You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1886 lines
62 KiB

/*
* FFV1 codec for libavcodec
*
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec)
*/
#include "libavutil/avassert.h"
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dsputil.h"
#include "rangecoder.h"
#include "golomb.h"
#include "mathops.h"
#define MAX_PLANES 4
#define CONTEXT_SIZE 32
#define MAX_QUANT_TABLES 8
#define MAX_CONTEXT_INPUTS 5
extern const uint8_t ff_log2_run[41];
static const int8_t quant5_10bit[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
};
static const int8_t quant5[256] = {
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
};
static const int8_t quant9_10bit[256] = {
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
-3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
};
static const int8_t quant11[256] = {
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
};
static const uint8_t ver2_state[256] = {
0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
};
typedef struct VlcState {
int16_t drift;
uint16_t error_sum;
int8_t bias;
uint8_t count;
} VlcState;
typedef struct PlaneContext {
int16_t quant_table[MAX_CONTEXT_INPUTS][256];
int quant_table_index;
int context_count;
uint8_t (*state)[CONTEXT_SIZE];
VlcState *vlc_state;
uint8_t interlace_bit_state[2];
} PlaneContext;
#define MAX_SLICES 256
typedef struct FFV1Context {
AVCodecContext *avctx;
RangeCoder c;
GetBitContext gb;
PutBitContext pb;
uint64_t rc_stat[256][2];
uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
int version;
int width, height;
int chroma_h_shift, chroma_v_shift;
int flags;
int picture_number;
AVFrame picture;
int plane_count;
int ac; // 1 = range coder <-> 0 = golomb rice
PlaneContext plane[MAX_PLANES];
int16_t quant_table[MAX_CONTEXT_INPUTS][256];
int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
int context_count[MAX_QUANT_TABLES];
uint8_t state_transition[256];
uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
int run_index;
int colorspace;
int16_t *sample_buffer;
int gob_count;
int quant_table_count;
DSPContext dsp;
struct FFV1Context *slice_context[MAX_SLICES];
int slice_count;
int num_v_slices;
int num_h_slices;
int slice_width;
int slice_height;
int slice_x;
int slice_y;
} FFV1Context;
static av_always_inline int fold(int diff, int bits)
{
if (bits == 8)
diff = (int8_t)diff;
else {
diff += 1 << (bits - 1);
diff &= (1 << bits) - 1;
diff -= 1 << (bits - 1);
}
return diff;
}
static inline int predict(int16_t *src, int16_t *last)
{
const int LT = last[-1];
const int T = last[0];
const int L = src[-1];
return mid_pred(L, L + T - LT, T);
}
static inline int get_context(PlaneContext *p, int16_t *src,
int16_t *last, int16_t *last2)
{
const int LT = last[-1];
const int T = last[0];
const int RT = last[1];
const int L = src[-1];
if (p->quant_table[3][127]) {
const int TT = last2[0];
const int LL = src[-2];
return p->quant_table[0][(L - LT) & 0xFF] +
p->quant_table[1][(LT - T) & 0xFF] +
p->quant_table[2][(T - RT) & 0xFF] +
p->quant_table[3][(LL - L) & 0xFF] +
p->quant_table[4][(TT - T) & 0xFF];
} else
return p->quant_table[0][(L - LT) & 0xFF] +
p->quant_table[1][(LT - T) & 0xFF] +
p->quant_table[2][(T - RT) & 0xFF];
}
static void find_best_state(uint8_t best_state[256][256],
const uint8_t one_state[256])
{
int i, j, k, m;
double l2tab[256];
for (i = 1; i < 256; i++)
l2tab[i] = log2(i / 256.0);
for (i = 0; i < 256; i++) {
double best_len[256];
double p = i / 256.0;
for (j = 0; j < 256; j++)
best_len[j] = 1 << 30;
for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
double occ[256] = { 0 };
double len = 0;
occ[j] = 1.0;
for (k = 0; k < 256; k++) {
double newocc[256] = { 0 };
for (m = 0; m < 256; m++)
if (occ[m]) {
len -= occ[m] * (p * l2tab[m] +
(1 - p) * l2tab[256 - m]);
}
if (len < best_len[k]) {
best_len[k] = len;
best_state[i][k] = j;
}
for (m = 0; m < 256; m++)
if (occ[m]) {
newocc[one_state[m]] += occ[m] * p;
newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
}
memcpy(occ, newocc, sizeof(occ));
}
}
}
}
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
uint8_t *state, int v,
int is_signed,
uint64_t rc_stat[256][2],
uint64_t rc_stat2[32][2])
{
int i;
#define put_rac(C, S, B) \
do { \
if (rc_stat) { \
rc_stat[*(S)][B]++; \
rc_stat2[(S) - state][B]++; \
} \
put_rac(C, S, B); \
} while (0)
if (v) {
const int a = FFABS(v);
const int e = av_log2(a);
put_rac(c, state + 0, 0);
if (e <= 9) {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + i, 1); // 1..10
put_rac(c, state + 1 + i, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + e, v < 0); // 11..21
} else {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
