mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2781 lines
101 KiB
2781 lines
101 KiB
/* |
|
* The simplest AC-3 encoder |
|
* Copyright (c) 2000 Fabrice Bellard |
|
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> |
|
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* The simplest AC-3 encoder. |
|
*/ |
|
|
|
//#define DEBUG |
|
//#define ASSERT_LEVEL 2 |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/audioconvert.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/avstring.h" |
|
#include "libavutil/crc.h" |
|
#include "libavutil/opt.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "dsputil.h" |
|
#include "ac3dsp.h" |
|
#include "ac3.h" |
|
#include "audioconvert.h" |
|
#include "fft.h" |
|
|
|
|
|
#ifndef CONFIG_AC3ENC_FLOAT |
|
#define CONFIG_AC3ENC_FLOAT 0 |
|
#endif |
|
|
|
|
|
/** Maximum number of exponent groups. +1 for separate DC exponent. */ |
|
#define AC3_MAX_EXP_GROUPS 85 |
|
|
|
#if CONFIG_AC3ENC_FLOAT |
|
#define MAC_COEF(d,a,b) ((d)+=(a)*(b)) |
|
typedef float SampleType; |
|
typedef float CoefType; |
|
typedef float CoefSumType; |
|
#else |
|
#define MAC_COEF(d,a,b) MAC64(d,a,b) |
|
typedef int16_t SampleType; |
|
typedef int32_t CoefType; |
|
typedef int64_t CoefSumType; |
|
#endif |
|
|
|
typedef struct AC3MDCTContext { |
|
const SampleType *window; ///< MDCT window function |
|
FFTContext fft; ///< FFT context for MDCT calculation |
|
} AC3MDCTContext; |
|
|
|
|
|
/** |
|
* Data for a single audio block. |
|
*/ |
|
typedef struct AC3Block { |
|
uint8_t **bap; ///< bit allocation pointers (bap) |
|
CoefType **mdct_coef; ///< MDCT coefficients |
|
int32_t **fixed_coef; ///< fixed-point MDCT coefficients |
|
uint8_t **exp; ///< original exponents |
|
uint8_t **grouped_exp; ///< grouped exponents |
|
int16_t **psd; ///< psd per frequency bin |
|
int16_t **band_psd; ///< psd per critical band |
|
int16_t **mask; ///< masking curve |
|
uint16_t **qmant; ///< quantized mantissas |
|
uint8_t **cpl_coord_exp; ///< coupling coord exponents (cplcoexp) |
|
uint8_t **cpl_coord_mant; ///< coupling coord mantissas (cplcomant) |
|
uint8_t coeff_shift[AC3_MAX_CHANNELS]; ///< fixed-point coefficient shift values |
|
uint8_t new_rematrixing_strategy; ///< send new rematrixing flags in this block |
|
int num_rematrixing_bands; ///< number of rematrixing bands |
|
uint8_t rematrixing_flags[4]; ///< rematrixing flags |
|
struct AC3Block *exp_ref_block[AC3_MAX_CHANNELS]; ///< reference blocks for EXP_REUSE |
|
int new_cpl_strategy; ///< send new coupling strategy |
|
int cpl_in_use; ///< coupling in use for this block (cplinu) |
|
uint8_t channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling (chincpl) |
|
int num_cpl_channels; ///< number of channels in coupling |
|
uint8_t new_cpl_coords; ///< send new coupling coordinates (cplcoe) |
|
uint8_t cpl_master_exp[AC3_MAX_CHANNELS]; ///< coupling coord master exponents (mstrcplco) |
|
int new_snr_offsets; ///< send new SNR offsets |
|
int new_cpl_leak; ///< send new coupling leak info |
|
int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin (endmant) |
|
} AC3Block; |
|
|
|
/** |
|
* AC-3 encoder private context. |
|
*/ |
|
typedef struct AC3EncodeContext { |
|
AVClass *av_class; ///< AVClass used for AVOption |
|
AC3EncOptions options; ///< encoding options |
|
PutBitContext pb; ///< bitstream writer context |
|
DSPContext dsp; |
|
AC3DSPContext ac3dsp; ///< AC-3 optimized functions |
|
AC3MDCTContext mdct; ///< MDCT context |
|
|
|
AC3Block blocks[AC3_MAX_BLOCKS]; ///< per-block info |
|
|
|
int bitstream_id; ///< bitstream id (bsid) |
|
int bitstream_mode; ///< bitstream mode (bsmod) |
|
|
|
int bit_rate; ///< target bit rate, in bits-per-second |
|
int sample_rate; ///< sampling frequency, in Hz |
|
|
|
int frame_size_min; ///< minimum frame size in case rounding is necessary |
|
int frame_size; ///< current frame size in bytes |
|
int frame_size_code; ///< frame size code (frmsizecod) |
|
uint16_t crc_inv[2]; |
|
int bits_written; ///< bit count (used to avg. bitrate) |
|
int samples_written; ///< sample count (used to avg. bitrate) |
|
|
|
int fbw_channels; ///< number of full-bandwidth channels (nfchans) |
|
int channels; ///< total number of channels (nchans) |
|
int lfe_on; ///< indicates if there is an LFE channel (lfeon) |
|
int lfe_channel; ///< channel index of the LFE channel |
|
int has_center; ///< indicates if there is a center channel |
|
int has_surround; ///< indicates if there are one or more surround channels |
|
int channel_mode; ///< channel mode (acmod) |
|
const uint8_t *channel_map; ///< channel map used to reorder channels |
|
|
|
int center_mix_level; ///< center mix level code |
|
int surround_mix_level; ///< surround mix level code |
|
int ltrt_center_mix_level; ///< Lt/Rt center mix level code |
|
int ltrt_surround_mix_level; ///< Lt/Rt surround mix level code |
|
int loro_center_mix_level; ///< Lo/Ro center mix level code |
|
int loro_surround_mix_level; ///< Lo/Ro surround mix level code |
|
|
|
int cutoff; ///< user-specified cutoff frequency, in Hz |
|
int bandwidth_code; ///< bandwidth code (0 to 60) (chbwcod) |
|
int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin (strtmant) |
|
int cpl_end_freq; ///< coupling channel end frequency bin |
|
|
|
int cpl_on; ///< coupling turned on for this frame |
|
int cpl_enabled; ///< coupling enabled for all frames |
|
int num_cpl_subbands; ///< number of coupling subbands (ncplsubnd) |
|
int num_cpl_bands; ///< number of coupling bands (ncplbnd) |
|
uint8_t cpl_band_sizes[AC3_MAX_CPL_BANDS]; ///< number of coeffs in each coupling band |
|
|
|
int rematrixing_enabled; ///< stereo rematrixing enabled |
|
|
|
/* bitrate allocation control */ |
|
int slow_gain_code; ///< slow gain code (sgaincod) |
|
int slow_decay_code; ///< slow decay code (sdcycod) |
|
int fast_decay_code; ///< fast decay code (fdcycod) |
|
int db_per_bit_code; ///< dB/bit code (dbpbcod) |
|
int floor_code; ///< floor code (floorcod) |
|
AC3BitAllocParameters bit_alloc; ///< bit allocation parameters |
|
int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) |
|
int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) |
|
int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) |
|
int frame_bits_fixed; ///< number of non-coefficient bits for fixed parameters |
|
int frame_bits; ///< all frame bits except exponents and mantissas |
|
int exponent_bits; ///< number of bits used for exponents |
|
|
|
SampleType **planar_samples; |
|
uint8_t *bap_buffer; |
|
uint8_t *bap1_buffer; |
|
CoefType *mdct_coef_buffer; |
|
int32_t *fixed_coef_buffer; |
|
uint8_t *exp_buffer; |
|
uint8_t *grouped_exp_buffer; |
|
int16_t *psd_buffer; |
|
int16_t *band_psd_buffer; |
|
int16_t *mask_buffer; |
|
uint16_t *qmant_buffer; |
|
uint8_t *cpl_coord_exp_buffer; |
|
uint8_t *cpl_coord_mant_buffer; |
|
|
|
uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; ///< exponent strategies |
|
|
|
DECLARE_ALIGNED(32, SampleType, windowed_samples)[AC3_WINDOW_SIZE]; |
|
} AC3EncodeContext; |
|
|
|
typedef struct AC3Mant { |
|
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4 |
|
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
|
} AC3Mant; |
|
|
|
#define CMIXLEV_NUM_OPTIONS 3 |
|
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB |
|
}; |
|
|
|
#define SURMIXLEV_NUM_OPTIONS 3 |
|
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO |
|
}; |
|
|
|
#define EXTMIXLEV_NUM_OPTIONS 8 |
|
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB, |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO |
|
}; |
|
|
|
|
|
#define OFFSET(param) offsetof(AC3EncodeContext, options.param) |
|
#define AC3ENC_PARAM (AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM) |
|
|
|
#if CONFIG_AC3ENC_FLOAT || !CONFIG_AC3_FLOAT_ENCODER //we need this exactly once compiled in |
|
const AVOption ff_ac3_options[] = { |
|
/* Metadata Options */ |
|
{"per_frame_metadata", "Allow Changing Metadata Per-Frame", OFFSET(allow_per_frame_metadata), FF_OPT_TYPE_INT, {.dbl = 0 }, 0, 1, AC3ENC_PARAM}, |
|
/* downmix levels */ |
|
{"center_mixlev", "Center Mix Level", OFFSET(center_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_4POINT5DB }, 0.0, 1.0, AC3ENC_PARAM}, |
|
{"surround_mixlev", "Surround Mix Level", OFFSET(surround_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_6DB }, 0.0, 1.0, AC3ENC_PARAM}, |
|
/* audio production information */ |
|
{"mixing_level", "Mixing Level", OFFSET(mixing_level), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 111, AC3ENC_PARAM}, |
|
{"room_type", "Room Type", OFFSET(room_type), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, AC3ENC_PARAM, "room_type"}, |
|
{"notindicated", "Not Indicated (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"}, |
|
{"large", "Large Room", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"}, |
|
{"small", "Small Room", 0, FF_OPT_TYPE_CONST, {.dbl = 2 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"}, |
|
/* other metadata options */ |
|
{"copyright", "Copyright Bit", OFFSET(copyright), FF_OPT_TYPE_INT, {.dbl = 0 }, 0, 1, AC3ENC_PARAM}, |
|
{"dialnorm", "Dialogue Level (dB)", OFFSET(dialogue_level), FF_OPT_TYPE_INT, {.dbl = -31 }, -31, -1, AC3ENC_PARAM}, |
|
{"dsur_mode", "Dolby Surround Mode", OFFSET(dolby_surround_mode), FF_OPT_TYPE_INT, {.dbl = 0 }, 0, 2, AC3ENC_PARAM, "dsur_mode"}, |
|
{"notindicated", "Not Indicated (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, |
|
{"on", "Dolby Surround Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, |
|
{"off", "Not Dolby Surround Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 2 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, |
|
{"original", "Original Bit Stream", OFFSET(original), FF_OPT_TYPE_INT, {.dbl = 1 }, 0, 1, AC3ENC_PARAM}, |
|
/* extended bitstream information */ |
|
{"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, AC3ENC_PARAM, "dmix_mode"}, |
|
{"notindicated", "Not Indicated (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"}, |
|
{"ltrt", "Lt/Rt Downmix Preferred", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"}, |
|
{"loro", "Lo/Ro Downmix Preferred", 0, FF_OPT_TYPE_CONST, {.dbl = 2 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"}, |
