mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
842 lines
26 KiB
842 lines
26 KiB
/* |
|
* WMA compatible decoder |
|
* Copyright (c) 2002 The FFmpeg Project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/wmadec.c |
|
* WMA compatible decoder. |
|
* This decoder handles Microsoft Windows Media Audio data, versions 1 & 2. |
|
* WMA v1 is identified by audio format 0x160 in Microsoft media files |
|
* (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161. |
|
* |
|
* To use this decoder, a calling application must supply the extra data |
|
* bytes provided with the WMA data. These are the extra, codec-specific |
|
* bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes |
|
* to the decoder using the extradata[_size] fields in AVCodecContext. There |
|
* should be 4 extra bytes for v1 data and 6 extra bytes for v2 data. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "wma.h" |
|
|
|
#undef NDEBUG |
|
#include <assert.h> |
|
|
|
#define EXPVLCBITS 8 |
|
#define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS) |
|
|
|
#define HGAINVLCBITS 9 |
|
#define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS) |
|
|
|
static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len); |
|
|
|
#ifdef TRACE |
|
static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n) |
|
{ |
|
int i; |
|
|
|
tprintf(s->avctx, "%s[%d]:\n", name, n); |
|
for(i=0;i<n;i++) { |
|
if ((i & 7) == 0) |
|
tprintf(s->avctx, "%4d: ", i); |
|
tprintf(s->avctx, " %5d.0", tab[i]); |
|
if ((i & 7) == 7) |
|
tprintf(s->avctx, "\n"); |
|
} |
|
} |
|
|
|
static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n) |
|
{ |
|
int i; |
|
|
|
tprintf(s->avctx, "%s[%d]:\n", name, n); |
|
for(i=0;i<n;i++) { |
|
if ((i & 7) == 0) |
|
tprintf(s->avctx, "%4d: ", i); |
|
tprintf(s->avctx, " %8.*f", prec, tab[i]); |
|
if ((i & 7) == 7) |
|
tprintf(s->avctx, "\n"); |
|
} |
|
if ((i & 7) != 0) |
|
tprintf(s->avctx, "\n"); |
|
} |
|
#endif |
|
|
|
static int wma_decode_init(AVCodecContext * avctx) |
|
{ |
|
WMACodecContext *s = avctx->priv_data; |
|
int i, flags1, flags2; |
|
uint8_t *extradata; |
|
|
|
s->avctx = avctx; |
|
|
|
/* extract flag infos */ |
|
flags1 = 0; |
|
flags2 = 0; |
|
extradata = avctx->extradata; |
|
if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) { |
|
flags1 = AV_RL16(extradata); |
|
flags2 = AV_RL16(extradata+2); |
|
} else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) { |
|
flags1 = AV_RL32(extradata); |
|
flags2 = AV_RL16(extradata+4); |
|
} |
|
// for(i=0; i<avctx->extradata_size; i++) |
|
// av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]); |
|
|
|
s->use_exp_vlc = flags2 & 0x0001; |
|
s->use_bit_reservoir = flags2 & 0x0002; |
|
s->use_variable_block_len = flags2 & 0x0004; |
|
|
|
if(ff_wma_init(avctx, flags2)<0) |
|
return -1; |
|
|
|
/* init MDCT */ |
|
for(i = 0; i < s->nb_block_sizes; i++) |
|
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0); |
|
|
|
if (s->use_noise_coding) { |
|
init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits), |
|
ff_wma_hgain_huffbits, 1, 1, |
|
ff_wma_hgain_huffcodes, 2, 2, 0); |
|
} |
|
|
|
if (s->use_exp_vlc) { |
|
init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context |
|
ff_wma_scale_huffbits, 1, 1, |
|
ff_wma_scale_huffcodes, 4, 4, 0); |
|
} else { |
|
wma_lsp_to_curve_init(s, s->frame_len); |
|
} |
|
|
|
avctx->sample_fmt = SAMPLE_FMT_S16; |
|
return 0; |
|
} |
|
|
|
/** |
|
* compute x^-0.25 with an exponent and mantissa table. We use linear |
|
* interpolation to reduce the mantissa table size at a small speed |
|
* expense (linear interpolation approximately doubles the number of |
|
* bits of precision). |