put_rac(c, state + 1 + 9, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + 10, v < 0); // 11..21
}
} else {
put_rac(c, state + 0, 1);
}
#undef put_rac
}
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
int v, int is_signed)
{
put_symbol_inline(c, state, v, is_signed, NULL, NULL);
}
static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state,
int is_signed)
{
if (get_rac(c, state + 0))
return 0;
else {
int i, e, a;
e = 0;
while (get_rac(c, state + 1 + FFMIN(e, 9))) // 1..10
e++;
a = 1;
for (i = e - 1; i >= 0; i--)
a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31
e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21
return (a ^ e) - e;
}
}
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
{
return get_symbol_inline(c, state, is_signed);
}
static inline void update_vlc_state(VlcState *const state, const int v)
{
int drift = state->drift;
int count = state->count;
state->error_sum += FFABS(v);
drift += v;
if (count == 128) { // FIXME: variable
count >>= 1;
drift >>= 1;
state->error_sum >>= 1;
}
count++;
if (drift <= -count) {
if (state->bias > -128)
state->bias--;
drift += count;
if (drift <= -count)
drift = -count + 1;
} else if (drift > 0) {
if (state->bias < 127)
state->bias++;
drift -= count;
if (drift > 0)
drift = 0;
}
state->drift = drift;
state->count = count;
}
static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
int v, int bits)
{
int i, k, code;
v = fold(v - state->bias, bits);
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
assert(k <= 8);
#if 0 // JPEG LS
if (k == 0 && 2 * state->drift <= -state->count)
code = v ^ (-1);
else
code = v;
#else
code = v ^ ((2 * state->drift + state->count) >> 31);
#endif
av_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
state->bias, state->error_sum, state->drift, state->count, k);
set_sr_golomb(pb, code, k, 12, bits);
update_vlc_state(state, v);
}
static inline int get_vlc_symbol(GetBitContext *gb, VlcState *const state,
int bits)
{
int k, i, v, ret;
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
assert(k <= 8);
v = get_sr_golomb(gb, k, 12, bits);
av_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d",
v, state->bias, state->error_sum, state->drift, state->count, k);
#if 0 // JPEG LS
if (k == 0 && 2 * state->drift <= -state->count)
v ^= (-1);
#else
v ^= ((2 * state->drift + state->count) >> 31);
#endif
ret = fold(v + state->bias, bits);
update_vlc_state(state, v);
return ret;
}
#if CONFIG_FFV1_ENCODER
static av_always_inline int encode_line(FFV1Context *s, int w,
int16_t *sample[3],
int plane_index, int bits)
{
PlaneContext *const p = &s->plane[plane_index];
RangeCoder *const c = &s->c;
int x;
int run_index = s->run_index;
int run_count = 0;
int run_mode = 0;
if (s->ac) {
if (c->bytestream_end - c->bytestream < w * 20) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
} else {
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
}
for (x = 0; x < w; x++) {
int diff, context;
context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
diff = sample[0][x] - predict(sample[0] + x, sample[1] + x);
if (context < 0) {
context = -context;
diff = -diff;
}
diff = fold(diff, bits);
if (s->ac) {
if (s->flags & CODEC_FLAG_PASS1) {
put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
s->rc_stat2[p->quant_table_index][context]);
} else {
put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
}
} else {
if (context == 0)
run_mode = 1;
if (run_mode) {
if (diff) {
while (run_count >= 1 << ff_log2_run[run_index]) {
run_count -= 1 << ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
if (run_index)
run_index--;
run_count = 0;
run_mode = 0;
if (diff > 0)
diff--;
} else {
run_count++;
}
}
av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
run_count, run_index, run_mode, x,
(int)put_bits_count(&s->pb));
if (run_mode == 0)
put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
}
}
if (run_mode) {
while (run_count >= 1 << ff_log2_run[run_index]) {
run_count -= 1 << ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
if (run_count)
put_bits(&s->pb, 1, 1);
}
s->run_index = run_index;
return 0;
}
static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
int stride, int plane_index)
{
int x, y, i;
const int ring_size = s->avctx->context_model ? 3 : 2;
int16_t *sample[3];
s->run_index = 0;
memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (i = 0; i < ring_size; i++)
sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
sample[0][-1] = sample[1][0];
sample[1][w] = sample[1][w - 1];
// { START_TIMER
if (s->avctx->bits_per_raw_sample <= 8) {
for (x = 0; x < w; x++)
sample[0][x] = src[x + stride * y];
encode_line(s, w, sample, plane_index, 8);
} else {
for (x = 0; x < w; x++)