|
{"ltrt_cmixlev", "Lt/Rt Center Mix Level", OFFSET(ltrt_center_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, |
|
{"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, |
|
{"loro_cmixlev", "Lo/Ro Center Mix Level", OFFSET(loro_center_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, |
|
{"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level), FF_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, |
|
{"dsurex_mode", "Dolby Surround EX Mode", OFFSET(dolby_surround_ex_mode), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, AC3ENC_PARAM, "dsurex_mode"}, |
|
{"notindicated", "Not Indicated (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, |
|
{"on", "Dolby Surround EX Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, |
|
{"off", "Not Dolby Surround EX Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 2 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, |
|
{"dheadphone_mode", "Dolby Headphone Mode", OFFSET(dolby_headphone_mode), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, AC3ENC_PARAM, "dheadphone_mode"}, |
|
{"notindicated", "Not Indicated (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, |
|
{"on", "Dolby Headphone Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, |
|
{"off", "Not Dolby Headphone Encoded", 0, FF_OPT_TYPE_CONST, {.dbl = 2 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, |
|
{"ad_conv_type", "A/D Converter Type", OFFSET(ad_converter_type), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 1, AC3ENC_PARAM, "ad_conv_type"}, |
|
{"standard", "Standard (default)", 0, FF_OPT_TYPE_CONST, {.dbl = 0 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"}, |
|
{"hdcd", "HDCD", 0, FF_OPT_TYPE_CONST, {.dbl = 1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"}, |
|
/* Other Encoding Options */ |
|
{"stereo_rematrixing", "Stereo Rematrixing", OFFSET(stereo_rematrixing), FF_OPT_TYPE_INT, {.dbl = 1 }, 0, 1, AC3ENC_PARAM}, |
|
#if CONFIG_AC3ENC_FLOAT |
|
{"channel_coupling", "Channel Coupling", OFFSET(channel_coupling), FF_OPT_TYPE_INT, {.dbl = 1 }, 0, 1, AC3ENC_PARAM, "channel_coupling"}, |
|
{"auto", "Selected by the Encoder", 0, FF_OPT_TYPE_CONST, {.dbl = -1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "channel_coupling"}, |
|
{"cpl_start_band", "Coupling Start Band", OFFSET(cpl_start), FF_OPT_TYPE_INT, {.dbl = -1 }, -1, 15, AC3ENC_PARAM, "cpl_start_band"}, |
|
{"auto", "Selected by the Encoder", 0, FF_OPT_TYPE_CONST, {.dbl = -1 }, INT_MIN, INT_MAX, AC3ENC_PARAM, "cpl_start_band"}, |
|
#endif |
|
{NULL} |
|
}; |
|
#endif |
|
|
|
#if CONFIG_AC3ENC_FLOAT |
|
static AVClass ac3enc_class = { "AC-3 Encoder", av_default_item_name, |
|
ff_ac3_options, LIBAVUTIL_VERSION_INT }; |
|
#else |
|
static AVClass ac3enc_class = { "Fixed-Point AC-3 Encoder", av_default_item_name, |
|
ff_ac3_options, LIBAVUTIL_VERSION_INT }; |
|
#endif |
|
|
|
|
|
/* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */ |
|
|
|
static av_cold void mdct_end(AC3MDCTContext *mdct); |
|
|
|
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, |
|
int nbits); |
|
|
|
static void apply_window(DSPContext *dsp, SampleType *output, const SampleType *input, |
|
const SampleType *window, unsigned int len); |
|
|
|
static int normalize_samples(AC3EncodeContext *s); |
|
|
|
static void scale_coefficients(AC3EncodeContext *s); |
|
|
|
|
|
/** |
|
* LUT for number of exponent groups. |
|
* exponent_group_tab[coupling][exponent strategy-1][number of coefficients] |
|
*/ |
|
static uint8_t exponent_group_tab[2][3][256]; |
|
|
|
|
|
/** |
|
* List of supported channel layouts. |
|
*/ |
|
#if CONFIG_AC3ENC_FLOAT || !CONFIG_AC3_FLOAT_ENCODER //we need this exactly once compiled in |
|
const int64_t ff_ac3_channel_layouts[] = { |
|
AV_CH_LAYOUT_MONO, |
|
AV_CH_LAYOUT_STEREO, |
|
AV_CH_LAYOUT_2_1, |
|
AV_CH_LAYOUT_SURROUND, |
|
AV_CH_LAYOUT_2_2, |
|
AV_CH_LAYOUT_QUAD, |
|
AV_CH_LAYOUT_4POINT0, |
|
AV_CH_LAYOUT_5POINT0, |
|
AV_CH_LAYOUT_5POINT0_BACK, |
|
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
|
AV_CH_LAYOUT_5POINT1, |
|
AV_CH_LAYOUT_5POINT1_BACK, |
|
0 |
|
}; |
|
#endif |
|
|
|
|
|
/** |
|
* LUT to select the bandwidth code based on the bit rate, sample rate, and |
|
* number of full-bandwidth channels. |
|
* bandwidth_tab[fbw_channels-1][sample rate code][bit rate code] |
|
*/ |
|
static const uint8_t ac3_bandwidth_tab[5][3][19] = { |
|
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 |
|
|
|
{ { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } } |
|
}; |
|
|
|
|
|
/** |
|
* LUT to select the coupling start band based on the bit rate, sample rate, and |
|
* number of full-bandwidth channels. -1 = coupling off |
|
* ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code] |
|
* |
|
* TODO: more testing for optimal parameters. |
|
* multi-channel tests at 44.1kHz and 32kHz. |
|
*/ |
|
static const int8_t ac3_coupling_start_tab[6][3][19] = { |
|
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 |
|
|
|
// 2/0 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/0 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 2/1 - untested |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/1 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 2/2 - untested |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/2 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
}; |
|
|
|
|
|
/** |
|
* Adjust the frame size to make the average bit rate match the target bit rate. |
|
* This is only needed for 11025, 22050, and 44100 sample rates. |
|
*/ |
|
static void adjust_frame_size(AC3EncodeContext *s) |
|
{ |
|
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) { |
|
s->bits_written -= s->bit_rate; |
|
s->samples_written -= s->sample_rate; |
|
} |
|
s->frame_size = s->frame_size_min + |
|
2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); |
|
s->bits_written += s->frame_size * 8; |
|
s->samples_written += AC3_FRAME_SIZE; |
|
} |
|
|
|
|
|
/** |
|
* Deinterleave input samples. |
|
* Channels are reordered from FFmpeg's default order to AC-3 order. |
|
*/ |
|
static void deinterleave_input_samples(AC3EncodeContext *s, |
|
const SampleType *samples) |
|
{ |
|
int ch, i; |
|
|
|
/* deinterleave and remap input samples */ |
|
for (ch = 0; ch < s->channels; ch++) { |
|
const SampleType *sptr; |
|
int sinc; |
|
|
|
/* copy last 256 samples of previous frame to the start of the current frame */ |
|
memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE], |
|
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
|
|
|
/* deinterleave */ |
|
sinc = s->channels; |
|
sptr = samples + s->channel_map[ch]; |
|
for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) { |
|
s->planar_samples[ch][i] = *sptr; |
|
sptr += sinc; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply the MDCT to input samples to generate frequency coefficients. |
|
* This applies the KBD window and normalizes the input to reduce precision |
|
* loss due to fixed-point calculations. |
|
*/ |
|
static void apply_mdct(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE]; |
|
|
|
apply_window(&s->dsp, s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE); |
|
|
|
block->coeff_shift[ch+1] = normalize_samples(s); |
|
|
|
s->mdct.fft.mdct_calcw(&s->mdct.fft, block->mdct_coef[ch+1], |
|
s->windowed_samples); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void compute_coupling_strategy(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int got_cpl_snr; |
|
|
|
/* set coupling use flags for each block/channel */ |
|
/* TODO: turn coupling on/off and adjust start band based on bit usage */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->channel_in_cpl[ch] = s->cpl_on; |
|
} |
|
|
|
/* enable coupling for each block if at least 2 channels have coupling |
|
enabled for that block */ |
|
got_cpl_snr = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
block->num_cpl_channels = 0; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->num_cpl_channels += block->channel_in_cpl[ch]; |
|
block->cpl_in_use = block->num_cpl_channels > 1; |
|
if (!block->cpl_in_use) { |
|
block->num_cpl_channels = 0; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->channel_in_cpl[ch] = 0; |
|
} |
|
|
|
block->new_cpl_strategy = !blk; |
|
if (blk) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) { |
|
block->new_cpl_strategy = 1; |
|
break; |
|
} |
|
} |
|
} |
|
block->new_cpl_leak = block->new_cpl_strategy; |
|
|
|
if (!blk || (block->cpl_in_use && !got_cpl_snr)) { |
|
block->new_snr_offsets = 1; |
|
if (block->cpl_in_use) |
|
got_cpl_snr = 1; |
|
} else { |
|
block->new_snr_offsets = 0; |
|
} |
|
} |
|
|
|
/* set bandwidth for each channel */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) |
|
block->end_freq[ch] = s->start_freq[CPL_CH]; |
|
else |
|
block->end_freq[ch] = s->bandwidth_code * 3 + 73; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Calculate a single coupling coordinate. |
|
*/ |
|
static inline float calc_cpl_coord(float energy_ch, float energy_cpl) |
|
{ |
|
float coord = 0.125; |
|
if (energy_cpl > 0) |
|
coord *= sqrtf(energy_ch / energy_cpl); |
|
return coord; |
|
} |
|
|
|
|
|
/** |
|
* Calculate coupling channel and coupling coordinates. |
|
* TODO: Currently this is only used for the floating-point encoder. I was |
|
* able to make it work for the fixed-point encoder, but quality was |
|
* generally lower in most cases than not using coupling. If a more |
|
* adaptive coupling strategy were to be implemented it might be useful |
|
* at that time to use coupling for the fixed-point encoder as well. |
|
*/ |
|
static void apply_channel_coupling(AC3EncodeContext *s) |
|
{ |
|
#if CONFIG_AC3ENC_FLOAT |
|
DECLARE_ALIGNED(16, float, cpl_coords) [AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}}; |
|
DECLARE_ALIGNED(16, int32_t, fixed_cpl_coords)[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}}; |
|
int blk, ch, bnd, i, j; |
|
CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}}; |
|
int num_cpl_coefs = s->num_cpl_subbands * 12; |
|
|
|
/* calculate coupling channel from fbw channels */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
CoefType *cpl_coef = &block->mdct_coef[CPL_CH][s->start_freq[CPL_CH]]; |
|
if (!block->cpl_in_use) |
|
continue; |