|
*/ |
|
static inline float pow_m1_4(WMACodecContext *s, float x) |
|
{ |
|
union { |
|
float f; |
|
unsigned int v; |
|
} u, t; |
|
unsigned int e, m; |
|
float a, b; |
|
|
|
u.f = x; |
|
e = u.v >> 23; |
|
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1); |
|
/* build interpolation scale: 1 <= t < 2. */ |
|
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23); |
|
a = s->lsp_pow_m_table1[m]; |
|
b = s->lsp_pow_m_table2[m]; |
|
return s->lsp_pow_e_table[e] * (a + b * t.f); |
|
} |
|
|
|
static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len) |
|
{ |
|
float wdel, a, b; |
|
int i, e, m; |
|
|
|
wdel = M_PI / frame_len; |
|
for(i=0;i<frame_len;i++) |
|
s->lsp_cos_table[i] = 2.0f * cos(wdel * i); |
|
|
|
/* tables for x^-0.25 computation */ |
|
for(i=0;i<256;i++) { |
|
e = i - 126; |
|
s->lsp_pow_e_table[i] = pow(2.0, e * -0.25); |
|
} |
|
|
|
/* NOTE: these two tables are needed to avoid two operations in |
|
pow_m1_4 */ |
|
b = 1.0; |
|
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) { |
|
m = (1 << LSP_POW_BITS) + i; |
|
a = (float)m * (0.5 / (1 << LSP_POW_BITS)); |
|
a = pow(a, -0.25); |
|
s->lsp_pow_m_table1[i] = 2 * a - b; |
|
s->lsp_pow_m_table2[i] = b - a; |
|
b = a; |
|
} |
|
#if 0 |
|
for(i=1;i<20;i++) { |
|
float v, r1, r2; |
|
v = 5.0 / i; |
|
r1 = pow_m1_4(s, v); |
|
r2 = pow(v,-0.25); |
|
printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1); |
|
} |
|
#endif |
|
} |
|
|
|
/** |
|
* NOTE: We use the same code as Vorbis here |
|
* @todo optimize it further with SSE/3Dnow |
|
*/ |
|
static void wma_lsp_to_curve(WMACodecContext *s, |
|
float *out, float *val_max_ptr, |
|
int n, float *lsp) |
|
{ |
|
int i, j; |
|
float p, q, w, v, val_max; |
|
|
|
val_max = 0; |
|
for(i=0;i<n;i++) { |
|
p = 0.5f; |
|
q = 0.5f; |
|
w = s->lsp_cos_table[i]; |
|
for(j=1;j<NB_LSP_COEFS;j+=2){ |
|
q *= w - lsp[j - 1]; |
|
p *= w - lsp[j]; |
|
} |
|
p *= p * (2.0f - w); |
|
q *= q * (2.0f + w); |
|
v = p + q; |
|
v = pow_m1_4(s, v); |
|
if (v > val_max) |
|
val_max = v; |
|
out[i] = v; |
|
} |
|
*val_max_ptr = val_max; |
|
} |
|
|
|
/** |
|
* decode exponents coded with LSP coefficients (same idea as Vorbis) |
|
*/ |
|
static void decode_exp_lsp(WMACodecContext *s, int ch) |
|
{ |
|
float lsp_coefs[NB_LSP_COEFS]; |
|
int val, i; |
|
|
|
for(i = 0; i < NB_LSP_COEFS; i++) { |
|
if (i == 0 || i >= 8) |
|
val = get_bits(&s->gb, 3); |
|
else |
|
val = get_bits(&s->gb, 4); |
|
lsp_coefs[i] = ff_wma_lsp_codebook[i][val]; |
|
} |
|
|
|
wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch], |
|
s->block_len, lsp_coefs); |
|
} |
|
|
|
/** |
|
* decode exponents coded with VLC codes |
|
*/ |
|
static int decode_exp_vlc(WMACodecContext *s, int ch) |
|
{ |
|
int last_exp, n, code; |
|
const uint16_t *ptr, *band_ptr; |
|
float v, *q, max_scale, *q_end; |
|
|
|
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits]; |
|
ptr = band_ptr; |
|
q = s->exponents[ch]; |
|
q_end = q + s->block_len; |
|
max_scale = 0; |
|
if (s->version == 1) { |
|
last_exp = get_bits(&s->gb, 5) + 10; |
|
/* XXX: use a table */ |
|
v = pow(10, last_exp * (1.0 / 16.0)); |
|
max_scale = v; |
|
n = *ptr++; |
|
do { |
|
*q++ = v; |
|
} while (--n); |
|
}else |
|
last_exp = 36; |
|
|
|
while (q < q_end) { |
|
code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX); |
|
if (code < 0) |
|
return -1; |
|
/* NOTE: this offset is the same as MPEG4 AAC ! */ |
|
last_exp += code - 60; |
|
/* XXX: use a table */ |
|
v = pow(10, last_exp * (1.0 / 16.0)); |
|
if (v > max_scale) |
|
max_scale = v; |
|
n = *ptr++; |
|
do { |
|
*q++ = v; |
|
} while (--n); |
|
} |
|
s->max_exponent[ch] = max_scale; |
