
|
for(x=0; x<w; x++) |
|
dst[x + y*stride]= src[x + y*stride]; |
|
return; |
|
} |
|
|
|
bias= bias ? 0 : (3*qmul)>>3; |
|
thres1= ((qmul - bias)>>QEXPSHIFT) - 1; |
|
thres2= 2*thres1; |
|
|
|
if(!bias){ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int i= src[x + y*stride]; |
|
|
|
if((unsigned)(i+thres1) > thres2){ |
|
if(i>=0){ |
|
i<<= QEXPSHIFT; |
|
i/= qmul; //FIXME optimize |
|
dst[x + y*stride]= i; |
|
}else{ |
|
i= -i; |
|
i<<= QEXPSHIFT; |
|
i/= qmul; //FIXME optimize |
|
dst[x + y*stride]= -i; |
|
} |
|
}else |
|
dst[x + y*stride]= 0; |
|
} |
|
} |
|
}else{ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int i= src[x + y*stride]; |
|
|
|
if((unsigned)(i+thres1) > thres2){ |
|
if(i>=0){ |
|
i<<= QEXPSHIFT; |
|
i= (i + bias) / qmul; //FIXME optimize |
|
dst[x + y*stride]= i; |
|
}else{ |
|
i= -i; |
|
i<<= QEXPSHIFT; |
|
i= (i + bias) / qmul; //FIXME optimize |
|
dst[x + y*stride]= -i; |
|
} |
|
}else |
|
dst[x + y*stride]= 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){ |
|
const int w= b->width; |
|
const int h= b->height; |
|
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); |
|
const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); |
|
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; |
|
int x,y; |
|
|
|
if(s->qlog == LOSSLESS_QLOG) return; |
|
|
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int i= src[x + y*stride]; |
|
if(i<0){ |
|
src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias |
|
}else if(i>0){ |
|
src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ |
|
const int w= b->width; |
|
const int h= b->height; |
|
int x,y; |
|
|
|
for(y=h-1; y>=0; y--){ |
|
for(x=w-1; x>=0; x--){ |
|
int i= x + y*stride; |
|
|
|
if(x){ |
|
if(use_median){ |
|
if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); |
|
else src[i] -= src[i - 1]; |
|
}else{ |
|
if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); |
|
else src[i] -= src[i - 1]; |
|
} |
|
}else{ |
|
if(y) src[i] -= src[i - stride]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ |
|
const int w= b->width; |
|
const int h= b->height; |
|
int x,y; |
|
|
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int i= x + y*stride; |
|
|
|
if(x){ |
|
if(use_median){ |
|
if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); |
|
else src[i] += src[i - 1]; |
|
}else{ |
|
if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); |
|
else src[i] += src[i - 1]; |
|
} |
|
}else{ |
|
if(y) src[i] += src[i - stride]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void encode_qlogs(SnowContext *s){ |
|
int plane_index, level, orientation; |
|
|
|
for(plane_index=0; plane_index<2; plane_index++){ |
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1:0; orientation<4; orientation++){ |
|
if(orientation==2) continue; |
|
put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void encode_header(SnowContext *s){ |
|
int plane_index, i; |
|
uint8_t kstate[32]; |
|
|
|
memset(kstate, MID_STATE, sizeof(kstate)); |
|
|
|
put_rac(&s->c, kstate, s->keyframe); |
|
if(s->keyframe || s->always_reset){ |
|
ff_snow_reset_contexts(s); |
|
s->last_spatial_decomposition_type= |
|
s->last_qlog= |
|
s->last_qbias= |
|
s->last_mv_scale= |
|
s->last_block_max_depth= 0; |
|
for(plane_index=0; plane_index<2; plane_index++){ |
|
Plane *p= &s->plane[plane_index]; |
|
p->last_htaps=0; |
|
p->last_diag_mc=0; |
|
memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff)); |
|
} |
|
} |
|
if(s->keyframe){ |
|
put_symbol(&s->c, s->header_state, s->version, 0); |
|
put_rac(&s->c, s->header_state, s->always_reset); |
|
put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); |