sample[0][x] = ((uint16_t *)(src + stride * y))[x] >>
(16 - s->avctx->bits_per_raw_sample);
encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
}
// STOP_TIMER("encode line") }
}
}
static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h,
int stride)
{
int x, y, p, i;
const int ring_size = s->avctx->context_model ? 3 : 2;
int16_t *sample[3][3];
s->run_index = 0;
memset(s->sample_buffer, 0, ring_size * 3 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (i = 0; i < ring_size; i++)
for (p = 0; p < 3; p++)
sample[p][i] = s->sample_buffer + p * ring_size * (w + 6) +
((h + i - y) % ring_size) * (w + 6) + 3;
for (x = 0; x < w; x++) {
int v = src[x + stride * y];
int b = v & 0xFF;
int g = (v >> 8) & 0xFF;
int r = (v >> 16) & 0xFF;
b -= g;
r -= g;
g += (b + r) >> 2;
b += 0x100;
r += 0x100;
sample[0][0][x] = g;
sample[1][0][x] = b;
sample[2][0][x] = r;
}
for (p = 0; p < 3; p++) {
sample[p][0][-1] = sample[p][1][0];
sample[p][1][w] = sample[p][1][w - 1];
encode_line(s, w, sample[p], FFMIN(p, 1), 9);
}
}
}
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
{
int last = 0;
int i;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (i = 1; i < 128; i++)
if (quant_table[i] != quant_table[i - 1]) {
put_symbol(c, state, i - last - 1, 0);
last = i;
}
put_symbol(c, state, i - last - 1, 0);
}
static void write_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
for (i = 0; i < 5; i++)
write_quant_table(c, quant_table[i]);
}
static void write_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j;
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if (f->ac > 1) {
for (i = 1; i < 256; i++)
put_symbol(c, state,
f->state_transition[i] - c->one_state[i], 1);
}
put_symbol(c, state, f->colorspace, 0); // YUV cs type
if (f->version > 0)
put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
put_rac(c, state, 1); // chroma planes
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, 0); // no transparency plane
write_quant_tables(c, f->quant_table);
} else {
put_symbol(c, state, f->slice_count, 0);
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
put_symbol(c, state,
(fs->slice_x + 1) * f->num_h_slices / f->width, 0);
put_symbol(c, state,
(fs->slice_y + 1) * f->num_v_slices / f->height, 0);
put_symbol(c, state,
(fs->slice_width + 1) * f->num_h_slices / f->width - 1,
0);
put_symbol(c, state,
(fs->slice_height + 1) * f->num_v_slices / f->height - 1,
0);
for (j = 0; j < f->plane_count; j++) {
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
}
}
}
}
#endif /* CONFIG_FFV1_ENCODER */
static av_cold int common_init(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
s->avctx = avctx;
s->flags = avctx->flags;
ff_dsputil_init(&s->dsp, avctx);
s->width = avctx->width;
s->height = avctx->height;
assert(s->width && s->height);
// defaults
s->num_h_slices = 1;
s->num_v_slices = 1;
return 0;
}
static int init_slice_state(FFV1Context *f)
{
int i, j;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
for (j = 0; j < f->plane_count; j++) {
PlaneContext *const p = &fs->plane[j];
if (fs->ac) {
if (!p->state)
p->state = av_malloc(CONTEXT_SIZE * p->context_count *
sizeof(uint8_t));
if (!p->state)
return AVERROR(ENOMEM);
} else {
if (!p->vlc_state)
p->vlc_state = av_malloc(p->context_count * sizeof(VlcState));
if (!p->vlc_state)
return AVERROR(ENOMEM);
}
}
if (fs->ac > 1) {
// FIXME: only redo if state_transition changed
for (j = 1; j < 256; j++) {
fs->c.one_state[j] = fs->state_transition[j];
fs->c.zero_state[256 - j] = 256 - fs->c.one_state[j];
}
}
}
return 0;
}
static av_cold int init_slice_contexts(FFV1Context *f)
{
int i;
f->slice_count = f->num_h_slices * f->num_v_slices;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = av_mallocz(sizeof(*fs));
int sx = i % f->num_h_slices;
int sy = i / f->num_h_slices;
int sxs = f->avctx->width * sx / f->num_h_slices;
int sxe = f->avctx->width * (sx + 1) / f->num_h_slices;
int sys = f->avctx->height * sy / f->num_v_slices;
int sye = f->avctx->height * (sy + 1) / f->num_v_slices;
f->slice_context[i] = fs;
memcpy(fs, f, sizeof(*fs));
memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
fs->slice_width = sxe - sxs;
fs->slice_height = sye - sys;
fs->slice_x = sxs;
fs->slice_y = sys;
fs->sample_buffer = av_malloc(9 * (fs->width + 6) *
sizeof(*fs->sample_buffer));
if (!fs->sample_buffer)
return AVERROR(ENOMEM);
}
return 0;
}
static int allocate_initial_states(FFV1Context *f)
{
int i;
for (i = 0; i < f->quant_table_count; i++) {
f->initial_states[i] = av_malloc(f->context_count[i] *
sizeof(*f->initial_states[i]));
if (!f->initial_states[i])
return AVERROR(ENOMEM);
memset(f->initial_states[i], 128,
f->context_count[i] * sizeof(*f->initial_states[i]));
}
return 0;
}