|
memset(cpl_coef-1, 0, (num_cpl_coefs+4) * sizeof(*cpl_coef)); |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
CoefType *ch_coef = &block->mdct_coef[ch][s->start_freq[CPL_CH]]; |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
for (i = 0; i < num_cpl_coefs; i++) |
|
cpl_coef[i] += ch_coef[i]; |
|
} |
|
/* note: coupling start bin % 4 will always be 1 and num_cpl_coefs |
|
will always be a multiple of 12, so we need to subtract 1 from |
|
the start and add 4 to the length when using optimized |
|
functions which require 16-byte alignment. */ |
|
|
|
/* coefficients must be clipped to +/- 1.0 in order to be encoded */ |
|
s->dsp.vector_clipf(cpl_coef-1, cpl_coef-1, -1.0f, 1.0f, num_cpl_coefs+4); |
|
|
|
/* scale coupling coefficients from float to 24-bit fixed-point */ |
|
s->ac3dsp.float_to_fixed24(&block->fixed_coef[CPL_CH][s->start_freq[CPL_CH]-1], |
|
cpl_coef-1, num_cpl_coefs+4); |
|
} |
|
|
|
/* calculate energy in each band in coupling channel and each fbw channel */ |
|
/* TODO: possibly use SIMD to speed up energy calculation */ |
|
bnd = 0; |
|
i = s->start_freq[CPL_CH]; |
|
while (i < s->cpl_end_freq) { |
|
int band_size = s->cpl_band_sizes[bnd]; |
|
for (ch = CPL_CH; ch <= s->fbw_channels; ch++) { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch])) |
|
continue; |
|
for (j = 0; j < band_size; j++) { |
|
CoefType v = block->mdct_coef[ch][i+j]; |
|
MAC_COEF(energy[blk][ch][bnd], v, v); |
|
} |
|
} |
|
} |
|
i += band_size; |
|
bnd++; |
|
} |
|
|
|
/* determine which blocks to send new coupling coordinates for */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL; |
|
int new_coords = 0; |
|
CoefSumType coord_diff[AC3_MAX_CHANNELS] = {0,}; |
|
|
|
if (block->cpl_in_use) { |
|
/* calculate coupling coordinates for all blocks and calculate the |
|
average difference between coordinates in successive blocks */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
|
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd], |
|
energy[blk][CPL_CH][bnd]); |
|
if (blk > 0 && block0->cpl_in_use && |
|
block0->channel_in_cpl[ch]) { |
|
coord_diff[ch] += fabs(cpl_coords[blk-1][ch][bnd] - |
|
cpl_coords[blk ][ch][bnd]); |
|
} |
|
} |
|
coord_diff[ch] /= s->num_cpl_bands; |
|
} |
|
|
|
/* send new coordinates if this is the first block, if previous |
|
* block did not use coupling but this block does, the channels |
|
* using coupling has changed from the previous block, or the |
|
* coordinate difference from the last block for any channel is |
|
* greater than a threshold value. */ |
|
if (blk == 0) { |
|
new_coords = 1; |
|
} else if (!block0->cpl_in_use) { |
|
new_coords = 1; |
|
} else { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch] && !block0->channel_in_cpl[ch]) { |
|
new_coords = 1; |
|
break; |
|
} |
|
} |
|
if (!new_coords) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch] && coord_diff[ch] > 0.04) { |
|
new_coords = 1; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
block->new_cpl_coords = new_coords; |
|
} |
|
|
|
/* calculate final coupling coordinates, taking into account reusing of |
|
coordinates in successive blocks */ |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
blk = 0; |
|
while (blk < AC3_MAX_BLOCKS) { |
|
int blk1; |
|
CoefSumType energy_cpl; |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
if (!block->cpl_in_use) { |
|
blk++; |
|
continue; |
|
} |
|
|
|
energy_cpl = energy[blk][CPL_CH][bnd]; |
|
blk1 = blk+1; |
|
while (!s->blocks[blk1].new_cpl_coords && blk1 < AC3_MAX_BLOCKS) { |
|
if (s->blocks[blk1].cpl_in_use) |
|
energy_cpl += energy[blk1][CPL_CH][bnd]; |
|
blk1++; |
|
} |
|
|
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
CoefType energy_ch; |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
energy_ch = energy[blk][ch][bnd]; |
|
blk1 = blk+1; |
|
while (!s->blocks[blk1].new_cpl_coords && blk1 < AC3_MAX_BLOCKS) { |
|
if (s->blocks[blk1].cpl_in_use) |
|
energy_ch += energy[blk1][ch][bnd]; |
|
blk1++; |
|
} |
|
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl); |
|
} |
|
blk = blk1; |
|
} |
|
} |
|
|
|
/* calculate exponents/mantissas for coupling coordinates */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (!block->cpl_in_use || !block->new_cpl_coords) |
|
continue; |
|
|
|
s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1], |
|
cpl_coords[blk][1], |
|
s->fbw_channels * 16); |
|
s->ac3dsp.extract_exponents(block->cpl_coord_exp[1], |
|
fixed_cpl_coords[blk][1], |
|
s->fbw_channels * 16); |
|
|
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
int bnd, min_exp, max_exp, master_exp; |
|
|
|
/* determine master exponent */ |
|
min_exp = max_exp = block->cpl_coord_exp[ch][0]; |
|
for (bnd = 1; bnd < s->num_cpl_bands; bnd++) { |
|
int exp = block->cpl_coord_exp[ch][bnd]; |
|
min_exp = FFMIN(exp, min_exp); |
|
max_exp = FFMAX(exp, max_exp); |
|
} |
|
master_exp = ((max_exp - 15) + 2) / 3; |
|
master_exp = FFMAX(master_exp, 0); |
|
while (min_exp < master_exp * 3) |
|
master_exp--; |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] - |
|
master_exp * 3, 0, 15); |
|
} |
|
block->cpl_master_exp[ch] = master_exp; |
|
|
|
/* quantize mantissas */ |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
int cpl_exp = block->cpl_coord_exp[ch][bnd]; |
|
int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24; |
|
if (cpl_exp == 15) |
|
cpl_mant >>= 1; |
|
else |
|
cpl_mant -= 16; |
|
|
|
block->cpl_coord_mant[ch][bnd] = cpl_mant; |
|
} |
|
} |
|
} |
|
#endif /* CONFIG_AC3ENC_FLOAT */ |
|
} |
|
|
|
|
|
/** |
|
* Determine rematrixing flags for each block and band. |
|
*/ |
|
static void compute_rematrixing_strategy(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
AC3Block *block, *block0; |
|
|
|
if (s->channel_mode != AC3_CHMODE_STEREO) |
|
return; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
block = &s->blocks[blk]; |
|
block->new_rematrixing_strategy = !blk; |
|
|
|
if (!s->rematrixing_enabled) { |
|
block0 = block; |
|
continue; |
|
} |
|
|
|
block->num_rematrixing_bands = 4; |
|
if (block->cpl_in_use) { |
|
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61); |
|
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37); |
|
if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands) |
|
block->new_rematrixing_strategy = 1; |
|
} |
|
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); |
|
|
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { |
|
/* calculate calculate sum of squared coeffs for one band in one block */ |
|
int start = ff_ac3_rematrix_band_tab[bnd]; |
|
int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
CoefSumType sum[4] = {0,}; |
|
for (i = start; i < end; i++) { |
|
CoefType lt = block->mdct_coef[1][i]; |
|
CoefType rt = block->mdct_coef[2][i]; |
|
CoefType md = lt + rt; |
|
CoefType sd = lt - rt; |
|
MAC_COEF(sum[0], lt, lt); |
|
MAC_COEF(sum[1], rt, rt); |
|
MAC_COEF(sum[2], md, md); |
|
MAC_COEF(sum[3], sd, sd); |
|
} |
|
|
|
/* compare sums to determine if rematrixing will be used for this band */ |
|
if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1])) |
|
block->rematrixing_flags[bnd] = 1; |
|
else |
|
block->rematrixing_flags[bnd] = 0; |
|
|
|
/* determine if new rematrixing flags will be sent */ |
|
if (blk && |
|
block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) { |
|
block->new_rematrixing_strategy = 1; |
|
} |
|
} |
|
block0 = block; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply stereo rematrixing to coefficients based on rematrixing flags. |
|
*/ |
|
static void apply_rematrixing(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
int start, end; |
|
uint8_t *flags; |
|
|
|
if (!s->rematrixing_enabled) |
|
return; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (block->new_rematrixing_strategy) |
|
flags = block->rematrixing_flags; |
|
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); |
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { |
|
if (flags[bnd]) { |
|
start = ff_ac3_rematrix_band_tab[bnd]; |
|
end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
for (i = start; i < end; i++) { |
|
int32_t lt = block->fixed_coef[1][i]; |
|
int32_t rt = block->fixed_coef[2][i]; |
|
block->fixed_coef[1][i] = (lt + rt) >> 1; |
|
block->fixed_coef[2][i] = (lt - rt) >> 1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Initialize exponent tables. |
|
*/ |
|
static av_cold void exponent_init(AC3EncodeContext *s) |
|
{ |
|
int expstr, i, grpsize; |
|
|
|
for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) { |
|
grpsize = 3 << expstr; |
|
for (i = 12; i < 256; i++) { |
|
exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize; |
|
exponent_group_tab[1][expstr][i] = (i ) / grpsize; |
|
} |
|
} |
|
/* LFE */ |
|
exponent_group_tab[0][0][7] = 2; |
|
} |
|
|
|
|
|
/** |
|
* Extract exponents from the MDCT coefficients. |
|
* This takes into account the normalization that was done to the input samples |
|
* by adjusting the exponents by the exponent shift values. |
|
*/ |
|
static void extract_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (ch = !s->cpl_on; ch <= s->channels; ch++) { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], |
|
AC3_MAX_COEFS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Exponent Difference Threshold. |
|
* New exponents are sent if their SAD exceed this number. |
|
*/ |
|
#define EXP_DIFF_THRESHOLD 500 |
|
|
|
|
|
/** |
|
* Calculate exponent strategies for all channels. |
|
* Array arrangement is reversed to simplify the per-channel calculation. |
|
*/ |
|
static void compute_exp_strategy(AC3EncodeContext *s) |
|
{ |
|
int ch, blk, blk1; |
|
|
|
for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) { |
|
uint8_t *exp_strategy = s->exp_strategy[ch]; |
|
uint8_t *exp = s->blocks[0].exp[ch]; |
|
int exp_diff; |
|
|
|
/* estimate if the exponent variation & decide if they should be |
|
reused in the next frame */ |
|
exp_strategy[0] = EXP_NEW; |
|
exp += AC3_MAX_COEFS; |
|
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++, exp += AC3_MAX_COEFS) { |
|
if ((ch == CPL_CH && (!s->blocks[blk].cpl_in_use || !s->blocks[blk-1].cpl_in_use)) || |
|
(ch > CPL_CH && (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]))) { |
|
exp_strategy[blk] = EXP_NEW; |
|
continue; |
|
} |