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Apply MDCT window and add into output. |
|
* |
|
* We ensure that when the windows overlap their squared sum |
|
* is always 1 (MDCT reconstruction rule). |
|
*/ |
|
static void wma_window(WMACodecContext *s, float *out) |
|
{ |
|
float *in = s->output; |
|
int block_len, bsize, n; |
|
|
|
/* left part */ |
|
if (s->block_len_bits <= s->prev_block_len_bits) { |
|
block_len = s->block_len; |
|
bsize = s->frame_len_bits - s->block_len_bits; |
|
|
|
s->dsp.vector_fmul_add_add(out, in, s->windows[bsize], |
|
out, 0, block_len, 1); |
|
|
|
} else { |
|
block_len = 1 << s->prev_block_len_bits; |
|
n = (s->block_len - block_len) / 2; |
|
bsize = s->frame_len_bits - s->prev_block_len_bits; |
|
|
|
s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize], |
|
out+n, 0, block_len, 1); |
|
|
|
memcpy(out+n+block_len, in+n+block_len, n*sizeof(float)); |
|
} |
|
|
|
out += s->block_len; |
|
in += s->block_len; |
|
|
|
/* right part */ |
|
if (s->block_len_bits <= s->next_block_len_bits) { |
|
block_len = s->block_len; |
|
bsize = s->frame_len_bits - s->block_len_bits; |
|
|
|
s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len); |
|
|
|
} else { |
|
block_len = 1 << s->next_block_len_bits; |
|
n = (s->block_len - block_len) / 2; |
|
bsize = s->frame_len_bits - s->next_block_len_bits; |
|
|
|
memcpy(out, in, n*sizeof(float)); |
|
|
|
s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len); |
|
|
|
memset(out+n+block_len, 0, n*sizeof(float)); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* @return 0 if OK. 1 if last block of frame. return -1 if |
|
* unrecorrable error. |
|
*/ |
|
static int wma_decode_block(WMACodecContext *s) |
|
{ |
|
int n, v, a, ch, bsize; |
|
int coef_nb_bits, total_gain; |
|
int nb_coefs[MAX_CHANNELS]; |
|
float mdct_norm; |
|
|
|
#ifdef TRACE |
|
tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num); |
|
#endif |
|
|
|
/* compute current block length */ |
|
if (s->use_variable_block_len) { |
|
n = av_log2(s->nb_block_sizes - 1) + 1; |
|
|
|
if (s->reset_block_lengths) { |
|
s->reset_block_lengths = 0; |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->prev_block_len_bits = s->frame_len_bits - v; |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->block_len_bits = s->frame_len_bits - v; |
|
} else { |
|
/* update block lengths */ |
|
s->prev_block_len_bits = s->block_len_bits; |
|
s->block_len_bits = s->next_block_len_bits; |
|
} |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->next_block_len_bits = s->frame_len_bits - v; |
|
} else { |
|
/* fixed block len */ |
|
s->next_block_len_bits = s->frame_len_bits; |
|
s->prev_block_len_bits = s->frame_len_bits; |
|
s->block_len_bits = s->frame_len_bits; |
|
} |
|
|
|
/* now check if the block length is coherent with the frame length */ |
|
s->block_len = 1 << s->block_len_bits; |
|
if ((s->block_pos + s->block_len) > s->frame_len) |
|
return -1; |
|
|
|
if (s->nb_channels == 2) { |
|
s->ms_stereo = get_bits1(&s->gb); |
|
} |
|
v = 0; |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
a = get_bits1(&s->gb); |
|
s->channel_coded[ch] = a; |
|
v |= a; |
|
} |
|
|
|
bsize = s->frame_len_bits - s->block_len_bits; |
|
|
|
/* if no channel coded, no need to go further */ |
|
/* XXX: fix potential framing problems */ |
|
if (!v) |
|
goto next; |
|
|
|
/* read total gain and extract corresponding number of bits for |
|
coef escape coding */ |
|
total_gain = 1; |
|
for(;;) { |
|
a = get_bits(&s->gb, 7); |
|
total_gain += a; |
|
if (a != 127) |
|
break; |
|
} |
|
|
|
coef_nb_bits= ff_wma_total_gain_to_bits(total_gain); |
|
|
|
/* compute number of coefficients */ |
|