#if CONFIG_FFV1_ENCODER
static int write_extra_header(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
f->avctx->extradata = av_malloc(f->avctx->extradata_size = 10000 +
(11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32);
ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if (f->ac > 1)
for (i = 1; i < 256; i++)
put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
put_symbol(c, state, f->colorspace, 0); // YUV cs type
put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
put_rac(c, state, 1); // chroma planes
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, 0); // no transparency plane
put_symbol(c, state, f->num_h_slices - 1, 0);
put_symbol(c, state, f->num_v_slices - 1, 0);
put_symbol(c, state, f->quant_table_count, 0);
for (i = 0; i < f->quant_table_count; i++)
write_quant_tables(c, f->quant_tables[i]);
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
break;
if (j < f->context_count[i] * CONTEXT_SIZE) {
put_rac(c, state, 1);
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
put_symbol(c, state2[k],
(int8_t)(f->initial_states[i][j][k] - pred), 1);
}
} else {
put_rac(c, state, 0);
}
}
f->avctx->extradata_size = ff_rac_terminate(c);
return 0;
}
static int sort_stt(FFV1Context *s, uint8_t stt[256])
{
int i, i2, changed, print = 0;
do {
changed = 0;
for (i = 12; i < 244; i++) {
for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
#define COST(old, new) \
s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
s->rc_stat[old][1] * -log2((new) / 256.0)
#define COST2(old, new) \
COST(old, new) + COST(256 - (old), 256 - (new))
double size0 = COST2(i, i) + COST2(i2, i2);
double sizeX = COST2(i, i2) + COST2(i2, i);
if (sizeX < size0 && i != 128 && i2 != 128) {
int j;
FFSWAP(int, stt[i], stt[i2]);
FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
if (i != 256 - i2) {
FFSWAP(int, stt[256 - i], stt[256 - i2]);
FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
}
for (j = 1; j < 256; j++) {
if (stt[j] == i)
stt[j] = i2;
else if (stt[j] == i2)
stt[j] = i;
if (i != 256 - i2) {
if (stt[256 - j] == 256 - i)
stt[256 - j] = 256 - i2;
else if (stt[256 - j] == 256 - i2)
stt[256 - j] = 256 - i;
}
}
print = changed = 1;
}
}
}
} while (changed);
return print;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
int i, j, k, m;
common_init(avctx);
s->version = 0;
s->ac = avctx->coder_type ? 2 : 0;
if (s->ac > 1)
for (i = 1; i < 256; i++)
s->state_transition[i] = ver2_state[i];
s->plane_count = 2;
for (i = 0; i < 256; i++) {
s->quant_table_count = 2;
if (avctx->bits_per_raw_sample <= 8) {
s->quant_tables[0][0][i] = quant11[i];
s->quant_tables[0][1][i] = quant11[i] * 11;
s->quant_tables[0][2][i] = quant11[i] * 11 * 11;
s->quant_tables[1][0][i] = quant11[i];
s->quant_tables[1][1][i] = quant11[i] * 11;
s->quant_tables[1][2][i] = quant5[i] * 11 * 11;
s->quant_tables[1][3][i] = quant5[i] * 5 * 11 * 11;
s->quant_tables[1][4][i] = quant5[i] * 5 * 5 * 11 * 11;
} else {
s->quant_tables[0][0][i] = quant9_10bit[i];
s->quant_tables[0][1][i] = quant9_10bit[i] * 11;
s->quant_tables[0][2][i] = quant9_10bit[i] * 11 * 11;
s->quant_tables[1][0][i] = quant9_10bit[i];
s->quant_tables[1][1][i] = quant9_10bit[i] * 11;
s->quant_tables[1][2][i] = quant5_10bit[i] * 11 * 11;
s->quant_tables[1][3][i] = quant5_10bit[i] * 5 * 11 * 11;
s->quant_tables[1][4][i] = quant5_10bit[i] * 5 * 5 * 11 * 11;
}
}
s->context_count[0] = (11 * 11 * 11 + 1) / 2;
s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
memcpy(s->quant_table, s->quant_tables[avctx->context_model],
sizeof(s->quant_table));
for (i = 0; i < s->plane_count; i++) {
PlaneContext *const p = &s->plane[i];
memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
p->quant_table_index = avctx->context_model;
p->context_count = s->context_count[p->quant_table_index];
}
if (allocate_initial_states(s) < 0)
return AVERROR(ENOMEM);
avctx->coded_frame = &s->picture;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_YUV422P16:
case AV_PIX_FMT_YUV420P16:
if (avctx->bits_per_raw_sample <= 8) {
av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
return -1;
}
if (!s->ac) {
av_log(avctx, AV_LOG_ERROR,
"bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
return -1;
}
s->version = FFMAX(s->version, 1);
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV410P:
s->colorspace = 0;
break;
case AV_PIX_FMT_RGB32:
s->colorspace = 1;
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
&s->chroma_v_shift);
s->picture_number = 0;
if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) {
for (i = 0; i < s->quant_table_count; i++) {
s->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*s->rc_stat2[i]));