|
exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16); |
|
exp_strategy[blk] = EXP_REUSE; |
|
if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS)) |
|
exp_strategy[blk] = EXP_NEW; |
|
else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD) |
|
exp_strategy[blk] = EXP_NEW; |
|
} |
|
|
|
/* now select the encoding strategy type : if exponents are often |
|
recoded, we use a coarse encoding */ |
|
blk = 0; |
|
while (blk < AC3_MAX_BLOCKS) { |
|
blk1 = blk + 1; |
|
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) |
|
blk1++; |
|
switch (blk1 - blk) { |
|
case 1: exp_strategy[blk] = EXP_D45; break; |
|
case 2: |
|
case 3: exp_strategy[blk] = EXP_D25; break; |
|
default: exp_strategy[blk] = EXP_D15; break; |
|
} |
|
blk = blk1; |
|
} |
|
} |
|
if (s->lfe_on) { |
|
ch = s->lfe_channel; |
|
s->exp_strategy[ch][0] = EXP_D15; |
|
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) |
|
s->exp_strategy[ch][blk] = EXP_REUSE; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Update the exponents so that they are the ones the decoder will decode. |
|
*/ |
|
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, |
|
int cpl) |
|
{ |
|
int nb_groups, i, k; |
|
|
|
nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3; |
|
|
|
/* for each group, compute the minimum exponent */ |
|
switch(exp_strategy) { |
|
case EXP_D25: |
|
for (i = 1, k = 1-cpl; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
exp[i-cpl] = exp_min; |
|
k += 2; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = 1, k = 1-cpl; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
if (exp[k+2] < exp_min) |
|
exp_min = exp[k+2]; |
|
if (exp[k+3] < exp_min) |
|
exp_min = exp[k+3]; |
|
exp[i-cpl] = exp_min; |
|
k += 4; |
|
} |
|
break; |
|
} |
|
|
|
/* constraint for DC exponent */ |
|
if (!cpl && exp[0] > 15) |
|
exp[0] = 15; |
|
|
|
/* decrease the delta between each groups to within 2 so that they can be |
|
differentially encoded */ |
|
for (i = 1; i <= nb_groups; i++) |
|
exp[i] = FFMIN(exp[i], exp[i-1] + 2); |
|
i--; |
|
while (--i >= 0) |
|
exp[i] = FFMIN(exp[i], exp[i+1] + 2); |
|
|
|
if (cpl) |
|
exp[-1] = exp[0] & ~1; |
|
|
|
/* now we have the exponent values the decoder will see */ |
|
switch (exp_strategy) { |
|
case EXP_D25: |
|
for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) { |
|
uint8_t exp1 = exp[i-cpl]; |
|
exp[k--] = exp1; |
|
exp[k--] = exp1; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) { |
|
exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl]; |
|
k -= 4; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Encode exponents from original extracted form to what the decoder will see. |
|
* This copies and groups exponents based on exponent strategy and reduces |
|
* deltas between adjacent exponent groups so that they can be differentially |
|
* encoded. |
|
*/ |
|
static void encode_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, blk1, ch, cpl; |
|
uint8_t *exp, *exp_strategy; |
|
int nb_coefs, num_reuse_blocks; |
|
|
|
for (ch = !s->cpl_on; ch <= s->channels; ch++) { |
|
exp = s->blocks[0].exp[ch] + s->start_freq[ch]; |
|
exp_strategy = s->exp_strategy[ch]; |
|
|
|
cpl = (ch == CPL_CH); |
|
blk = 0; |
|
while (blk < AC3_MAX_BLOCKS) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (cpl && !block->cpl_in_use) { |
|
exp += AC3_MAX_COEFS; |
|
blk++; |
|
continue; |
|
} |
|
nb_coefs = block->end_freq[ch] - s->start_freq[ch]; |
|
blk1 = blk + 1; |
|
|
|
/* count the number of EXP_REUSE blocks after the current block |
|
and set exponent reference block pointers */ |
|
block->exp_ref_block[ch] = block; |
|
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) { |
|
s->blocks[blk1].exp_ref_block[ch] = block; |
|
blk1++; |
|
} |
|
num_reuse_blocks = blk1 - blk - 1; |
|
|
|
/* for the EXP_REUSE case we select the min of the exponents */ |
|
s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks, |
|
AC3_MAX_COEFS); |
|
|
|
encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl); |
|
|
|
exp += AC3_MAX_COEFS * (num_reuse_blocks + 1); |
|
blk = blk1; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Group exponents. |
|
* 3 delta-encoded exponents are in each 7-bit group. The number of groups |
|
* varies depending on exponent strategy and bandwidth. |
|
*/ |
|
static void group_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, i, cpl; |
|
int group_size, nb_groups, bit_count; |
|
uint8_t *p; |
|
int delta0, delta1, delta2; |
|
int exp0, exp1; |
|
|
|
bit_count = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
int exp_strategy = s->exp_strategy[ch][blk]; |
|
if (exp_strategy == EXP_REUSE) |
|
continue; |
|
cpl = (ch == CPL_CH); |
|
group_size = exp_strategy + (exp_strategy == EXP_D45); |
|
nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]]; |
|
bit_count += 4 + (nb_groups * 7); |
|
p = block->exp[ch] + s->start_freq[ch] - cpl; |
|
|
|
/* DC exponent */ |
|
exp1 = *p++; |
|
block->grouped_exp[ch][0] = exp1; |
|
|
|
/* remaining exponents are delta encoded */ |
|
for (i = 1; i <= nb_groups; i++) { |
|
/* merge three delta in one code */ |
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta0 = exp1 - exp0 + 2; |
|
av_assert2(delta0 >= 0 && delta0 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta1 = exp1 - exp0 + 2; |
|
av_assert2(delta1 >= 0 && delta1 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta2 = exp1 - exp0 + 2; |
|
av_assert2(delta2 >= 0 && delta2 <= 4); |
|
|
|
block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; |
|
} |
|
} |
|
} |
|
|
|
s->exponent_bits = bit_count; |
|
} |
|
|
|
|
|
/** |
|
* Calculate final exponents from the supplied MDCT coefficients and exponent shift. |
|
* Extract exponents from MDCT coefficients, calculate exponent strategies, |
|
* and encode final exponents. |
|
*/ |
|
static void process_exponents(AC3EncodeContext *s) |
|
{ |
|
extract_exponents(s); |
|
|
|
compute_exp_strategy(s); |
|
|
|
encode_exponents(s); |
|
|
|
group_exponents(s); |
|
|
|
emms_c(); |
|
} |
|
|
|
|
|
/** |
|
* Count frame bits that are based solely on fixed parameters. |
|
* This only has to be run once when the encoder is initialized. |
|
*/ |
|
static void count_frame_bits_fixed(AC3EncodeContext *s) |
|
{ |
|
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
|
int blk; |
|
int frame_bits; |
|
|
|
/* assumptions: |
|
* no dynamic range codes |
|
* bit allocation parameters do not change between blocks |
|
* no delta bit allocation |
|
* no skipped data |
|
* no auxilliary data |
|
*/ |
|
|
|
/* header */ |
|
frame_bits = 65; |
|
frame_bits += frame_bits_inc[s->channel_mode]; |
|
|
|
/* audio blocks */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
/* block switch flags */ |
|
frame_bits += s->fbw_channels; |
|
|
|
/* dither flags */ |
|
frame_bits += s->fbw_channels; |
|
|
|
/* dynamic range */ |
|
frame_bits++; |
|
|
|
/* exponent strategy */ |
|
frame_bits += 2 * s->fbw_channels; |
|
if (s->lfe_on) |
|
frame_bits++; |
|
|
|
/* bit allocation params */ |
|
frame_bits++; |
|
if (!blk) |
|
frame_bits += 2 + 2 + 2 + 2 + 3; |
|
|
|
/* delta bit allocation */ |
|
frame_bits++; |
|
|
|
/* skipped data */ |
|
frame_bits++; |
|
} |
|
|
|
/* auxiliary data */ |
|
frame_bits++; |
|
|
|
/* CRC */ |
|
frame_bits += 1 + 16; |
|
|
|
s->frame_bits_fixed = frame_bits; |
|
} |
|
|
|
|
|
/** |
|
* Initialize bit allocation. |
|
* Set default parameter codes and calculate parameter values. |
|
*/ |
|
static void bit_alloc_init(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
|
|
/* init default parameters */ |
|
s->slow_decay_code = 2; |
|
s->fast_decay_code = 1; |
|
s->slow_gain_code = 1; |
|
s->db_per_bit_code = 3; |
|
s->floor_code = 7; |
|
for (ch = 0; ch <= s->channels; ch++) |
|
s->fast_gain_code[ch] = 4; |
|
|
|
/* initial snr offset */ |
|
s->coarse_snr_offset = 40; |
|
|
|
/* compute real values */ |
|
/* currently none of these values change during encoding, so we can just |
|
set them once at initialization */ |
|
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
|
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
|
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
|
s->bit_alloc.cpl_fast_leak = 0; |
|
s->bit_alloc.cpl_slow_leak = 0; |
|
|
|
count_frame_bits_fixed(s); |
|
} |
|
|
|
|
|
/** |
|
* Count the bits used to encode the frame, minus exponents and mantissas. |
|
* Bits based on fixed parameters have already been counted, so now we just |
|
* have to add the bits based on parameters that change during encoding. |
|
*/ |
|
static void count_frame_bits(AC3EncodeContext *s) |
|
{ |
|
AC3EncOptions *opt = &s->options; |
|
int blk, ch; |
|
int frame_bits = 0; |
|
|
|
/* header */ |
|
if (opt->audio_production_info) |
|
frame_bits += 7; |
|
if (s->bitstream_id == 6) { |
|
if (opt->extended_bsi_1) |
|
frame_bits += 14; |
|
if (opt->extended_bsi_2) |
|
frame_bits += 14; |
|
} |
|
|
|
/* audio blocks */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
/* coupling strategy */ |
|
frame_bits++; |
|
if (block->new_cpl_strategy) { |
|
frame_bits++; |
|
if (block->cpl_in_use) { |
|
frame_bits += s->fbw_channels; |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
frame_bits++; |
|
frame_bits += 4 + 4; |
|
frame_bits += s->num_cpl_subbands - 1; |
|
} |
|
} |
|
|
|
/* coupling coordinates */ |
|
if (block->cpl_in_use) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) { |
|
frame_bits++; |
|
if (block->new_cpl_coords) { |
|
frame_bits += 2; |
|
frame_bits += (4 + 4) * s->num_cpl_bands; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
frame_bits++; |
|
if (s->blocks[blk].new_rematrixing_strategy) |
|
frame_bits += block->num_rematrixing_bands; |
|
} |
|
|
|
/* bandwidth codes & gain range */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
if (!block->channel_in_cpl[ch]) |
|
frame_bits += 6; |
|
frame_bits += 2; |
|
} |
|
} |
|
|
|
/* coupling exponent strategy */ |
|
if (block->cpl_in_use) |
|
frame_bits += 2; |
|
|
|
/* snr offsets and fast gain codes */ |
|
frame_bits++; |
|
if (block->new_snr_offsets) |
|
frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3); |
|
|
|
/* coupling leak info */ |
|
if (block->cpl_in_use) { |
|
frame_bits++; |
|
if (block->new_cpl_leak) |
|
frame_bits += 3 + 3; |
|
} |
|
} |
|
|
|
