mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
707 lines
21 KiB
707 lines
21 KiB
/* |
|
* Lagarith lossless decoder |
|
* Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Lagarith lossless decoder |
|
* @author Nathan Caldwell |
|
*/ |
|
|
|
#include <inttypes.h> |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "mathops.h" |
|
#include "huffyuvdsp.h" |
|
#include "lagarithrac.h" |
|
#include "thread.h" |
|
|
|
enum LagarithFrameType { |
|
FRAME_RAW = 1, /**< uncompressed */ |
|
FRAME_U_RGB24 = 2, /**< unaligned RGB24 */ |
|
FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */ |
|
FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */ |
|
FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */ |
|
FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */ |
|
FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */ |
|
FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */ |
|
FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */ |
|
FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */ |
|
FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */ |
|
}; |
|
|
|
typedef struct LagarithContext { |
|
AVCodecContext *avctx; |
|
HuffYUVDSPContext hdsp; |
|
int zeros; /**< number of consecutive zero bytes encountered */ |
|
int zeros_rem; /**< number of zero bytes remaining to output */ |
|
uint8_t *rgb_planes; |
|
int rgb_planes_allocated; |
|
int rgb_stride; |
|
} LagarithContext; |
|
|
|
/** |
|
* Compute the 52-bit mantissa of 1/(double)denom. |
|
* This crazy format uses floats in an entropy coder and we have to match x86 |
|
* rounding exactly, thus ordinary floats aren't portable enough. |
|
* @param denom denominator |
|
* @return 52-bit mantissa |
|
* @see softfloat_mul |
|
*/ |
|
static uint64_t softfloat_reciprocal(uint32_t denom) |
|
{ |
|
int shift = av_log2(denom - 1) + 1; |
|
uint64_t ret = (1ULL << 52) / denom; |
|
uint64_t err = (1ULL << 52) - ret * denom; |
|
ret <<= shift; |
|
err <<= shift; |
|
err += denom / 2; |
|
return ret + err / denom; |
|
} |
|
|
|
/** |
|
* (uint32_t)(x*f), where f has the given mantissa, and exponent 0 |
|
* Used in combination with softfloat_reciprocal computes x/(double)denom. |
|
* @param x 32-bit integer factor |
|
* @param mantissa mantissa of f with exponent 0 |
|
* @return 32-bit integer value (x*f) |
|
* @see softfloat_reciprocal |
|
*/ |
|
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa) |
|
{ |
|
uint64_t l = x * (mantissa & 0xffffffff); |
|
uint64_t h = x * (mantissa >> 32); |
|
h += l >> 32; |
|
l &= 0xffffffff; |
|
l += 1 << av_log2(h >> 21); |
|
h += l >> 32; |
|
return h >> 20; |
|
} |
|
|
|
static uint8_t lag_calc_zero_run(int8_t x) |
|
{ |
|
return (x << 1) ^ (x >> 7); |
|
} |
|
|
|
static int lag_decode_prob(BitstreamContext *bc, uint32_t *value) |
|
{ |
|
static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 }; |
|
int i; |
|
int bit = 0; |
|
int bits = 0; |
|
int prevbit = 0; |
|
unsigned val; |
|
|
|
for (i = 0; i < 7; i++) { |
|
if (prevbit && bit) |
|
break; |
|
prevbit = bit; |
|
bit = bitstream_read_bit(bc); |
|
if (bit && !prevbit) |
|
bits += series[i]; |
|
} |
|
bits--; |
|
if (bits < 0 || bits > 31) { |
|
*value = 0; |
|
return -1; |
|
} else if (bits == 0) { |
|
*value = 0; |
|
return 0; |
|
} |
|
|
|
val = bitstream_read(bc, bits); |
|
val |= 1 << bits; |
|
|
|
*value = val - 1; |
|
|
|
return 0; |
|
} |
|
|
|
static int lag_read_prob_header(lag_rac *rac, BitstreamContext *bc) |
|
{ |
|
int i, j, scale_factor; |
|
unsigned prob, cumulative_target; |
|
unsigned cumul_prob = 0; |
|
unsigned scaled_cumul_prob = 0; |