if (!s->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
if (avctx->stats_in) {
char *p = avctx->stats_in;
uint8_t best_state[256][256];
int gob_count = 0;
char *next;
av_assert0(s->version >= 2);
for (;; ) {
for (j = 0; j < 256; j++)
for (i = 0; i < 2; i++) {
s->rc_stat[j][i] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d [%s]\n", j, i, p);
return -1;
}
p = next;
}
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->context_count[i]; j++) {
for (k = 0; k < 32; k++)
for (m = 0; m < 2; m++) {
s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d %d %d [%s]\n",
i, j, k, m, p);
return -1;
}
p = next;
}
}
gob_count = strtol(p, &next, 0);
if (next == p || gob_count < 0) {
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
return -1;
}
p = next;
while (*p == '\n' || *p == ' ')
p++;
if (p[0] == 0)
break;
}
sort_stt(s, s->state_transition);
find_best_state(best_state, s->state_transition);
for (i = 0; i < s->quant_table_count; i++) {
for (j = 0; j < s->context_count[i]; j++)
for (k = 0; k < 32; k++) {
double p = 128;
if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]) {
p = 256.0 * s->rc_stat2[i][j][k][1] /
(s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]);
}
s->initial_states[i][j][k] =
best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0] +
s->rc_stat2[i][j][k][1]) /
gob_count, 0, 255)];
}
}
}
if (s->version > 1) {
s->num_h_slices = 2;
s->num_v_slices = 2;
write_extra_header(s);
}
if (init_slice_contexts(s) < 0)
return -1;
if (init_slice_state(s) < 0)
return -1;
#define STATS_OUT_SIZE 1024 * 1024 * 6
if (avctx->flags & CODEC_FLAG_PASS1) {
avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->slice_count; j++) {
FFV1Context *sf = s->slice_context[j];
av_assert0(!sf->rc_stat2[i]);
sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*sf->rc_stat2[i]));
if (!sf->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
return 0;
}
#endif /* CONFIG_FFV1_ENCODER */
static void clear_state(FFV1Context *f)
{
int i, si, j;
for (si = 0; si < f->slice_count; si++) {
FFV1Context *fs = f->slice_context[si];
for (i = 0; i < f->plane_count; i++) {
PlaneContext *p = &fs->plane[i];
p->interlace_bit_state[0] = 128;
p->interlace_bit_state[1] = 128;
if (fs->ac) {
if (f->initial_states[p->quant_table_index]) {
memcpy(p->state, f->initial_states[p->quant_table_index],
CONTEXT_SIZE * p->context_count);
} else
memset(p->state, 128, CONTEXT_SIZE * p->context_count);
} else {
for (j = 0; j < p->context_count; j++) {
p->vlc_state[j].drift = 0;
p->vlc_state[j].error_sum = 4; // FFMAX((RANGE + 32)/64, 2);
p->vlc_state[j].bias = 0;
p->vlc_state[j].count = 1;
}
}
}
}
}
#if CONFIG_FFV1_ENCODER
static int encode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width = fs->slice_width;
int height = fs->slice_height;
int x = fs->slice_x;
int y = fs->slice_y;
AVFrame *const p = &f->picture;
if (f->colorspace == 0) {
const int chroma_width = -((-width) >> f->chroma_h_shift);
const int chroma_height = -((-height) >> f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
encode_plane(fs, p->data[0] + x + y * p->linesize[0],
width, height, p->linesize[0], 0);
encode_plane(fs, p->data[1] + cx + cy * p->linesize[1],
chroma_width, chroma_height, p->linesize[1], 1);
encode_plane(fs, p->data[2] + cx + cy * p->linesize[2],
chroma_width, chroma_height, p->linesize[2], 1);
} else {
encode_rgb_frame(fs, (uint32_t *)(p->data[0]) +
x + y * (p->linesize[0] / 4),
width, height, p->linesize[0] / 4);
}
emms_c();
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
AVFrame *const p = &f->picture;
int used_count = 0;
uint8_t keystate = 128;
uint8_t *buf_p;
int i, ret;
if (!pkt->data &&
(ret = av_new_packet(pkt, avctx->width * avctx->height *
((8 * 2 + 1 + 1) * 4) / 8 + FF_MIN_BUFFER_SIZE)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
return ret;
}
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
*p = *pict;
p->pict_type = AV_PICTURE_TYPE_I;
if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
put_rac(c, &keystate, 1);
p->key_frame = 1;
f->gob_count++;
write_header(f);
clear_state(f);
} else {
put_rac(c, &keystate, 0);
p->key_frame = 0;
}
if (!f->ac) {
used_count += ff_rac_terminate(c);
init_put_bits(&f->slice_context[0]->pb, pkt->data + used_count,
pkt->size - used_count);
} else if (f->ac > 1) {
int i;
for (i = 1; i < 256; i++) {
c->one_state[i] = f->state_transition[i];
c->zero_state[256 - i] = 256 - c->one_state[i];
}
}
for (i = 1; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
uint8_t *start = pkt->data + (pkt->size - used_count) * i / f->slice_count;
int len = pkt->size / f->slice_count;
if (fs->ac)
ff_init_range_encoder(&fs->c, start, len);
else
init_put_bits(&fs->pb, start, len);
}
avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
f->slice_count, sizeof(void *));
buf_p = pkt->data;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
int bytes;
if (fs->ac) {
uint8_t state = 128;
put_rac(&fs->c, &state, 0);
bytes = ff_rac_terminate(&fs->c);
} else {
flush_put_bits(&fs->pb); // FIXME: nicer padding
bytes = used_count + (put_bits_count(&fs->pb) + 7) / 8;
used_count = 0;
}
if (i > 0) {
av_assert0(bytes < pkt->size / f->slice_count);
memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
av_assert0(bytes < (1 << 24));
AV_WB24(buf_p + bytes, bytes);
bytes += 3;
}
buf_p += bytes;
}
if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
int j, k, m;
char *p = avctx->stats_out;
char *end = p + STATS_OUT_SIZE;
memset(f->rc_stat, 0, sizeof(f->rc_stat));
for (i = 0; i < f->quant_table_count; i++)
memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
for (i = 0; i < 256; i++) {
f->rc_stat[i][0] += fs->rc_stat[i][0];
f->rc_stat[i][1] += fs->rc_stat[i][1];
}
for (i = 0; i < f->quant_table_count; i++) {
for (k = 0; k < f->context_count[i]; k++)
for (m = 0; m < 32; m++) {
f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
}
}
}
for (j = 0; j < 256; j++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat[j][0], f->rc_stat[j][1]);
p += strlen(p);
}
snprintf(p, end - p, "\n");
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i]; j++)
for (m = 0; m < 32; m++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
p += strlen(p);
}
}
snprintf(p, end - p, "%d\n", f->gob_count);
} else if (avctx->flags & CODEC_FLAG_PASS1)
avctx->stats_out[0] = '\0';
f->picture_number++;
pkt->size = buf_p - pkt->data;
pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame;
*got_packet = 1;
return 0;
}
#endif /* CONFIG_FFV1_ENCODER */
static av_cold int common_end(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
int i, j;
if (avctx->codec->decode && s->picture.data[0])
avctx->release_buffer(avctx, &s->picture);
for (j = 0; j < s->slice_count; j++) {
FFV1Context *fs = s->slice_context[j];
for (i = 0; i < s->plane_count; i++) {
PlaneContext *p = &fs->plane[i];
av_freep(&p->state);
av_freep(&p->vlc_state);
}
av_freep(&fs->sample_buffer);
}
av_freep(&avctx->stats_out);
for (j = 0; j < s->quant_table_count; j++) {
av_freep(&s->initial_states[j]);
for (i = 0; i < s->slice_count; i++) {
FFV1Context *sf = s->slice_context[i];
av_freep(&sf->rc_stat2[j]);
}
av_freep(&s->rc_stat2[j]);
}
for (i = 0; i < s->slice_count; i++)
av_freep(&s->slice_context[i]);
return 0;
}
static av_always_inline void decode_line(FFV1Context *s, int w,
int16_t *sample[2],
int plane_index, int bits)
{
PlaneContext *const p = &s->plane[plane_index];
RangeCoder *const c = &s->c;
int x;
int run_count = 0;
int run_mode = 0;
int run_index = s->run_index;
for (x = 0; x < w; x++) {
int diff, context, sign;
context = get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
if (context < 0) {
context = -context;
sign = 1;
} else
sign = 0;
av_assert2(context < p->context_count);
if (s->ac) {
diff = get_symbol_inline(c, p->state[context], 1);
} else {
if (context == 0 && run_mode == 0)
run_mode = 1;
if (run_mode) {
if (run_count == 0 && run_mode == 1) {
if (get_bits1(&s->gb)) {
run_count = 1 << ff_log2_run[run_index];
if (x + run_count <= w)
run_index++;
} else {
if (ff_log2_run[run_index])
run_count = get_bits(&s->gb, ff_log2_run[run_index]);
else
run_count = 0;
if (run_index)
run_index--;
run_mode = 2;
}
}
run_count--;
if (run_count < 0) {
run_mode = 0;
run_count = 0;
diff = get_vlc_symbol(&s->gb, &p->vlc_state[context],
bits);
if (diff >= 0)
diff++;
} else
diff = 0;
} else
diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
run_count, run_index, run_mode, x, get_bits_count(&s->gb));
}
if (sign)
diff = -diff;
sample[1][x] = (predict(sample[1] + x, sample[0] + x) + diff) &
((1 << bits) - 1);
}
s->run_index = run_index;
}
static void decode_plane(FFV1Context *s, uint8_t *src,
int w, int h, int stride, int plane_index)
{
int x, y;
int16_t *sample[2];
sample[0] = s->sample_buffer + 3;
sample[1] = s->sample_buffer + w + 6 + 3;
s->run_index = 0;
memset(s->sample_buffer, 0, 2 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
int16_t *temp = sample[0]; // FIXME: try a normal buffer
sample[0] = sample[1];
sample[1] = temp;
sample[1][-1] = sample[0][0];
sample[0][w] = sample[0][w - 1];
// { START_TIMER
if (s->avctx->bits_per_raw_sample <= 8) {
decode_line(s, w, sample, plane_index, 8);
for (x = 0; x < w; x++)
src[x + stride * y] = sample[1][x];
} else {
decode_line(s, w, sample, plane_index,
s->avctx->bits_per_raw_sample);
for (x = 0; x < w; x++)
((uint16_t *)(src + stride * y))[x] =
sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