s->frame_bits = s->frame_bits_fixed + frame_bits; |
|
} |
|
|
|
|
|
/** |
|
* Finalize the mantissa bit count by adding in the grouped mantissas. |
|
*/ |
|
static int compute_mantissa_size_final(int mant_cnt[5]) |
|
{ |
|
// bap=1 : 3 mantissas in 5 bits |
|
int bits = (mant_cnt[1] / 3) * 5; |
|
// bap=2 : 3 mantissas in 7 bits |
|
// bap=4 : 2 mantissas in 7 bits |
|
bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7; |
|
// bap=3 : each mantissa is 3 bits |
|
bits += mant_cnt[3] * 3; |
|
return bits; |
|
} |
|
|
|
|
|
/** |
|
* Calculate masking curve based on the final exponents. |
|
* Also calculate the power spectral densities to use in future calculations. |
|
*/ |
|
static void bit_alloc_masking(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
/* We only need psd and mask for calculating bap. |
|
Since we currently do not calculate bap when exponent |
|
strategy is EXP_REUSE we do not need to calculate psd or mask. */ |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch], |
|
block->end_freq[ch], block->psd[ch], |
|
block->band_psd[ch]); |
|
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch], |
|
s->start_freq[ch], block->end_freq[ch], |
|
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
|
ch == s->lfe_channel, |
|
DBA_NONE, 0, NULL, NULL, NULL, |
|
block->mask[ch]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Ensure that bap for each block and channel point to the current bap_buffer. |
|
* They may have been switched during the bit allocation search. |
|
*/ |
|
static void reset_block_bap(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int channels = s->channels + 1; |
|
if (s->blocks[0].bap[0] == s->bap_buffer) |
|
return; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
for (ch = 0; ch < channels; ch++) { |
|
s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * channels + ch)]; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Run the bit allocation with a given SNR offset. |
|
* This calculates the bit allocation pointers that will be used to determine |
|
* the quantization of each mantissa. |
|
* @return the number of bits needed for mantissas if the given SNR offset is |
|
* is used. |
|
*/ |
|
static int bit_alloc(AC3EncodeContext *s, int snr_offset) |
|
{ |
|
int blk, ch; |
|
int mantissa_bits; |
|
int mant_cnt[5]; |
|
|
|
snr_offset = (snr_offset - 240) << 2; |
|
|
|
reset_block_bap(s); |
|
mantissa_bits = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
AC3Block *ref_block; |
|
int av_uninit(ch0); |
|
int got_cpl = !block->cpl_in_use; |
|
// initialize grouped mantissa counts. these are set so that they are |
|
// padded to the next whole group size when bits are counted in |
|
// compute_mantissa_size_final |
|
mant_cnt[0] = mant_cnt[3] = 0; |
|
mant_cnt[1] = mant_cnt[2] = 2; |
|
mant_cnt[4] = 1; |
|
for (ch = 1; ch <= s->channels; ch++) { |
|
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { |
|
ch0 = ch - 1; |
|
ch = CPL_CH; |
|
got_cpl = 1; |
|
} |
|
|
|
/* Currently the only bit allocation parameters which vary across |
|
blocks within a frame are the exponent values. We can take |
|
advantage of that by reusing the bit allocation pointers |
|
whenever we reuse exponents. */ |
|
ref_block = block->exp_ref_block[ch]; |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
s->ac3dsp.bit_alloc_calc_bap(ref_block->mask[ch], ref_block->psd[ch], |
|
s->start_freq[ch], block->end_freq[ch], |
|
snr_offset, s->bit_alloc.floor, |
|
ff_ac3_bap_tab, ref_block->bap[ch]); |
|
} |
|
mantissa_bits += s->ac3dsp.compute_mantissa_size(mant_cnt, |
|
ref_block->bap[ch]+s->start_freq[ch], |
|
block->end_freq[ch]-s->start_freq[ch]); |
|
if (ch == CPL_CH) |
|
ch = ch0; |
|
} |
|
mantissa_bits += compute_mantissa_size_final(mant_cnt); |
|
} |
|
return mantissa_bits; |
|
} |
|
|
|
|
|
/** |
|
* Constant bitrate bit allocation search. |
|
* Find the largest SNR offset that will allow data to fit in the frame. |
|
*/ |
|
static int cbr_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
int bits_left; |
|
int snr_offset, snr_incr; |
|
|
|
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits); |
|
if (bits_left < 0) |
|
return AVERROR(EINVAL); |
|
|
|
snr_offset = s->coarse_snr_offset << 4; |
|
|
|
/* if previous frame SNR offset was 1023, check if current frame can also |
|
use SNR offset of 1023. if so, skip the search. */ |
|
if ((snr_offset | s->fine_snr_offset[1]) == 1023) { |
|
if (bit_alloc(s, 1023) <= bits_left) |
|
return 0; |
|
} |
|
|
|
while (snr_offset >= 0 && |
|
bit_alloc(s, snr_offset) > bits_left) { |
|
snr_offset -= 64; |
|
} |
|
if (snr_offset < 0) |
|
return AVERROR(EINVAL); |
|
|
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) { |
|
while (snr_offset + snr_incr <= 1023 && |
|
bit_alloc(s, snr_offset + snr_incr) <= bits_left) { |
|
snr_offset += snr_incr; |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
} |
|
} |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
reset_block_bap(s); |
|
|
|
s->coarse_snr_offset = snr_offset >> 4; |
|
for (ch = !s->cpl_on; ch <= s->channels; ch++) |
|
s->fine_snr_offset[ch] = snr_offset & 0xF; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Downgrade exponent strategies to reduce the bits used by the exponents. |
|
* This is a fallback for when bit allocation fails with the normal exponent |
|
* strategies. Each time this function is run it only downgrades the |
|
* strategy in 1 channel of 1 block. |
|
* @return non-zero if downgrade was unsuccessful |
|
*/ |
|
static int downgrade_exponents(AC3EncodeContext *s) |
|
{ |
|
int ch, blk; |
|
|
|
for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { |
|
for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] == EXP_D15) { |
|
s->exp_strategy[ch][blk] = EXP_D25; |
|
return 0; |
|
} |
|
} |
|
} |
|
for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { |
|
for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] == EXP_D25) { |
|
s->exp_strategy[ch][blk] = EXP_D45; |
|
return 0; |
|
} |
|
} |
|
} |
|
/* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if |
|
the block number > 0 */ |
|
for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) { |
|
for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] > EXP_REUSE) { |
|
s->exp_strategy[ch][blk] = EXP_REUSE; |
|
return 0; |
|
} |
|
} |
|
} |
|
return -1; |
|
} |
|
|
|
|
|
/** |
|
* Perform bit allocation search. |
|
* Finds the SNR offset value that maximizes quality and fits in the specified |
|
* frame size. Output is the SNR offset and a set of bit allocation pointers |
|
* used to quantize the mantissas. |
|
*/ |
|
static int compute_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
int ret; |
|
|
|
count_frame_bits(s); |
|
|
|
bit_alloc_masking(s); |
|
|
|
ret = cbr_bit_allocation(s); |
|
while (ret) { |
|
/* fallback 1: disable channel coupling */ |
|
if (s->cpl_on) { |
|
s->cpl_on = 0; |
|
compute_coupling_strategy(s); |
|
compute_rematrixing_strategy(s); |
|
apply_rematrixing(s); |
|
process_exponents(s); |
|
ret = compute_bit_allocation(s); |
|
continue; |
|
} |
|
|
|
/* fallback 2: downgrade exponents */ |
|
if (!downgrade_exponents(s)) { |
|
extract_exponents(s); |
|
encode_exponents(s); |
|
group_exponents(s); |
|
ret = compute_bit_allocation(s); |
|
continue; |
|
} |
|
|
|
/* fallbacks were not enough... */ |
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
|
|
/** |
|
* Symmetric quantization on 'levels' levels. |
|
*/ |
|
static inline int sym_quant(int c, int e, int levels) |
|
{ |
|
int v = (((levels * c) >> (24 - e)) + levels) >> 1; |
|
av_assert2(v >= 0 && v < levels); |
|
return v; |
|
} |
|
|
|
|
|
/** |
|
* Asymmetric quantization on 2^qbits levels. |
|
*/ |
|
static inline int asym_quant(int c, int e, int qbits) |
|
{ |
|
int lshift, m, v; |
|
|
|
lshift = e + qbits - 24; |
|
if (lshift >= 0) |
|
v = c << lshift; |
|
else |
|
v = c >> (-lshift); |
|
/* rounding */ |
|
v = (v + 1) >> 1; |
|
m = (1 << (qbits-1)); |
|
if (v >= m) |
|
v = m - 1; |
|
av_assert2(v >= -m); |
|
return v & ((1 << qbits)-1); |
|
} |
|
|
|
|
|
/** |
|
* Quantize a set of mantissas for a single channel in a single block. |
|
*/ |
|
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, |
|
uint8_t *exp, uint8_t *bap, |
|
uint16_t *qmant, int start_freq, |
|
int end_freq) |
|
{ |
|
int i; |
|
|
|
for (i = start_freq; i < end_freq; i++) { |
|
int v; |
|
int c = fixed_coef[i]; |
|
int e = exp[i]; |
|
int b = bap[i]; |
|
switch (b) { |
|
case 0: |
|
v = 0; |
|
break; |
|
case 1: |
|
v = sym_quant(c, e, 3); |
|
switch (s->mant1_cnt) { |
|
case 0: |
|
s->qmant1_ptr = &qmant[i]; |
|
v = 9 * v; |
|
s->mant1_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant1_ptr += 3 * v; |
|
s->mant1_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant1_ptr += v; |
|
s->mant1_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 2: |
|
v = sym_quant(c, e, 5); |
|
switch (s->mant2_cnt) { |
|
case 0: |
|
s->qmant2_ptr = &qmant[i]; |
|
v = 25 * v; |
|
s->mant2_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant2_ptr += 5 * v; |
|
s->mant2_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant2_ptr += v; |
|
s->mant2_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 3: |
|
v = sym_quant(c, e, 7); |
|
break; |
|
case 4: |
|
v = sym_quant(c, e, 11); |
|
switch (s->mant4_cnt) { |
|
case 0: |
|
s->qmant4_ptr = &qmant[i]; |
|
v = 11 * v; |
|
s->mant4_cnt = 1; |
|
break; |
|
default: |
|
*s->qmant4_ptr += v; |
|
s->mant4_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 5: |
|
v = sym_quant(c, e, 15); |
|
break; |
|
case 14: |
|
v = asym_quant(c, e, 14); |
|
break; |
|
case 15: |
|
v = asym_quant(c, e, 16); |
|
break; |
|
default: |
|
v = asym_quant(c, e, b - 1); |
|
break; |
|
} |
|
qmant[i] = v; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Quantize mantissas using coefficients, exponents, and bit allocation pointers. |
|
*/ |
|
static void quantize_mantissas(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, ch0=0, got_cpl; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
AC3Block *ref_block; |
|
AC3Mant m = { 0 }; |
|
|
|
got_cpl = !block->cpl_in_use; |
|
for (ch = 1; ch <= s->channels; ch++) { |
|
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { |
|
ch0 = ch - 1; |
|