|
|
|
rac->prob[0] = 0; |
|
rac->prob[257] = UINT_MAX; |
|
/* Read probabilities from bitstream */ |
|
for (i = 1; i < 257; i++) { |
|
if (lag_decode_prob(bc, &rac->prob[i]) < 0) { |
|
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n"); |
|
return -1; |
|
} |
|
if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) { |
|
av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n"); |
|
return -1; |
|
} |
|
cumul_prob += rac->prob[i]; |
|
if (!rac->prob[i]) { |
|
if (lag_decode_prob(bc, &prob)) { |
|
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n"); |
|
return -1; |
|
} |
|
if (prob > 257 - i) |
|
prob = 257 - i; |
|
for (j = 0; j < prob; j++) |
|
rac->prob[++i] = 0; |
|
} |
|
} |
|
|
|
if (!cumul_prob) { |
|
av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n"); |
|
return -1; |
|
} |
|
|
|
/* Scale probabilities so cumulative probability is an even power of 2. */ |
|
scale_factor = av_log2(cumul_prob); |
|
|
|
if (cumul_prob & (cumul_prob - 1)) { |
|
uint64_t mul = softfloat_reciprocal(cumul_prob); |
|
for (i = 1; i < 257; i++) { |
|
rac->prob[i] = softfloat_mul(rac->prob[i], mul); |
|
scaled_cumul_prob += rac->prob[i]; |
|
} |
|
|
|
scale_factor++; |
|
cumulative_target = 1 << scale_factor; |
|
|
|
if (scaled_cumul_prob > cumulative_target) { |
|
av_log(rac->avctx, AV_LOG_ERROR, |
|
"Scaled probabilities are larger than target!\n"); |
|
return -1; |
|
} |
|
|
|
scaled_cumul_prob = cumulative_target - scaled_cumul_prob; |
|
|
|
for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) { |
|
if (rac->prob[i]) { |
|
rac->prob[i]++; |
|
scaled_cumul_prob--; |
|
} |
|
/* Comment from reference source: |
|
* if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way |
|
* // since the compression change is negligible and fixing it |
|
* // breaks backwards compatibility |
|
* b =- (signed int)b; |
|
* b &= 0xFF; |
|
* } else { |
|
* b++; |
|
* b &= 0x7f; |
|
* } |
|
*/ |
|
} |
|
} |
|
|
|
rac->scale = scale_factor; |
|
|
|
/* Fill probability array with cumulative probability for each symbol. */ |
|
for (i = 1; i < 257; i++) |
|
rac->prob[i] += rac->prob[i - 1]; |
|
|
|
return 0; |
|
} |
|
|
|
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, |
|
uint8_t *diff, int w, int *left, |
|
int *left_top) |
|
{ |
|
/* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h. |
|
* However the &0xFF on the gradient predictor yields incorrect output |
|
* for lagarith. |
|
*/ |
|
int i; |
|
uint8_t l, lt; |
|
|
|
l = *left; |
|
lt = *left_top; |
|
|
|
for (i = 0; i < w; i++) { |
|
l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i]; |
|
lt = src1[i]; |
|
dst[i] = l; |
|
} |
|
|
|
*left = l; |
|
*left_top = lt; |
|
} |
|
|
|
static void lag_pred_line(LagarithContext *l, uint8_t *buf, |
|
int width, int stride, int line) |
|
{ |
|
int L, TL; |
|
|
|
if (!line) { |
|
int i, align_width = (width - 1) & ~31; |
|
/* Left prediction only for first line */ |
|
L = l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]); |
|
for (i = align_width + 1; i < width; i++) |
|
buf[i] += buf[i - 1]; |
|
} else { |
|
/* Left pixel is actually prev_row[width] */ |
|
L = buf[width - stride - 1]; |
|
|
|
if (line == 1) { |
|
/* Second line, left predict first pixel, the rest of the line is median predicted |
|
* NOTE: In the case of RGB this pixel is top predicted */ |
|
TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L; |
|
} else { |
|
/* Top left is 2 rows back, last pixel */ |
|
TL = buf[width - (2 * stride) - 1]; |
|
} |
|
|
|
add_lag_median_prediction(buf, buf - stride, buf, |
|
width, &L, &TL); |
|
} |
|
} |
|
|