}
// STOP_TIMER("decode-line") }
}
}
static void decode_rgb_frame(FFV1Context *s, uint32_t *src,
int w, int h, int stride)
{
int x, y, p;
int16_t *sample[3][2];
for (x = 0; x < 3; x++) {
sample[x][0] = s->sample_buffer + x * 2 * (w + 6) + 3;
sample[x][1] = s->sample_buffer + (x * 2 + 1) * (w + 6) + 3;
}
s->run_index = 0;
memset(s->sample_buffer, 0, 6 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (p = 0; p < 3; p++) {
int16_t *temp = sample[p][0]; // FIXME: try a normal buffer
sample[p][0] = sample[p][1];
sample[p][1] = temp;
sample[p][1][-1] = sample[p][0][0];
sample[p][0][w] = sample[p][0][w - 1];
decode_line(s, w, sample[p], FFMIN(p, 1), 9);
}
for (x = 0; x < w; x++) {
int g = sample[0][1][x];
int b = sample[1][1][x];
int r = sample[2][1][x];
// assert(g >= 0 && b >= 0 && r >= 0);
// assert(g < 256 && b < 512 && r < 512);
b -= 0x100;
r -= 0x100;
g -= (b + r) >> 2;
b += g;
r += g;
src[x + stride * y] = b + (g << 8) + (r << 16) + (0xFF << 24);
}
}
}
static int decode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width = fs->slice_width;
int height = fs->slice_height;
int x = fs->slice_x;
int y = fs->slice_y;
AVFrame *const p = &f->picture;
av_assert1(width && height);
if (f->colorspace == 0) {
const int chroma_width = -((-width) >> f->chroma_h_shift);
const int chroma_height = -((-height) >> f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
decode_plane(fs, p->data[0] + x + y * p->linesize[0],
width, height, p->linesize[0], 0);
decode_plane(fs, p->data[1] + cx + cy * p->linesize[1],
chroma_width, chroma_height, p->linesize[1], 1);
decode_plane(fs, p->data[2] + cx + cy * p->linesize[1],
chroma_width, chroma_height, p->linesize[2], 1);
} else {
decode_rgb_frame(fs,
(uint32_t *)p->data[0] + x + y * (p->linesize[0] / 4),
width, height, p->linesize[0] / 4);
}
emms_c();
return 0;
}
static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale)
{
int v;
int i = 0;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (v = 0; i < 128; v++) {
int len = get_symbol(c, state, 0) + 1;
if (len + i > 128)
return -1;
while (len--) {
quant_table[i] = scale * v;
i++;
}
}
for (i = 1; i < 128; i++)
quant_table[256 - i] = -quant_table[i];
quant_table[128] = -quant_table[127];
return 2 * v - 1;
}
static int read_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
int context_count = 1;
for (i = 0; i < 5; i++) {
context_count *= read_quant_table(c, quant_table[i], context_count);
if (context_count > 32768U) {
return -1;
}
}
return (context_count + 1) / 2;
}
static int read_extra_header(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
f->version = get_symbol(c, state, 0);
f->ac = f->avctx->coder_type = get_symbol(c, state, 0);
if (f->ac > 1)
for (i = 1; i < 256; i++)
f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i];
f->colorspace = get_symbol(c, state, 0); // YUV cs type
f->avctx->bits_per_raw_sample = get_symbol(c, state, 0);
get_rac(c, state); // no chroma = false
f->chroma_h_shift = get_symbol(c, state, 0);
f->chroma_v_shift = get_symbol(c, state, 0);
get_rac(c, state); // transparency plane
f->plane_count = 2;
f->num_h_slices = 1 + get_symbol(c, state, 0);
f->num_v_slices = 1 + get_symbol(c, state, 0);
if (f->num_h_slices > (unsigned)f->width ||
f->num_v_slices > (unsigned)f->height) {
av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
return -1;
}
f->quant_table_count = get_symbol(c, state, 0);
if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
return -1;
for (i = 0; i < f->quant_table_count; i++) {
f->context_count[i] = read_quant_tables(c, f->quant_tables[i]);
if (f->context_count[i] < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return -1;
}
}
if (allocate_initial_states(f) < 0)
return AVERROR(ENOMEM);
for (i = 0; i < f->quant_table_count; i++)
if (get_rac(c, state))
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
f->initial_states[i][j][k] =
(pred + get_symbol(c, state2[k], 1)) & 0xFF;
}
return 0;
}
static int read_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j, context_count;
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
f->version = get_symbol(c, state, 0);
f->ac = f->avctx->coder_type = get_symbol(c, state, 0);
if (f->ac > 1)
for (i = 1; i < 256; i++)
f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i];
f->colorspace = get_symbol(c, state, 0); // YUV cs type
if (f->version > 0)
f->avctx->bits_per_raw_sample = get_symbol(c, state, 0);
get_rac(c, state); // no chroma = false
f->chroma_h_shift = get_symbol(c, state, 0);
f->chroma_v_shift = get_symbol(c, state, 0);
get_rac(c, state); // transparency plane
f->plane_count = 2;
}
if (f->colorspace == 0) {
if (f->avctx->bits_per_raw_sample <= 8) {