|
put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); |
|
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); |
|
put_symbol(&s->c, s->header_state, s->colorspace_type, 0); |
|
put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); |
|
put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); |
|
put_rac(&s->c, s->header_state, s->spatial_scalability); |
|
// put_rac(&s->c, s->header_state, s->rate_scalability); |
|
put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0); |
|
|
|
encode_qlogs(s); |
|
} |
|
|
|
if(!s->keyframe){ |
|
int update_mc=0; |
|
for(plane_index=0; plane_index<2; plane_index++){ |
|
Plane *p= &s->plane[plane_index]; |
|
update_mc |= p->last_htaps != p->htaps; |
|
update_mc |= p->last_diag_mc != p->diag_mc; |
|
update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); |
|
} |
|
put_rac(&s->c, s->header_state, update_mc); |
|
if(update_mc){ |
|
for(plane_index=0; plane_index<2; plane_index++){ |
|
Plane *p= &s->plane[plane_index]; |
|
put_rac(&s->c, s->header_state, p->diag_mc); |
|
put_symbol(&s->c, s->header_state, p->htaps/2-1, 0); |
|
for(i= p->htaps/2; i; i--) |
|
put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0); |
|
} |
|
} |
|
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ |
|
put_rac(&s->c, s->header_state, 1); |
|
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); |
|
encode_qlogs(s); |
|
}else |
|
put_rac(&s->c, s->header_state, 0); |
|
} |
|
|
|
put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1); |
|
put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1); |
|
put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1); |
|
put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1); |
|
put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1); |
|
|
|
} |
|
|
|
static void update_last_header_values(SnowContext *s){ |
|
int plane_index; |
|
|
|
if(!s->keyframe){ |
|
for(plane_index=0; plane_index<2; plane_index++){ |
|
Plane *p= &s->plane[plane_index]; |
|
p->last_diag_mc= p->diag_mc; |
|
p->last_htaps = p->htaps; |
|
memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); |
|
} |
|
} |
|
|
|
s->last_spatial_decomposition_type = s->spatial_decomposition_type; |
|
s->last_qlog = s->qlog; |
|
s->last_qbias = s->qbias; |
|
s->last_mv_scale = s->mv_scale; |
|
s->last_block_max_depth = s->block_max_depth; |
|
s->last_spatial_decomposition_count = s->spatial_decomposition_count; |
|
} |
|
|
|
static int qscale2qlog(int qscale){ |
|
return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA)) |
|
+ 61*QROOT/8; ///< 64 > 60 |
|
} |
|
|
|
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict) |
|
{ |
|
/* Estimate the frame's complexity as a sum of weighted dwt coefficients. |
|
* FIXME we know exact mv bits at this point, |
|
* but ratecontrol isn't set up to include them. */ |
|
uint32_t coef_sum= 0; |
|
int level, orientation, delta_qlog; |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &s->plane[0].band[level][orientation]; |
|
IDWTELEM *buf= b->ibuf; |
|
const int w= b->width; |
|
const int h= b->height; |
|
const int stride= b->stride; |
|
const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16); |
|
const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); |
|
const int qdiv= (1<<16)/qmul; |
|
int x, y; |
|
//FIXME this is ugly |
|
for(y=0; y<h; y++) |
|
for(x=0; x<w; x++) |
|
buf[x+y*stride]= b->buf[x+y*stride]; |
|
if(orientation==0) |
|
decorrelate(s, b, buf, stride, 1, 0); |
|
for(y=0; y<h; y++) |
|
for(x=0; x<w; x++) |
|
coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16; |
|
} |
|
} |
|
|
|