ch = CPL_CH; |
|
got_cpl = 1; |
|
} |
|
ref_block = block->exp_ref_block[ch]; |
|
quantize_mantissas_blk_ch(&m, block->fixed_coef[ch], |
|
ref_block->exp[ch], |
|
ref_block->bap[ch], block->qmant[ch], |
|
s->start_freq[ch], block->end_freq[ch]); |
|
if (ch == CPL_CH) |
|
ch = ch0; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Write the AC-3 frame header to the output bitstream. |
|
*/ |
|
static void output_frame_header(AC3EncodeContext *s) |
|
{ |
|
AC3EncOptions *opt = &s->options; |
|
|
|
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
|
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
|
put_bits(&s->pb, 2, s->bit_alloc.sr_code); |
|
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
|
put_bits(&s->pb, 5, s->bitstream_id); |
|
put_bits(&s->pb, 3, s->bitstream_mode); |
|
put_bits(&s->pb, 3, s->channel_mode); |
|
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
|
put_bits(&s->pb, 2, s->center_mix_level); |
|
if (s->channel_mode & 0x04) |
|
put_bits(&s->pb, 2, s->surround_mix_level); |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
put_bits(&s->pb, 2, opt->dolby_surround_mode); |
|
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
|
put_bits(&s->pb, 5, -opt->dialogue_level); |
|
put_bits(&s->pb, 1, 0); /* no compression control word */ |
|
put_bits(&s->pb, 1, 0); /* no lang code */ |
|
put_bits(&s->pb, 1, opt->audio_production_info); |
|
if (opt->audio_production_info) { |
|
put_bits(&s->pb, 5, opt->mixing_level - 80); |
|
put_bits(&s->pb, 2, opt->room_type); |
|
} |
|
put_bits(&s->pb, 1, opt->copyright); |
|
put_bits(&s->pb, 1, opt->original); |
|
if (s->bitstream_id == 6) { |
|
/* alternate bit stream syntax */ |
|
put_bits(&s->pb, 1, opt->extended_bsi_1); |
|
if (opt->extended_bsi_1) { |
|
put_bits(&s->pb, 2, opt->preferred_stereo_downmix); |
|
put_bits(&s->pb, 3, s->ltrt_center_mix_level); |
|
put_bits(&s->pb, 3, s->ltrt_surround_mix_level); |
|
put_bits(&s->pb, 3, s->loro_center_mix_level); |
|
put_bits(&s->pb, 3, s->loro_surround_mix_level); |
|
} |
|
put_bits(&s->pb, 1, opt->extended_bsi_2); |
|
if (opt->extended_bsi_2) { |
|
put_bits(&s->pb, 2, opt->dolby_surround_ex_mode); |
|
put_bits(&s->pb, 2, opt->dolby_headphone_mode); |
|
put_bits(&s->pb, 1, opt->ad_converter_type); |
|
put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */ |
|
} |
|
} else { |
|
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
|
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
|
} |
|
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
|
} |
|
|
|
|
|
/** |
|
* Write one audio block to the output bitstream. |
|
*/ |
|
static void output_audio_block(AC3EncodeContext *s, int blk) |
|
{ |
|
int ch, i, baie, bnd, got_cpl; |
|
int av_uninit(ch0); |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
/* block switching */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* dither flags */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 1); |
|
|
|
/* dynamic range codes */ |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* channel coupling */ |
|
put_bits(&s->pb, 1, block->new_cpl_strategy); |
|
if (block->new_cpl_strategy) { |
|
put_bits(&s->pb, 1, block->cpl_in_use); |
|
if (block->cpl_in_use) { |
|
int start_sub, end_sub; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, block->channel_in_cpl[ch]); |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
put_bits(&s->pb, 1, 0); /* phase flags in use */ |
|
start_sub = (s->start_freq[CPL_CH] - 37) / 12; |
|
end_sub = (s->cpl_end_freq - 37) / 12; |
|
put_bits(&s->pb, 4, start_sub); |
|
put_bits(&s->pb, 4, end_sub - 3); |
|
for (bnd = start_sub+1; bnd < end_sub; bnd++) |
|
put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]); |
|
} |
|
} |
|
|
|
/* coupling coordinates */ |
|
if (block->cpl_in_use) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) { |
|
put_bits(&s->pb, 1, block->new_cpl_coords); |
|
if (block->new_cpl_coords) { |
|
put_bits(&s->pb, 2, block->cpl_master_exp[ch]); |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]); |
|
put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
put_bits(&s->pb, 1, block->new_rematrixing_strategy); |
|
if (block->new_rematrixing_strategy) { |
|
/* rematrixing flags */ |
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) |
|
put_bits(&s->pb, 1, block->rematrixing_flags[bnd]); |
|
} |
|
} |
|
|
|
/* exponent strategy */ |
|
for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++) |
|
put_bits(&s->pb, 2, s->exp_strategy[ch][blk]); |
|
if (s->lfe_on) |
|
put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]); |
|
|
|
/* bandwidth */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch]) |
|
put_bits(&s->pb, 6, s->bandwidth_code); |
|
} |
|
|
|
/* exponents */ |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
int nb_groups; |
|
int cpl = (ch == CPL_CH); |
|
|
|
if (s->exp_strategy[ch][blk] == EXP_REUSE) |
|
continue; |
|
|
|
/* DC exponent */ |
|
put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl); |
|
|
|
/* exponent groups */ |
|
nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]]; |
|
for (i = 1; i <= nb_groups; i++) |
|
put_bits(&s->pb, 7, block->grouped_exp[ch][i]); |
|
|
|
/* gain range info */ |
|
if (ch != s->lfe_channel && !cpl) |
|
put_bits(&s->pb, 2, 0); |
|
} |
|
|
|
/* bit allocation info */ |
|
baie = (blk == 0); |
|
put_bits(&s->pb, 1, baie); |
|
if (baie) { |
|
put_bits(&s->pb, 2, s->slow_decay_code); |
|
put_bits(&s->pb, 2, s->fast_decay_code); |
|
put_bits(&s->pb, 2, s->slow_gain_code); |
|
put_bits(&s->pb, 2, s->db_per_bit_code); |
|
put_bits(&s->pb, 3, s->floor_code); |
|
} |
|
|
|
/* snr offset */ |
|
put_bits(&s->pb, 1, block->new_snr_offsets); |
|
if (block->new_snr_offsets) { |
|
put_bits(&s->pb, 6, s->coarse_snr_offset); |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
put_bits(&s->pb, 4, s->fine_snr_offset[ch]); |
|
put_bits(&s->pb, 3, s->fast_gain_code[ch]); |
|
} |
|
} |
|
|
|
/* coupling leak */ |
|
if (block->cpl_in_use) { |
|
put_bits(&s->pb, 1, block->new_cpl_leak); |
|
if (block->new_cpl_leak) { |
|
put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak); |
|
put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak); |
|
} |
|
} |
|
|
|
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
|
put_bits(&s->pb, 1, 0); /* no data to skip */ |
|
|
|
/* mantissas */ |
|
got_cpl = !block->cpl_in_use; |
|
for (ch = 1; ch <= s->channels; ch++) { |
|
int b, q; |
|
AC3Block *ref_block; |
|
|
|
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { |
|
ch0 = ch - 1; |
|
ch = CPL_CH; |
|
got_cpl = 1; |
|
} |
|
ref_block = block->exp_ref_block[ch]; |
|
for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) { |
|
q = block->qmant[ch][i]; |
|
b = ref_block->bap[ch][i]; |
|
switch (b) { |
|
case 0: break; |
|
case 1: if (q != 128) put_bits(&s->pb, 5, q); break; |
|
case 2: if (q != 128) put_bits(&s->pb, 7, q); break; |
|
case 3: put_bits(&s->pb, 3, q); break; |
|
case 4: if (q != 128) put_bits(&s->pb, 7, q); break; |
|
case 14: put_bits(&s->pb, 14, q); break; |
|
case 15: put_bits(&s->pb, 16, q); break; |
|
default: put_bits(&s->pb, b-1, q); break; |
|
} |
|
} |
|
if (ch == CPL_CH) |
|
ch = ch0; |
|
} |
|
} |
|
|
|
|
|
/** CRC-16 Polynomial */ |
|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
|
|
|
|
|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
|
{ |
|
unsigned int c; |
|
|
|
c = 0; |
|
while (a) { |
|
if (a & 1) |
|
c ^= b; |
|
a = a >> 1; |
|
b = b << 1; |
|
if (b & (1 << 16)) |
|
b ^= poly; |
|
} |
|
return c; |
|
} |
|
|
|
|
|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
|
{ |
|
unsigned int r; |
|
r = 1; |
|
while (n) { |
|
if (n & 1) |
|
r = mul_poly(r, a, poly); |
|
a = mul_poly(a, a, poly); |
|
n >>= 1; |
|
} |
|
return r; |
|
} |
|
|
|
|
|
/** |
|
* Fill the end of the frame with 0's and compute the two CRCs. |
|
*/ |
|
static void output_frame_end(AC3EncodeContext *s) |
|
{ |
|
const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI); |
|
int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv; |
|
uint8_t *frame; |
|
|
|
frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1; |
|
|
|
/* pad the remainder of the frame with zeros */ |
|
av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18); |
|
flush_put_bits(&s->pb); |
|
frame = s->pb.buf; |
|
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2; |
|
av_assert2(pad_bytes >= 0); |
|
if (pad_bytes > 0) |
|
memset(put_bits_ptr(&s->pb), 0, pad_bytes); |
|
|
|
/* compute crc1 */ |
|
/* this is not so easy because it is at the beginning of the data... */ |
|
crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4)); |
|
crc_inv = s->crc_inv[s->frame_size > s->frame_size_min]; |
|
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
|
AV_WB16(frame + 2, crc1); |
|
|
|
/* compute crc2 */ |
|
crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58, |
|
s->frame_size - frame_size_58 - 3); |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
/* ensure crc2 does not match sync word by flipping crcrsv bit if needed */ |
|
if (crc2 == 0x770B) { |
|
frame[s->frame_size - 3] ^= 0x1; |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
} |
|
crc2 = av_bswap16(crc2); |
|
AV_WB16(frame + s->frame_size - 2, crc2); |
|
} |
|
|
|
|
|
/** |
|
* Write the frame to the output bitstream. |
|
*/ |
|
static void output_frame(AC3EncodeContext *s, unsigned char *frame) |
|
{ |
|
int blk; |
|
|
|
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
|
|
|
output_frame_header(s); |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
|
output_audio_block(s, blk); |
|
|
|
output_frame_end(s); |
|
} |
|
|
|
|
|
static void dprint_options(AVCodecContext *avctx) |
|
{ |
|
#ifdef DEBUG |
|
AC3EncodeContext *s = avctx->priv_data; |
|
AC3EncOptions *opt = &s->options; |
|
char strbuf[32]; |
|
|
|
switch (s->bitstream_id) { |
|
case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break; |
|
case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break; |
|
case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break; |
|
case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR"); |
|
} |
|
av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id); |
|
av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt)); |
|