n = s->coefs_end[bsize] - s->coefs_start; |
|
for(ch = 0; ch < s->nb_channels; ch++) |
|
nb_coefs[ch] = n; |
|
|
|
/* complex coding */ |
|
if (s->use_noise_coding) { |
|
|
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int i, n, a; |
|
n = s->exponent_high_sizes[bsize]; |
|
for(i=0;i<n;i++) { |
|
a = get_bits1(&s->gb); |
|
s->high_band_coded[ch][i] = a; |
|
/* if noise coding, the coefficients are not transmitted */ |
|
if (a) |
|
nb_coefs[ch] -= s->exponent_high_bands[bsize][i]; |
|
} |
|
} |
|
} |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int i, n, val, code; |
|
|
|
n = s->exponent_high_sizes[bsize]; |
|
val = (int)0x80000000; |
|
for(i=0;i<n;i++) { |
|
if (s->high_band_coded[ch][i]) { |
|
if (val == (int)0x80000000) { |
|
val = get_bits(&s->gb, 7) - 19; |
|
} else { |
|
code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX); |
|
if (code < 0) |
|
return -1; |
|
val += code - 18; |
|
} |
|
s->high_band_values[ch][i] = val; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* exponents can be reused in short blocks. */ |
|
if ((s->block_len_bits == s->frame_len_bits) || |
|
get_bits1(&s->gb)) { |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
if (s->use_exp_vlc) { |
|
if (decode_exp_vlc(s, ch) < 0) |
|
return -1; |
|
} else { |
|
decode_exp_lsp(s, ch); |
|
} |
|
s->exponents_bsize[ch] = bsize; |
|
} |
|
} |
|
} |
|
|
|
/* parse spectral coefficients : just RLE encoding */ |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int tindex; |
|
WMACoef* ptr = &s->coefs1[ch][0]; |
|
|
|
/* special VLC tables are used for ms stereo because |
|
there is potentially less energy there */ |
|
tindex = (ch == 1 && s->ms_stereo); |
|
memset(ptr, 0, s->block_len * sizeof(WMACoef)); |
|
ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex], |
|
s->level_table[tindex], s->run_table[tindex], |
|
0, ptr, 0, nb_coefs[ch], |
|
s->block_len, s->frame_len_bits, coef_nb_bits); |
|
} |
|
if (s->version == 1 && s->nb_channels >= 2) { |
|
align_get_bits(&s->gb); |
|
} |
|
} |
|
|
|
/* normalize */ |
|
{ |
|
int n4 = s->block_len / 2; |
|
mdct_norm = 1.0 / (float)n4; |
|
if (s->version == 1) { |
|
mdct_norm *= sqrt(n4); |
|
} |
|
} |
|
|
|
/* finally compute the MDCT coefficients */ |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
WMACoef *coefs1; |
|
float *coefs, *exponents, mult, mult1, noise; |
|
int i, j, n, n1, last_high_band, esize; |
|
float exp_power[HIGH_BAND_MAX_SIZE]; |
|
|
|
coefs1 = s->coefs1[ch]; |
|
exponents = s->exponents[ch]; |
|
esize = s->exponents_bsize[ch]; |
|
mult = pow(10, total_gain * 0.05) / s->max_exponent[ch]; |
|
mult *= mdct_norm; |
|
coefs = s->coefs[ch]; |
|
if (s->use_noise_coding) { |
|
mult1 = mult; |
|
/* very low freqs : noise */ |
|
for(i = 0;i < s->coefs_start; i++) { |
|
*coefs++ = s->noise_table[s->noise_index] * |
|
exponents[i<<bsize>>esize] * mult1; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
} |
|
|
|
n1 = s->exponent_high_sizes[bsize]; |
|
|
|
/* compute power of high bands */ |
|
exponents = s->exponents[ch] + |
|
(s->high_band_start[bsize]<<bsize); |
|
last_high_band = 0; /* avoid warning */ |
|
for(j=0;j<n1;j++) { |
|
n = s->exponent_high_bands[s->frame_len_bits - |
|
s->block_len_bits][j]; |
|
if (s->high_band_coded[ch][j]) { |
|
float e2, v; |
|
e2 = 0; |
|
for(i = 0;i < n; i++) { |
|
v = exponents[i<<bsize>>esize]; |
|
e2 += v * v; |
|
} |
|
exp_power[j] = e2 / n; |
|
last_high_band = j; |
|
tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n); |
|
} |
|
exponents += n<<bsize; |
|
} |
|
|
|
/* main freqs and high freqs */ |
|
exponents = s->exponents[ch] + (s->coefs_start<<bsize); |
|
for(j=-1;j<n1;j++) { |
|