|
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, |
|
int width, int stride, int line, |
|
int is_luma) |
|
{ |
|
int L, TL; |
|
|
|
if (!line) { |
|
int i, align_width; |
|
if (is_luma) { |
|
buf++; |
|
width--; |
|
} |
|
|
|
align_width = (width - 1) & ~31; |
|
l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]); |
|
|
|
for (i = align_width + 1; i < width; i++) |
|
buf[i] += buf[i - 1]; |
|
|
|
return; |
|
} |
|
if (line == 1) { |
|
const int HEAD = is_luma ? 4 : 2; |
|
int i; |
|
|
|
L = buf[width - stride - 1]; |
|
TL = buf[HEAD - stride - 1]; |
|
for (i = 0; i < HEAD; i++) { |
|
L += buf[i]; |
|
buf[i] = L; |
|
} |
|
for (; i < width; i++) { |
|
L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i]; |
|
TL = buf[i - stride]; |
|
buf[i] = L; |
|
} |
|
} else { |
|
TL = buf[width - (2 * stride) - 1]; |
|
L = buf[width - stride - 1]; |
|
l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL); |
|
} |
|
} |
|
|
|
static int lag_decode_line(LagarithContext *l, lag_rac *rac, |
|
uint8_t *dst, int width, int stride, |
|
int esc_count) |
|
{ |
|
int i = 0; |
|
int ret = 0; |
|
|
|
if (!esc_count) |
|
esc_count = -1; |
|
|
|
/* Output any zeros remaining from the previous run */ |
|
handle_zeros: |
|
if (l->zeros_rem) { |
|
int count = FFMIN(l->zeros_rem, width - i); |
|
memset(dst + i, 0, count); |
|
i += count; |
|
l->zeros_rem -= count; |
|
} |
|
|
|
while (i < width) { |
|
dst[i] = lag_get_rac(rac); |
|
ret++; |
|
|
|
if (dst[i]) |
|
l->zeros = 0; |
|
else |
|
l->zeros++; |
|
|
|
i++; |
|
if (l->zeros == esc_count) { |
|
int index = lag_get_rac(rac); |
|
ret++; |
|
|
|
l->zeros = 0; |
|
|
|
l->zeros_rem = lag_calc_zero_run(index); |
|
goto handle_zeros; |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, |
|
const uint8_t *src, const uint8_t *src_end, |
|
int width, int esc_count) |
|
{ |
|
int i = 0; |
|
int count; |
|
uint8_t zero_run = 0; |
|
const uint8_t *src_start = src; |
|
uint8_t mask1 = -(esc_count < 2); |
|
uint8_t mask2 = -(esc_count < 3); |
|
uint8_t *end = dst + (width - 2); |
|
|
|
output_zeros: |
|
if (l->zeros_rem) { |
|
count = FFMIN(l->zeros_rem, width - i); |
|
if (end - dst < count) { |
|
av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
memset(dst, 0, count); |
|
l->zeros_rem -= count; |
|
dst += count; |
|
} |
|
|
|
while (dst < end) { |
|
i = 0; |
|
while (!zero_run && dst + i < end) { |
|
i++; |
|
if (src + i >= src_end) |
|
return AVERROR_INVALIDDATA; |
|
zero_run = |
|
!(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2)); |
|
} |
|
if (zero_run) { |
|
zero_run = 0; |
|
i += esc_count; |
|
memcpy(dst, src, i); |
|
dst += i; |
|
l->zeros_rem = lag_calc_zero_run(src[i]); |
|
|
|
src += i + 1; |
|
goto output_zeros; |
|
} else { |
|
memcpy(dst, src, i); |
|
src += i; |
|
dst += i; |
|
} |
|
} |
|
return src_start - src; |
|
} |
|
|
|
|
|
|
|
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, |
|
int width, int height, int stride, |
|
const uint8_t *src, int src_size) |
|
{ |
|
int i = 0; |
|
int read = 0; |
|
uint32_t length; |
|
uint32_t offset = 1; |
|
int esc_count = src[0]; |
|
BitstreamContext bc; |
|
lag_rac rac; |
|
const uint8_t *src_end = src + src_size; |
|
|
|
rac.avctx = l->avctx; |
|
l->zeros = 0; |
|
|
|
if (esc_count < 4) { |
|
length = width * height; |
|
if (esc_count && AV_RL32(src + 1) < length) { |
|
length = AV_RL32(src + 1); |
|
offset += 4; |
|
} |
|
|
|
bitstream_init8(&bc, src + offset, src_size); |
|
|
|
if (lag_read_prob_header(&rac, &bc) < 0) |
|
return -1; |
|
|
|
ff_lag_rac_init(&rac, &bc, length - stride); |
|
|
|