av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout); |
|
av_dlog(avctx, "channel_layout: %s\n", strbuf); |
|
av_dlog(avctx, "sample_rate: %d\n", s->sample_rate); |
|
av_dlog(avctx, "bit_rate: %d\n", s->bit_rate); |
|
if (s->cutoff) |
|
av_dlog(avctx, "cutoff: %d\n", s->cutoff); |
|
|
|
av_dlog(avctx, "per_frame_metadata: %s\n", |
|
opt->allow_per_frame_metadata?"on":"off"); |
|
if (s->has_center) |
|
av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level, |
|
s->center_mix_level); |
|
else |
|
av_dlog(avctx, "center_mixlev: {not written}\n"); |
|
if (s->has_surround) |
|
av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level, |
|
s->surround_mix_level); |
|
else |
|
av_dlog(avctx, "surround_mixlev: {not written}\n"); |
|
if (opt->audio_production_info) { |
|
av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level); |
|
switch (opt->room_type) { |
|
case 0: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case 1: av_strlcpy(strbuf, "large", 32); break; |
|
case 2: av_strlcpy(strbuf, "small", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type); |
|
} |
|
av_dlog(avctx, "room_type: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "mixing_level: {not written}\n"); |
|
av_dlog(avctx, "room_type: {not written}\n"); |
|
} |
|
av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off"); |
|
av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level); |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
switch (opt->dolby_surround_mode) { |
|
case 0: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case 1: av_strlcpy(strbuf, "on", 32); break; |
|
case 2: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode); |
|
} |
|
av_dlog(avctx, "dsur_mode: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "dsur_mode: {not written}\n"); |
|
} |
|
av_dlog(avctx, "original: %s\n", opt->original?"on":"off"); |
|
|
|
if (s->bitstream_id == 6) { |
|
if (opt->extended_bsi_1) { |
|
switch (opt->preferred_stereo_downmix) { |
|
case 0: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case 1: av_strlcpy(strbuf, "ltrt", 32); break; |
|
case 2: av_strlcpy(strbuf, "loro", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix); |
|
} |
|
av_dlog(avctx, "dmix_mode: %s\n", strbuf); |
|
av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n", |
|
opt->ltrt_center_mix_level, s->ltrt_center_mix_level); |
|
av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n", |
|
opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level); |
|
av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n", |
|
opt->loro_center_mix_level, s->loro_center_mix_level); |
|
av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n", |
|
opt->loro_surround_mix_level, s->loro_surround_mix_level); |
|
} else { |
|
av_dlog(avctx, "extended bitstream info 1: {not written}\n"); |
|
} |
|
if (opt->extended_bsi_2) { |
|
switch (opt->dolby_surround_ex_mode) { |
|
case 0: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case 1: av_strlcpy(strbuf, "on", 32); break; |
|
case 2: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode); |
|
} |
|
av_dlog(avctx, "dsurex_mode: %s\n", strbuf); |
|
switch (opt->dolby_headphone_mode) { |
|
case 0: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case 1: av_strlcpy(strbuf, "on", 32); break; |
|
case 2: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode); |
|
} |
|
av_dlog(avctx, "dheadphone_mode: %s\n", strbuf); |
|
|
|
switch (opt->ad_converter_type) { |
|
case 0: av_strlcpy(strbuf, "standard", 32); break; |
|
case 1: av_strlcpy(strbuf, "hdcd", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type); |
|
} |
|
av_dlog(avctx, "ad_conv_type: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "extended bitstream info 2: {not written}\n"); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
|
|
#define FLT_OPTION_THRESHOLD 0.01 |
|
|
|
static int validate_float_option(float v, const float *v_list, int v_list_size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < v_list_size; i++) { |
|
if (v < (v_list[i] + FLT_OPTION_THRESHOLD) && |
|
v > (v_list[i] - FLT_OPTION_THRESHOLD)) |
|
break; |
|
} |
|
if (i == v_list_size) |
|
return -1; |
|
|
|
return i; |
|
} |
|
|
|
|
|
static void validate_mix_level(void *log_ctx, const char *opt_name, |
|
float *opt_param, const float *list, |
|
int list_size, int default_value, int min_value, |
|
int *ctx_param) |
|
{ |
|
int mixlev = validate_float_option(*opt_param, list, list_size); |
|
if (mixlev < min_value) { |
|
mixlev = default_value; |
|
if (*opt_param >= 0.0) { |
|
av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using " |
|
"default value: %0.3f\n", opt_name, list[mixlev]); |
|
} |
|
} |
|
*opt_param = list[mixlev]; |
|
*ctx_param = mixlev; |
|
} |
|
|
|
|
|
/** |
|
* Validate metadata options as set by AVOption system. |
|
* These values can optionally be changed per-frame. |
|
*/ |
|
static int validate_metadata(AVCodecContext *avctx) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
AC3EncOptions *opt = &s->options; |
|
|
|
/* validate mixing levels */ |
|
if (s->has_center) { |
|
validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level, |
|
cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0, |
|
&s->center_mix_level); |
|
} |
|
if (s->has_surround) { |
|
validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level, |
|
surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0, |
|
&s->surround_mix_level); |
|
} |
|
|
|
/* set audio production info flag */ |
|
if (opt->mixing_level >= 0 || opt->room_type >= 0) { |
|
if (opt->mixing_level < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if " |
|
"room_type is set\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (opt->mixing_level < 80) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between " |
|
"80dB and 111dB\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
/* default room type */ |
|
if (opt->room_type < 0) |
|
opt->room_type = 0; |
|
opt->audio_production_info = 1; |
|
} else { |
|
opt->audio_production_info = 0; |
|
} |
|
|
|
/* set extended bsi 1 flag */ |
|
if ((s->has_center || s->has_surround) && |
|
(opt->preferred_stereo_downmix >= 0 || |
|
opt->ltrt_center_mix_level >= 0 || |
|
opt->ltrt_surround_mix_level >= 0 || |
|
opt->loro_center_mix_level >= 0 || |
|
opt->loro_surround_mix_level >= 0)) { |
|
/* default preferred stereo downmix */ |
|
if (opt->preferred_stereo_downmix < 0) |
|
opt->preferred_stereo_downmix = 0; |
|
/* validate Lt/Rt center mix level */ |
|
validate_mix_level(avctx, "ltrt_center_mix_level", |
|
&opt->ltrt_center_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 5, 0, |
|
&s->ltrt_center_mix_level); |
|
/* validate Lt/Rt surround mix level */ |
|
validate_mix_level(avctx, "ltrt_surround_mix_level", |
|
&opt->ltrt_surround_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 6, 3, |
|
&s->ltrt_surround_mix_level); |
|
/* validate Lo/Ro center mix level */ |
|
validate_mix_level(avctx, "loro_center_mix_level", |
|
&opt->loro_center_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 5, 0, |
|
&s->loro_center_mix_level); |
|
/* validate Lo/Ro surround mix level */ |
|
validate_mix_level(avctx, "loro_surround_mix_level", |
|
&opt->loro_surround_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 6, 3, |
|
&s->loro_surround_mix_level); |
|
opt->extended_bsi_1 = 1; |
|
} else { |
|
opt->extended_bsi_1 = 0; |
|
} |
|
|
|
/* set extended bsi 2 flag */ |
|
if (opt->dolby_surround_ex_mode >= 0 || |
|
opt->dolby_headphone_mode >= 0 || |
|
opt->ad_converter_type >= 0) { |
|
/* default dolby surround ex mode */ |
|
if (opt->dolby_surround_ex_mode < 0) |
|
opt->dolby_surround_ex_mode = 0; |
|
/* default dolby headphone mode */ |
|
if (opt->dolby_headphone_mode < 0) |
|
opt->dolby_headphone_mode = 0; |
|
/* default A/D converter type */ |
|
if (opt->ad_converter_type < 0) |
|
opt->ad_converter_type = 0; |
|
opt->extended_bsi_2 = 1; |
|
} else { |
|
opt->extended_bsi_2 = 0; |
|
} |
|
|
|
/* set bitstream id for alternate bitstream syntax */ |
|
if (opt->extended_bsi_1 || opt->extended_bsi_2) { |
|
if (s->bitstream_id > 8 && s->bitstream_id < 11) { |
|
static int warn_once = 1; |
|
if (warn_once) { |
|
av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is " |
|
"not compatible with reduced samplerates. writing of " |
|
"extended bitstream information will be disabled.\n"); |
|
warn_once = 0; |
|
} |
|
} else { |
|
s->bitstream_id = 6; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Encode a single AC-3 frame. |
|
*/ |
|
static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame, |
|
int buf_size, void *data) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
const SampleType *samples = data; |
|
int ret; |
|
|
|
if (s->options.allow_per_frame_metadata) { |
|
ret = validate_metadata(avctx); |
|
if (ret) |
|
return ret; |
|
} |
|
|
|
if (s->bit_alloc.sr_code == 1) |
|
adjust_frame_size(s); |
|
|
|
deinterleave_input_samples(s, samples); |
|
|
|
apply_mdct(s); |
|
|
|
scale_coefficients(s); |
|
|
|
s->cpl_on = s->cpl_enabled; |
|
compute_coupling_strategy(s); |
|
|
|
if (s->cpl_on) |
|
apply_channel_coupling(s); |
|
|
|
compute_rematrixing_strategy(s); |
|
|
|
apply_rematrixing(s); |
|
|
|
process_exponents(s); |
|
|
|
ret = compute_bit_allocation(s); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
|
return ret; |
|
} |
|
|
|
quantize_mantissas(s); |
|
|
|
output_frame(s, frame); |
|
|
|
return s->frame_size; |
|
} |
|
|
|
|
|
/** |
|
* Finalize encoding and free any memory allocated by the encoder. |
|
*/ |
|
static av_cold int ac3_encode_close(AVCodecContext *avctx) |
|
{ |
|
int blk, ch; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
|
|
for (ch = 0; ch < s->channels; ch++) |
|
av_freep(&s->planar_samples[ch]); |
|
av_freep(&s->planar_samples); |
|
av_freep(&s->bap_buffer); |
|
av_freep(&s->bap1_buffer); |
|
av_freep(&s->mdct_coef_buffer); |
|
av_freep(&s->fixed_coef_buffer); |
|
av_freep(&s->exp_buffer); |
|
av_freep(&s->grouped_exp_buffer); |
|
av_freep(&s->psd_buffer); |
|
av_freep(&s->band_psd_buffer); |
|
av_freep(&s->mask_buffer); |
|
av_freep(&s->qmant_buffer); |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
av_freep(&block->bap); |
|
av_freep(&block->mdct_coef); |
|
av_freep(&block->fixed_coef); |
|