if (j < 0) { |
|
n = s->high_band_start[bsize] - |
|
s->coefs_start; |
|
} else { |
|
n = s->exponent_high_bands[s->frame_len_bits - |
|
s->block_len_bits][j]; |
|
} |
|
if (j >= 0 && s->high_band_coded[ch][j]) { |
|
/* use noise with specified power */ |
|
mult1 = sqrt(exp_power[j] / exp_power[last_high_band]); |
|
/* XXX: use a table */ |
|
mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05); |
|
mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult); |
|
mult1 *= mdct_norm; |
|
for(i = 0;i < n; i++) { |
|
noise = s->noise_table[s->noise_index]; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
*coefs++ = noise * |
|
exponents[i<<bsize>>esize] * mult1; |
|
} |
|
exponents += n<<bsize; |
|
} else { |
|
/* coded values + small noise */ |
|
for(i = 0;i < n; i++) { |
|
noise = s->noise_table[s->noise_index]; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
*coefs++ = ((*coefs1++) + noise) * |
|
exponents[i<<bsize>>esize] * mult; |
|
} |
|
exponents += n<<bsize; |
|
} |
|
} |
|
|
|
/* very high freqs : noise */ |
|
n = s->block_len - s->coefs_end[bsize]; |
|
mult1 = mult * exponents[((-1<<bsize))>>esize]; |
|
for(i = 0; i < n; i++) { |
|
*coefs++ = s->noise_table[s->noise_index] * mult1; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
} |
|
} else { |
|
/* XXX: optimize more */ |
|
for(i = 0;i < s->coefs_start; i++) |
|
*coefs++ = 0.0; |
|
n = nb_coefs[ch]; |
|
for(i = 0;i < n; i++) { |
|
*coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult; |
|
} |
|
n = s->block_len - s->coefs_end[bsize]; |
|
for(i = 0;i < n; i++) |
|
*coefs++ = 0.0; |
|
} |
|
} |
|
} |
|
|
|
#ifdef TRACE |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len); |
|
dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len); |
|
} |
|
} |
|
#endif |
|
|
|
if (s->ms_stereo && s->channel_coded[1]) { |
|
/* nominal case for ms stereo: we do it before mdct */ |
|
/* no need to optimize this case because it should almost |
|
never happen */ |
|
if (!s->channel_coded[0]) { |
|
tprintf(s->avctx, "rare ms-stereo case happened\n"); |
|
memset(s->coefs[0], 0, sizeof(float) * s->block_len); |
|
s->channel_coded[0] = 1; |
|
} |
|
|
|
s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len); |
|
} |
|
|
|
next: |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
int n4, index; |
|
|
|
n4 = s->block_len / 2; |
|
if(s->channel_coded[ch]){ |
|
ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]); |
|
}else if(!(s->ms_stereo && ch==1)) |
|
memset(s->output, 0, sizeof(s->output)); |
|
|
|
/* multiply by the window and add in the frame */ |
|
index = (s->frame_len / 2) + s->block_pos - n4; |
|
wma_window(s, &s->frame_out[ch][index]); |
|
} |
|
|
|
/* update block number */ |
|
s->block_num++; |
|
s->block_pos += s->block_len; |
|
if (s->block_pos >= s->frame_len) |
|
return 1; |
|
else |
|
return 0; |
|
} |
|
|
|
/* decode a frame of frame_len samples */ |
|
static int wma_decode_frame(WMACodecContext *s, int16_t *samples) |
|
{ |
|
int ret, i, n, ch, incr; |
|
int16_t *ptr; |
|
float *iptr; |
|
|
|
#ifdef TRACE |
|
tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len); |
|
#endif |
|
|
|
/* read each block */ |
|
s->block_num = 0; |
|
s->block_pos = 0; |
|
for(;;) { |
|
ret = wma_decode_block(s); |
|
if (ret < 0) |
|
return -1; |
|
if (ret) |
|
break; |
|
} |
|
|
|
/* convert frame to integer */ |
|
n = s->frame_len; |
|
incr = s->nb_channels; |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
ptr = samples + ch; |
|
iptr = s->frame_out[ch]; |
|
|
|
for(i=0;i<n;i++) { |
|
*ptr = av_clip_int16(lrintf(*iptr++)); |
|
ptr += incr; |
|
} |
|
/* prepare for next block */ |
|
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len], |