/* ugly, ratecontrol just takes a sqrt again */ |
|
coef_sum = (uint64_t)coef_sum * coef_sum >> 16; |
|
assert(coef_sum < INT_MAX); |
|
|
|
if(pict->pict_type == AV_PICTURE_TYPE_I){ |
|
s->m.current_picture.mb_var_sum= coef_sum; |
|
s->m.current_picture.mc_mb_var_sum= 0; |
|
}else{ |
|
s->m.current_picture.mc_mb_var_sum= coef_sum; |
|
s->m.current_picture.mb_var_sum= 0; |
|
} |
|
|
|
pict->quality= ff_rate_estimate_qscale(&s->m, 1); |
|
if (pict->quality < 0) |
|
return INT_MIN; |
|
s->lambda= pict->quality * 3/2; |
|
delta_qlog= qscale2qlog(pict->quality) - s->qlog; |
|
s->qlog+= delta_qlog; |
|
return delta_qlog; |
|
} |
|
|
|
static void calculate_visual_weight(SnowContext *s, Plane *p){ |
|
int width = p->width; |
|
int height= p->height; |
|
int level, orientation, x, y; |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
IDWTELEM *ibuf= b->ibuf; |
|
int64_t error=0; |
|
|
|
memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height); |
|
ibuf[b->width/2 + b->height/2*b->stride]= 256*16; |
|
ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); |
|
for(y=0; y<height; y++){ |
|
for(x=0; x<width; x++){ |
|
int64_t d= s->spatial_idwt_buffer[x + y*width]*16; |
|
error += d*d; |
|
} |
|
} |
|
|
|
b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5); |
|
} |
|
} |
|
} |
|
|
|
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *pict, int *got_packet) |
|
{ |
|
SnowContext *s = avctx->priv_data; |
|
RangeCoder * const c= &s->c; |
|
AVFrame *pic = &s->new_picture; |
|
const int width= s->avctx->width; |
|
const int height= s->avctx->height; |
|
int level, orientation, plane_index, i, y, ret; |
|
uint8_t rc_header_bak[sizeof(s->header_state)]; |
|
uint8_t rc_block_bak[sizeof(s->block_state)]; |
|
|
|
if (!pkt->data && |
|
(ret = av_new_packet(pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); |
|
return ret; |
|
} |
|
|
|
ff_init_range_encoder(c, pkt->data, pkt->size); |
|
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); |
|
|
|
for(i=0; i<3; i++){ |
|
int shift= !!i; |
|
for(y=0; y<(height>>shift); y++) |
|
memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]], |
|
&pict->data[i][y * pict->linesize[i]], |
|
width>>shift); |
|
} |
|
s->new_picture = *pict; |
|
|
|
s->m.picture_number= avctx->frame_number; |
|
if(avctx->flags&CODEC_FLAG_PASS2){ |
|
s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type; |
|
s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I; |
|
if(!(avctx->flags&CODEC_FLAG_QSCALE)) { |
|
pic->quality = ff_rate_estimate_qscale(&s->m, 0); |
|
if (pic->quality < 0) |
|
return -1; |
|
} |
|
}else{ |
|
s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; |
|
s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; |
|
} |
|
|
|
if(s->pass1_rc && avctx->frame_number == 0) |
|
pic->quality = 2*FF_QP2LAMBDA; |
|
if (pic->quality) { |
|
s->qlog = qscale2qlog(pic->quality); |
|
s->lambda = pic->quality * 3/2; |
|
} |
|
if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) { |
|
s->qlog= LOSSLESS_QLOG; |
|
s->lambda = 0; |
|
}//else keep previous frame's qlog until after motion estimation |
|
|
|
ff_snow_frame_start(s); |
|
|
|
s->m.current_picture_ptr= &s->m.current_picture; |
|
s->m.last_picture.f.pts = s->m.current_picture.f.pts; |
|
s->m.current_picture.f.pts = pict->pts; |
|
if(pic->pict_type == AV_PICTURE_TYPE_P){ |
|
int block_width = (width +15)>>4; |
|
int block_height= (height+15)>>4; |
|
int stride= s->current_picture.linesize[0]; |
|
|
|
assert(s->current_picture.data[0]); |
|
assert(s->last_picture[0].data[0]); |
|
|
|
s->m.avctx= s->avctx; |
|
s->m.current_picture.f.data[0] = s->current_picture.data[0]; |
|