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P;
break;
case 0x20:
f->avctx->pix_fmt = AV_PIX_FMT_YUV411P;
break;
case 0x22:
f->avctx->pix_fmt = AV_PIX_FMT_YUV410P;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
} else {
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
}
} else if (f->colorspace == 1) {
if (f->chroma_h_shift || f->chroma_v_shift) {
av_log(f->avctx, AV_LOG_ERROR,
"chroma subsampling not supported in this colorspace\n");
return -1;
}
f->avctx->pix_fmt = AV_PIX_FMT_RGB32;
} else {
av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
return -1;
}
av_dlog(f->avctx, "%d %d %d\n",
f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt);
if (f->version < 2) {
context_count = read_quant_tables(c, f->quant_table);
if (context_count < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return -1;
}
} else {
f->slice_count = get_symbol(c, state, 0);
if (f->slice_count > (unsigned)MAX_SLICES)
return -1;
}
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
fs->ac = f->ac;
if (f->version >= 2) {
fs->slice_x = get_symbol(c, state, 0) * f->width;
fs->slice_y = get_symbol(c, state, 0) * f->height;
fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x;
fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y;
if ((unsigned)fs->slice_width > f->width ||
(unsigned)fs->slice_height > f->height)
return -1;
if ((unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width ||
(unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
return -1;
}
for (i = 0; i < f->plane_count; i++) {
PlaneContext *const p = &fs->plane[i];
if (f->version >= 2) {
int idx = get_symbol(c, state, 0);
if (idx > (unsigned)f->quant_table_count) {
av_log(f->avctx, AV_LOG_ERROR,
"quant_table_index out of range\n");
return -1;
}
p->quant_table_index = idx;
memcpy(p->quant_table, f->quant_tables[idx],
sizeof(p->quant_table));
context_count = f->context_count[idx];
} else {
memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
}
if (p->context_count < context_count) {
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count = context_count;
}
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
FFV1Context *f = avctx->priv_data;
common_init(avctx);
if (avctx->extradata && read_extra_header(f) < 0)
return -1;
if (init_slice_contexts(f) < 0)
return -1;
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *data_size, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
AVFrame *const p = &f->picture;
int bytes_read, i;
uint8_t keystate = 128;
const uint8_t *buf_p;
AVFrame *picture = data;
/* release previously stored data */
if (p->data[0])
avctx->release_buffer(avctx, p);
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
p->pict_type = AV_PICTURE_TYPE_I; // FIXME: I vs. P
if (get_rac(c, &keystate)) {
p->key_frame = 1;
if (read_header(f) < 0)
return -1;
if (init_slice_state(f) < 0)
return -1;
clear_state(f);
} else {
p->key_frame = 0;
}
if (f->ac > 1) {
int i;
for (i = 1; i < 256; i++) {
c->one_state[i] = f->state_transition[i];
c->zero_state[256 - i] = 256 - c->one_state[i];
}
}
p->reference = 0;
if (avctx->get_buffer(avctx, p) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
if (avctx->debug & FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
if (!f->ac) {
bytes_read = c->bytestream - c->bytestream_start - 1;
if (bytes_read == 0)
av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); // FIXME
init_get_bits(&f->slice_context[0]->gb, buf + bytes_read,
(buf_size - bytes_read) * 8);
} else {
bytes_read = 0; /* avoid warning */
}
buf_p = buf + buf_size;
for (i = f->slice_count - 1; i > 0; i--) {
FFV1Context *fs = f->slice_context[i];
int v = AV_RB24(buf_p - 3) + 3;
if (buf_p - buf <= v) {
av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
return -1;
}
buf_p -= v;
if (fs->ac)
ff_init_range_decoder(&fs->c, buf_p, v);
else
init_get_bits(&fs->gb, buf_p, v * 8);
}
avctx->execute(avctx, decode_slice, &f->slice_context[0],
NULL, f->slice_count, sizeof(void *));
f->picture_number++;
*picture = *p;
*data_size = sizeof(AVFrame);
return buf_size;
}
AVCodec ff_ffv1_decoder = {
.name = "ffv1",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = decode_init,
.close = common_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
CODEC_CAP_SLICE_THREADS,
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
};
#if CONFIG_FFV1_ENCODER
AVCodec ff_ffv1_encoder = {
.name = "ffv1",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = encode_init,
.encode2 = encode_frame,
.close = common_end,
.capabilities = CODEC_CAP_SLICE_THREADS,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_RGB32,
AV_PIX_FMT_NONE
},
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
};
#endif