for (i = 0; i < height; i++) |
|
read += lag_decode_line(l, &rac, dst + (i * stride), width, |
|
stride, esc_count); |
|
|
|
if (read > length) |
|
av_log(l->avctx, AV_LOG_WARNING, |
|
"Output more bytes than length (%d of %"PRIu32")\n", read, |
|
length); |
|
} else if (esc_count < 8) { |
|
esc_count -= 4; |
|
if (esc_count > 0) { |
|
/* Zero run coding only, no range coding. */ |
|
for (i = 0; i < height; i++) { |
|
int res = lag_decode_zero_run_line(l, dst + (i * stride), src, |
|
src_end, width, esc_count); |
|
if (res < 0) |
|
return res; |
|
src += res; |
|
} |
|
} else { |
|
if (src_size < width * height) |
|
return AVERROR_INVALIDDATA; // buffer not big enough |
|
/* Plane is stored uncompressed */ |
|
for (i = 0; i < height; i++) { |
|
memcpy(dst + (i * stride), src, width); |
|
src += width; |
|
} |
|
} |
|
} else if (esc_count == 0xff) { |
|
/* Plane is a solid run of given value */ |
|
for (i = 0; i < height; i++) |
|
memset(dst + i * stride, src[1], width); |
|
/* Do not apply prediction. |
|
Note: memset to 0 above, setting first value to src[1] |
|
and applying prediction gives the same result. */ |
|
return 0; |
|
} else { |
|
av_log(l->avctx, AV_LOG_ERROR, |
|
"Invalid zero run escape code! (%#x)\n", esc_count); |
|
return -1; |
|
} |
|
|
|
if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) { |
|
for (i = 0; i < height; i++) { |
|
lag_pred_line(l, dst, width, stride, i); |
|
dst += stride; |
|
} |
|
} else { |
|
for (i = 0; i < height; i++) { |
|
lag_pred_line_yuy2(l, dst, width, stride, i, |
|
width == l->avctx->width); |
|
dst += stride; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode a frame. |
|
* @param avctx codec context |
|
* @param data output AVFrame |
|
* @param data_size size of output data or 0 if no picture is returned |
|
* @param avpkt input packet |
|
* @return number of consumed bytes on success or negative if decode fails |
|
*/ |
|
static int lag_decode_frame(AVCodecContext *avctx, |
|
void *data, int *got_frame, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
LagarithContext *l = avctx->priv_data; |
|
ThreadFrame frame = { .f = data }; |
|
AVFrame *const p = data; |
|
uint8_t frametype = 0; |
|
uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; |
|
uint32_t offs[4]; |
|
uint8_t *srcs[4], *dst; |
|
int i, j, planes = 3; |
|
|
|
p->key_frame = 1; |
|
|
|
frametype = buf[0]; |
|
|
|
offset_gu = AV_RL32(buf + 1); |
|
offset_bv = AV_RL32(buf + 5); |
|
|
|
switch (frametype) { |
|
case FRAME_SOLID_RGBA: |
|
avctx->pix_fmt = AV_PIX_FMT_RGB32; |
|
|
|
if (ff_thread_get_buffer(avctx, &frame, 0) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return -1; |
|
} |
|
|
|
dst = p->data[0]; |
|
for (j = 0; j < avctx->height; j++) { |
|
for (i = 0; i < avctx->width; i++) |
|
AV_WN32(dst + i * 4, offset_gu); |
|
dst += p->linesize[0]; |
|
} |
|
break; |
|
case FRAME_ARITH_RGBA: |
|
avctx->pix_fmt = AV_PIX_FMT_RGB32; |
|
planes = 4; |
|
offset_ry += 4; |
|
offs[3] = AV_RL32(buf + 9); |
|
case FRAME_ARITH_RGB24: |
|
case FRAME_U_RGB24: |
|
if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24) |
|
avctx->pix_fmt = AV_PIX_FMT_RGB24; |
|
|
|
if (ff_thread_get_buffer(avctx, &frame, 0) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return -1; |
|
} |
|
|
|
offs[0] = offset_bv; |
|
offs[1] = offset_gu; |
|
offs[2] = offset_ry; |
|
|
|
l->rgb_stride = FFALIGN(avctx->width, 16); |
|
av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated, |
|
l->rgb_stride * avctx->height * planes + 1); |
|
if (!l->rgb_planes) { |
|
av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