s->m. last_picture.f.data[0] = s->last_picture[0].data[0]; |
|
s->m. new_picture.f.data[0] = s-> input_picture.data[0]; |
|
s->m. last_picture_ptr= &s->m. last_picture; |
|
s->m.linesize= |
|
s->m. last_picture.f.linesize[0] = |
|
s->m. new_picture.f.linesize[0] = |
|
s->m.current_picture.f.linesize[0] = stride; |
|
s->m.uvlinesize= s->current_picture.linesize[1]; |
|
s->m.width = width; |
|
s->m.height= height; |
|
s->m.mb_width = block_width; |
|
s->m.mb_height= block_height; |
|
s->m.mb_stride= s->m.mb_width+1; |
|
s->m.b8_stride= 2*s->m.mb_width+1; |
|
s->m.f_code=1; |
|
s->m.pict_type = pic->pict_type; |
|
s->m.me_method= s->avctx->me_method; |
|
s->m.me.scene_change_score=0; |
|
s->m.flags= s->avctx->flags; |
|
s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0; |
|
s->m.out_format= FMT_H263; |
|
s->m.unrestricted_mv= 1; |
|
|
|
s->m.lambda = s->lambda; |
|
s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); |
|
s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; |
|
|
|
s->m.dsp= s->dsp; //move |
|
ff_init_me(&s->m); |
|
s->dsp= s->m.dsp; |
|
} |
|
|
|
if(s->pass1_rc){ |
|
memcpy(rc_header_bak, s->header_state, sizeof(s->header_state)); |
|
memcpy(rc_block_bak, s->block_state, sizeof(s->block_state)); |
|
} |
|
|
|
redo_frame: |
|
|
|
if (pic->pict_type == AV_PICTURE_TYPE_I) |
|
s->spatial_decomposition_count= 5; |
|
else |
|
s->spatial_decomposition_count= 5; |
|
|
|
s->m.pict_type = pic->pict_type; |
|
s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0; |
|
|
|
ff_snow_common_init_after_header(avctx); |
|
|
|
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ |
|
for(plane_index=0; plane_index<3; plane_index++){ |
|
calculate_visual_weight(s, &s->plane[plane_index]); |
|
} |
|
} |
|
|
|
encode_header(s); |
|
s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); |
|
encode_blocks(s, 1); |
|
s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; |
|
|
|
for(plane_index=0; plane_index<3; plane_index++){ |
|
Plane *p= &s->plane[plane_index]; |
|
int w= p->width; |
|
int h= p->height; |
|
int x, y; |
|
// int bits= put_bits_count(&s->c.pb); |
|
|
|
if (!s->memc_only) { |
|
//FIXME optimize |
|
if(pict->data[plane_index]) //FIXME gray hack |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS; |
|
} |
|
} |
|
predict_plane(s, s->spatial_idwt_buffer, plane_index, 0); |
|
|
|
if( plane_index==0 |
|
&& pic->pict_type == AV_PICTURE_TYPE_P |
|
&& !(avctx->flags&CODEC_FLAG_PASS2) |
|
&& s->m.me.scene_change_score > s->avctx->scenechange_threshold){ |
|
ff_init_range_encoder(c, pkt->data, pkt->size); |
|
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); |
|
pic->pict_type= AV_PICTURE_TYPE_I; |
|
s->keyframe=1; |
|
s->current_picture.key_frame=1; |
|
goto redo_frame; |
|
} |
|
|
|
if(s->qlog == LOSSLESS_QLOG){ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; |
|
} |
|
} |
|
}else{ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS; |
|
} |
|
} |
|
} |
|
|
|
/* if(QUANTIZE2) |
|
dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type); |
|
else*/ |
|
ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); |
|
|
|
if(s->pass1_rc && plane_index==0){ |
|
int delta_qlog = ratecontrol_1pass(s, pic); |
|
if (delta_qlog <= INT_MIN) |
|
return -1; |
|
if(delta_qlog){ |
|
//reordering qlog in the bitstream would eliminate this reset |
|
ff_init_range_encoder(c, pkt->data, pkt->size); |
|
memcpy(s->header_state, rc_header_bak, sizeof(s->header_state)); |
|
memcpy(s->block_state, rc_block_bak, sizeof(s->block_state)); |
|
encode_header(s); |
|
encode_blocks(s, 0); |
|
} |
|
} |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