|
s->frame_len * sizeof(float)); |
|
} |
|
|
|
#ifdef TRACE |
|
dump_shorts(s, "samples", samples, n * s->nb_channels); |
|
#endif |
|
return 0; |
|
} |
|
|
|
static int wma_decode_superframe(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
WMACodecContext *s = avctx->priv_data; |
|
int nb_frames, bit_offset, i, pos, len; |
|
uint8_t *q; |
|
int16_t *samples; |
|
|
|
tprintf(avctx, "***decode_superframe:\n"); |
|
|
|
if(buf_size==0){ |
|
s->last_superframe_len = 0; |
|
return 0; |
|
} |
|
if (buf_size < s->block_align) |
|
return 0; |
|
buf_size = s->block_align; |
|
|
|
samples = data; |
|
|
|
init_get_bits(&s->gb, buf, buf_size*8); |
|
|
|
if (s->use_bit_reservoir) { |
|
/* read super frame header */ |
|
skip_bits(&s->gb, 4); /* super frame index */ |
|
nb_frames = get_bits(&s->gb, 4) - 1; |
|
|
|
if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){ |
|
av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n"); |
|
goto fail; |
|
} |
|
|
|
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3); |
|
|
|
if (s->last_superframe_len > 0) { |
|
// printf("skip=%d\n", s->last_bitoffset); |
|
/* add bit_offset bits to last frame */ |
|
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) > |
|
MAX_CODED_SUPERFRAME_SIZE) |
|
goto fail; |
|
q = s->last_superframe + s->last_superframe_len; |
|
len = bit_offset; |
|
while (len > 7) { |
|
*q++ = (get_bits)(&s->gb, 8); |
|
len -= 8; |
|
} |
|
if (len > 0) { |
|
*q++ = (get_bits)(&s->gb, len) << (8 - len); |
|
} |
|
|
|
/* XXX: bit_offset bits into last frame */ |
|
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8); |
|
/* skip unused bits */ |
|
if (s->last_bitoffset > 0) |
|
skip_bits(&s->gb, s->last_bitoffset); |
|
/* this frame is stored in the last superframe and in the |
|
current one */ |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
|
|
/* read each frame starting from bit_offset */ |
|
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3; |
|
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8); |
|
len = pos & 7; |
|
if (len > 0) |
|
skip_bits(&s->gb, len); |
|
|
|
s->reset_block_lengths = 1; |
|
for(i=0;i<nb_frames;i++) { |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
|
|
/* we copy the end of the frame in the last frame buffer */ |
|
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7); |
|
s->last_bitoffset = pos & 7; |
|
pos >>= 3; |
|
len = buf_size - pos; |
|
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) { |
|
goto fail; |
|
} |
|
s->last_superframe_len = len; |
|
memcpy(s->last_superframe, buf + pos, len); |
|
} else { |
|
if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){ |
|
av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n"); |
|
goto fail; |
|
} |
|
/* single frame decode */ |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
|
|
//av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align); |
|
|
|
*data_size = (int8_t *)samples - (int8_t *)data; |
|
return s->block_align; |
|
fail: |
|
/* when error, we reset the bit reservoir */ |
|
s->last_superframe_len = 0; |
|
return -1; |
|
} |
|
|
|
AVCodec wmav1_decoder = |
|
{ |
|
"wmav1", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_WMAV1, |
|
sizeof(WMACodecContext), |
|
wma_decode_init, |
|
NULL, |
|
ff_wma_end, |
|
wma_decode_superframe, |
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"), |
|
}; |
|
|
|
AVCodec wmav2_decoder = |
|
{ |
|
"wmav2", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_WMAV2, |
|
sizeof(WMACodecContext), |
|
wma_decode_init, |
|
NULL, |
|
ff_wma_end, |
|
wma_decode_superframe, |
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"), |
|
};
|
|
|