av_freep(&block->exp); |
|
av_freep(&block->grouped_exp); |
|
av_freep(&block->psd); |
|
av_freep(&block->band_psd); |
|
av_freep(&block->mask); |
|
av_freep(&block->qmant); |
|
} |
|
|
|
mdct_end(&s->mdct); |
|
|
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Set channel information during initialization. |
|
*/ |
|
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
|
int64_t *channel_layout) |
|
{ |
|
int ch_layout; |
|
|
|
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
|
return AVERROR(EINVAL); |
|
if ((uint64_t)*channel_layout > 0x7FF) |
|
return AVERROR(EINVAL); |
|
ch_layout = *channel_layout; |
|
if (!ch_layout) |
|
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL); |
|
|
|
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
|
s->channels = channels; |
|
s->fbw_channels = channels - s->lfe_on; |
|
s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1; |
|
if (s->lfe_on) |
|
ch_layout -= AV_CH_LOW_FREQUENCY; |
|
|
|
switch (ch_layout) { |
|
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
|
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
|
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
|
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
|
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
|
case AV_CH_LAYOUT_QUAD: |
|
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
|
case AV_CH_LAYOUT_5POINT0: |
|
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO; |
|
s->has_surround = s->channel_mode & 0x04; |
|
|
|
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
|
*channel_layout = ch_layout; |
|
if (s->lfe_on) |
|
*channel_layout |= AV_CH_LOW_FREQUENCY; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) |
|
{ |
|
int i, ret; |
|
|
|
/* validate channel layout */ |
|
if (!avctx->channel_layout) { |
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " |
|
"encoder will guess the layout, but it " |
|
"might be incorrect.\n"); |
|
} |
|
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n"); |
|
return ret; |
|
} |
|
|
|
/* validate sample rate */ |
|
for (i = 0; i < 9; i++) { |
|
if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) |
|
break; |
|
} |
|
if (i == 9) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->sample_rate = avctx->sample_rate; |
|
s->bit_alloc.sr_shift = i % 3; |
|
s->bit_alloc.sr_code = i / 3; |
|
s->bitstream_id = 8 + s->bit_alloc.sr_shift; |
|
|
|
/* validate bit rate */ |
|
for (i = 0; i < 19; i++) { |
|
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
|
break; |
|
} |
|
if (i == 19) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->bit_rate = avctx->bit_rate; |
|
s->frame_size_code = i << 1; |
|
|
|
/* validate cutoff */ |
|
if (avctx->cutoff < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->cutoff = avctx->cutoff; |
|
if (s->cutoff > (s->sample_rate >> 1)) |
|
s->cutoff = s->sample_rate >> 1; |
|
|
|
/* validate audio service type / channels combination */ |
|
if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE && |
|
avctx->channels == 1) || |
|
((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY || |
|
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY || |
|
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER) |
|
&& avctx->channels > 1)) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the " |
|
"specified number of channels\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
ret = validate_metadata(avctx); |
|
if (ret) |
|
return ret; |
|
|
|
s->rematrixing_enabled = s->options.stereo_rematrixing && |
|
(s->channel_mode == AC3_CHMODE_STEREO); |
|
|
|
s->cpl_enabled = s->options.channel_coupling && |
|
s->channel_mode >= AC3_CHMODE_STEREO && |
|
CONFIG_AC3ENC_FLOAT; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Set bandwidth for all channels. |
|
* The user can optionally supply a cutoff frequency. Otherwise an appropriate |
|
* default value will be used. |
|
*/ |
|
static av_cold void set_bandwidth(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int av_uninit(cpl_start); |
|
|
|
if (s->cutoff) { |
|
/* calculate bandwidth based on user-specified cutoff frequency */ |
|
int fbw_coeffs; |
|
fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate; |
|
s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
|
} else { |
|
/* use default bandwidth setting */ |
|
s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2]; |
|
} |
|
|
|
/* set number of coefficients for each channel */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
s->start_freq[ch] = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
|
s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73; |
|
} |
|
/* LFE channel always has 7 coefs */ |
|
if (s->lfe_on) { |
|
s->start_freq[s->lfe_channel] = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
|
s->blocks[blk].end_freq[ch] = 7; |
|
} |
|
|
|
/* initialize coupling strategy */ |
|
if (s->cpl_enabled) { |
|
if (s->options.cpl_start >= 0) { |
|
cpl_start = s->options.cpl_start; |
|
} else { |
|
cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2]; |
|
if (cpl_start < 0) |
|
s->cpl_enabled = 0; |
|
} |
|
} |
|
if (s->cpl_enabled) { |
|
int i, cpl_start_band, cpl_end_band; |
|
uint8_t *cpl_band_sizes = s->cpl_band_sizes; |
|
|
|
cpl_end_band = s->bandwidth_code / 4 + 3; |
|
cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15)); |
|
|
|
s->num_cpl_subbands = cpl_end_band - cpl_start_band; |
|
|
|
s->num_cpl_bands = 1; |
|
*cpl_band_sizes = 12; |
|
for (i = cpl_start_band + 1; i < cpl_end_band; i++) { |
|
if (ff_eac3_default_cpl_band_struct[i]) { |
|
*cpl_band_sizes += 12; |
|
} else { |
|
s->num_cpl_bands++; |
|
cpl_band_sizes++; |
|
*cpl_band_sizes = 12; |
|
} |
|
} |
|
|
|
s->start_freq[CPL_CH] = cpl_start_band * 12 + 37; |
|
s->cpl_end_freq = cpl_end_band * 12 + 37; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
|
s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq; |
|
} |
|
} |
|
|
|
|
|
static av_cold int allocate_buffers(AVCodecContext *avctx) |
|
{ |
|
int blk, ch; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
int channels = s->channels + 1; /* includes coupling channel */ |
|
|
|
FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples), |
|
alloc_fail); |
|
for (ch = 0; ch < s->channels; ch++) { |
|
FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch], |
|
(AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples), |
|
alloc_fail); |
|
} |
|
FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->bap_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * channels * |
|
128 * sizeof(*s->grouped_exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * channels * |
|
64 * sizeof(*s->band_psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * channels * |
|
64 * sizeof(*s->mask_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail); |
|
if (s->cpl_enabled) { |
|
FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, AC3_MAX_BLOCKS * channels * |
|
16 * sizeof(*s->cpl_coord_exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, AC3_MAX_BLOCKS * channels * |
|
16 * sizeof(*s->cpl_coord_mant_buffer), alloc_fail); |
|
} |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOC_OR_GOTO(avctx, block->bap, channels * sizeof(*block->bap), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant), |
|
alloc_fail); |
|
if (s->cpl_enabled) { |
|
FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant), |
|
alloc_fail); |
|
} |
|
|
|
for (ch = 0; ch < channels; ch++) { |
|
/* arrangement: block, channel, coeff */ |
|
block->bap[ch] = &s->bap_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; |
|
block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)]; |
|
block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; |
|
block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)]; |
|
block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)]; |
|
block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; |
|
if (s->cpl_enabled) { |
|
block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)]; |
|
block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)]; |
|
} |
|
|
|
/* arrangement: channel, block, coeff */ |
|
block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)]; |
|
block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)]; |
|
} |
|
} |
|
|
|
if (CONFIG_AC3ENC_FLOAT) { |
|
FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, AC3_MAX_BLOCKS * channels * |
|
AC3_MAX_COEFS * sizeof(*s->fixed_coef_buffer), alloc_fail); |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < channels; ch++) |
|
block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)]; |
|
} |
|
} else { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < channels; ch++) |
|
block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch]; |
|
} |
|
} |
|
|
|
return 0; |
|
alloc_fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
|
|
/** |
|
* Initialize the encoder. |
|
*/ |
|
static av_cold int ac3_encode_init(AVCodecContext *avctx) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
int ret, frame_size_58; |
|
|
|
avctx->frame_size = AC3_FRAME_SIZE; |
|
|
|
ff_ac3_common_init(); |
|
|
|
ret = validate_options(avctx, s); |
|
if (ret) |
|
return ret; |
|
|
|
s->bitstream_mode = avctx->audio_service_type; |
|
if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE) |
|
s->bitstream_mode = 0x7; |
|
|
|
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code]; |
|
s->bits_written = 0; |
|
s->samples_written = 0; |
|
s->frame_size = s->frame_size_min; |
|
|
|
/* calculate crc_inv for both possible frame sizes */ |
|
frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1; |
|
s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
if (s->bit_alloc.sr_code == 1) { |
|
frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1; |
|
s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
} |
|
|
|
set_bandwidth(s); |
|
|
|
exponent_init(s); |
|
|
|
bit_alloc_init(s); |
|
|
|
ret = mdct_init(avctx, &s->mdct, 9); |
|
if (ret) |
|
goto init_fail; |
|
|
|
ret = allocate_buffers(avctx); |
|
if (ret) |
|
goto init_fail; |
|
|
|
avctx->coded_frame= avcodec_alloc_frame(); |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT); |
|
|
|
dprint_options(avctx); |
|
|
|
return 0; |
|
init_fail: |
|
ac3_encode_close(avctx); |
|
return ret; |
|
}
|
|
|