|
|
if(!QUANTIZE2) |
|
quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias); |
|
if(orientation==0) |
|
decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0); |
|
encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation); |
|
assert(b->parent==NULL || b->parent->stride == b->stride*2); |
|
if(orientation==0) |
|
correlate(s, b, b->ibuf, b->stride, 1, 0); |
|
} |
|
} |
|
|
|
for(level=0; level<s->spatial_decomposition_count; level++){ |
|
for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
|
SubBand *b= &p->band[level][orientation]; |
|
|
|
dequantize(s, b, b->ibuf, b->stride); |
|
} |
|
} |
|
|
|
ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); |
|
if(s->qlog == LOSSLESS_QLOG){ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS; |
|
} |
|
} |
|
} |
|
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); |
|
}else{ |
|
//ME/MC only |
|
if(pic->pict_type == AV_PICTURE_TYPE_I){ |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]= |
|
pict->data[plane_index][y*pict->linesize[plane_index] + x]; |
|
} |
|
} |
|
}else{ |
|
memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h); |
|
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); |
|
} |
|
} |
|
if(s->avctx->flags&CODEC_FLAG_PSNR){ |
|
int64_t error= 0; |
|
|
|
if(pict->data[plane_index]) //FIXME gray hack |
|
for(y=0; y<h; y++){ |
|
for(x=0; x<w; x++){ |
|
int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; |
|
error += d*d; |
|
} |
|
} |
|
s->avctx->error[plane_index] += error; |
|
s->current_picture.error[plane_index] = error; |
|
} |
|
|
|
} |
|
|
|
update_last_header_values(s); |
|
|
|
ff_snow_release_buffer(avctx); |
|
|
|
s->current_picture.coded_picture_number = avctx->frame_number; |
|
s->current_picture.pict_type = pict->pict_type; |
|
s->current_picture.quality = pict->quality; |
|
s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start); |
|
s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits; |
|
s->m.current_picture.f.display_picture_number = |
|
s->m.current_picture.f.coded_picture_number = avctx->frame_number; |
|
s->m.current_picture.f.quality = pic->quality; |
|
s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); |
|
if(s->pass1_rc) |
|
if (ff_rate_estimate_qscale(&s->m, 0) < 0) |
|
return -1; |
|
if(avctx->flags&CODEC_FLAG_PASS1) |
|
ff_write_pass1_stats(&s->m); |
|
s->m.last_pict_type = s->m.pict_type; |
|
avctx->frame_bits = s->m.frame_bits; |
|
avctx->mv_bits = s->m.mv_bits; |
|
avctx->misc_bits = s->m.misc_bits; |
|
avctx->p_tex_bits = s->m.p_tex_bits; |
|
|
|
emms_c(); |
|
|
|
pkt->size = ff_rac_terminate(c); |
|
if (avctx->coded_frame->key_frame) |
|
pkt->flags |= AV_PKT_FLAG_KEY; |
|
*got_packet = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int encode_end(AVCodecContext *avctx) |
|
{ |
|
SnowContext *s = avctx->priv_data; |
|
|
|
ff_snow_common_end(s); |
|
if (s->input_picture.data[0]) |
|
avctx->release_buffer(avctx, &s->input_picture); |
|
av_free(avctx->stats_out); |
|
|
|
return 0; |
|
} |
|
|
|
#define OFFSET(x) offsetof(SnowContext, x) |
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
static const AVOption options[] = { |
|
{ "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass snowenc_class = { |
|
.class_name = "snow encoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_snow_encoder = { |
|
.name = "snow", |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_SNOW, |
|
.priv_data_size = sizeof(SnowContext), |
|
.init = encode_init, |
|
.encode2 = encode_frame, |
|
.close = encode_end, |
|
.long_name = NULL_IF_CONFIG_SMALL("Snow"), |
|
.priv_class = &snowenc_class, |
|
};
|
|
|