for (i = 0; i < planes; i++) |
|
srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride; |
|
if (offset_ry >= buf_size || |
|
offset_gu >= buf_size || |
|
offset_bv >= buf_size || |
|
(planes == 4 && offs[3] >= buf_size)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid frame offsets\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
for (i = 0; i < planes; i++) |
|
lag_decode_arith_plane(l, srcs[i], |
|
avctx->width, avctx->height, |
|
-l->rgb_stride, buf + offs[i], |
|
buf_size - offs[i]); |
|
dst = p->data[0]; |
|
for (i = 0; i < planes; i++) |
|
srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height; |
|
for (j = 0; j < avctx->height; j++) { |
|
for (i = 0; i < avctx->width; i++) { |
|
uint8_t r, g, b, a; |
|
r = srcs[0][i]; |
|
g = srcs[1][i]; |
|
b = srcs[2][i]; |
|
r += g; |
|
b += g; |
|
if (frametype == FRAME_ARITH_RGBA) { |
|
a = srcs[3][i]; |
|
AV_WN32(dst + i * 4, MKBETAG(a, r, g, b)); |
|
} else { |
|
dst[i * 3 + 0] = r; |
|
dst[i * 3 + 1] = g; |
|
dst[i * 3 + 2] = b; |
|
} |
|
} |
|
dst += p->linesize[0]; |
|
for (i = 0; i < planes; i++) |
|
srcs[i] += l->rgb_stride; |
|
} |
|
break; |
|
case FRAME_ARITH_YUY2: |
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P; |
|
|
|
if (ff_thread_get_buffer(avctx, &frame, 0) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return -1; |
|
} |
|
|
|
if (offset_ry >= buf_size || |
|
offset_gu >= buf_size || |
|
offset_bv >= buf_size) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid frame offsets\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, |
|
p->linesize[0], buf + offset_ry, |
|
buf_size - offset_ry); |
|
lag_decode_arith_plane(l, p->data[1], avctx->width / 2, |
|
avctx->height, p->linesize[1], |
|
buf + offset_gu, buf_size - offset_gu); |
|
lag_decode_arith_plane(l, p->data[2], avctx->width / 2, |
|
avctx->height, p->linesize[2], |
|
buf + offset_bv, buf_size - offset_bv); |
|
break; |
|
case FRAME_ARITH_YV12: |
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
|
|
|
if (ff_thread_get_buffer(avctx, &frame, 0) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return -1; |
|
} |
|
|
|
if (offset_ry >= buf_size || |
|
offset_gu >= buf_size || |
|
offset_bv >= buf_size) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid frame offsets\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, |
|
p->linesize[0], buf + offset_ry, |
|
buf_size - offset_ry); |
|
lag_decode_arith_plane(l, p->data[2], avctx->width / 2, |
|
avctx->height / 2, p->linesize[2], |
|
buf + offset_gu, buf_size - offset_gu); |
|
lag_decode_arith_plane(l, p->data[1], avctx->width / 2, |
|
avctx->height / 2, p->linesize[1], |
|
buf + offset_bv, buf_size - offset_bv); |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Unsupported Lagarith frame type: %#"PRIx8"\n", frametype); |
|
return -1; |
|
} |
|
|
|
*got_frame = 1; |
|
|
|
return buf_size; |
|
} |
|
|
|
static av_cold int lag_decode_init(AVCodecContext *avctx) |
|
{ |
|
LagarithContext *l = avctx->priv_data; |
|
l->avctx = avctx; |
|
|
|
ff_huffyuvdsp_init(&l->hdsp); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int lag_decode_end(AVCodecContext *avctx) |
|
{ |
|
LagarithContext *l = avctx->priv_data; |
|
|
|
av_freep(&l->rgb_planes); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ff_lagarith_decoder = { |
|
.name = "lagarith", |
|
.long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_LAGARITH, |
|
.priv_data_size = sizeof(LagarithContext), |
|
.init = lag_decode_init, |
|
.close = lag_decode_end, |
|
.decode = lag_decode_frame, |
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, |
|
};
|
|
|