mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1405 lines
50 KiB
1405 lines
50 KiB
/* |
|
* VC3/DNxHD encoder |
|
* Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com> |
|
* Copyright (c) 2011 MirriAd Ltd |
|
* |
|
* VC-3 encoder funded by the British Broadcasting Corporation |
|
* 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/timer.h" |
|
|
|
#include "avcodec.h" |
|
#include "blockdsp.h" |
|
#include "fdctdsp.h" |
|
#include "internal.h" |
|
#include "mpegvideo.h" |
|
#include "pixblockdsp.h" |
|
#include "profiles.h" |
|
#include "dnxhdenc.h" |
|
|
|
// The largest value that will not lead to overflow for 10-bit samples. |
|
#define DNX10BIT_QMAT_SHIFT 18 |
|
#define RC_VARIANCE 1 // use variance or ssd for fast rc |
|
#define LAMBDA_FRAC_BITS 10 |
|
|
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
static const AVOption options[] = { |
|
{ "nitris_compat", "encode with Avid Nitris compatibility", |
|
offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
|
{ "ibias", "intra quant bias", |
|
offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT, |
|
{ .i64 = 0 }, INT_MIN, INT_MAX, VE }, |
|
{ "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT, |
|
{ .i64 = FF_PROFILE_DNXHD }, |
|
FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" }, |
|
{ "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD }, |
|
0, 0, VE, "profile" }, |
|
{ "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 }, |
|
0, 0, VE, "profile" }, |
|
{ "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX }, |
|
0, 0, VE, "profile" }, |
|
{ "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ }, |
|
0, 0, VE, "profile" }, |
|
{ "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ }, |
|
0, 0, VE, "profile" }, |
|
{ "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB }, |
|
0, 0, VE, "profile" }, |
|
{ NULL } |
|
}; |
|
|
|
static const AVClass dnxhd_class = { |
|
.class_name = "dnxhd", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, |
|
const uint8_t *pixels, |
|
ptrdiff_t line_size) |
|
{ |
|
int i; |
|
for (i = 0; i < 4; i++) { |
|
block[0] = pixels[0]; |
|
block[1] = pixels[1]; |
|
block[2] = pixels[2]; |
|
block[3] = pixels[3]; |
|
block[4] = pixels[4]; |
|
block[5] = pixels[5]; |
|
block[6] = pixels[6]; |
|
block[7] = pixels[7]; |
|
pixels += line_size; |
|
block += 8; |
|
} |
|
memcpy(block, block - 8, sizeof(*block) * 8); |
|
memcpy(block + 8, block - 16, sizeof(*block) * 8); |
|
memcpy(block + 16, block - 24, sizeof(*block) * 8); |
|
memcpy(block + 24, block - 32, sizeof(*block) * 8); |
|
} |
|
|
|
static av_always_inline |
|
void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, |
|
const uint8_t *pixels, |
|
ptrdiff_t line_size) |
|
{ |
|
memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); |
|
memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); |
|
} |
|
|
|
static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block, |
|
int n, int qscale, int *overflow) |
|
{ |
|
int i, j, level, last_non_zero, start_i; |
|
const int *qmat; |
|
const uint8_t *scantable= ctx->intra_scantable.scantable; |
|
int bias; |
|
int max = 0; |
|
unsigned int threshold1, threshold2; |
|
|
|
ctx->fdsp.fdct(block); |
|
|
|
block[0] = (block[0] + 2) >> 2; |
|
start_i = 1; |
|
last_non_zero = 0; |
|
qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; |
|
bias= ctx->intra_quant_bias * (1 << (16 - 8)); |
|
threshold1 = (1 << 16) - bias - 1; |
|
threshold2 = (threshold1 << 1); |
|
|
|
for (i = 63; i >= start_i; i--) { |
|
j = scantable[i]; |
|
level = block[j] * qmat[j]; |
|
|
|
if (((unsigned)(level + threshold1)) > threshold2) { |
|
last_non_zero = i; |
|
break; |
|
} else{ |
|
block[j]=0; |
|
} |
|
} |
|
|
|
for (i = start_i; i <= last_non_zero; i++) { |
|
j = scantable[i]; |
|
level = block[j] * qmat[j]; |
|
|
|
if (((unsigned)(level + threshold1)) > threshold2) { |
|
if (level > 0) { |
|
level = (bias + level) >> 16; |
|
block[j] = level; |
|
} else{ |
|
level = (bias - level) >> 16; |
|
block[j] = -level; |
|
} |
|
max |= level; |
|
} else { |
|
block[j] = 0; |
|
} |
|
} |
|
*overflow = ctx->max_qcoeff < max; //overflow might have happened |
|
|
|
/* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */ |
|
if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE) |
|
ff_block_permute(block, ctx->idsp.idct_permutation, |
|
scantable, last_non_zero); |
|
|
|
return last_non_zero; |
|
} |
|
|
|
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, |
|
int n, int qscale, int *overflow) |
|
{ |
|
const uint8_t *scantable= ctx->intra_scantable.scantable; |
|
const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; |
|
int last_non_zero = 0; |
|
int i; |
|
|
|
ctx->fdsp.fdct(block); |
|
|
|
// Divide by 4 with rounding, to compensate scaling of DCT coefficients |
|
block[0] = (block[0] + 2) >> 2; |
|
|
|
for (i = 1; i < 64; ++i) { |
|
int j = scantable[i]; |
|
int sign = FF_SIGNBIT(block[j]); |
|
int level = (block[j] ^ sign) - sign; |
|
level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT; |
|
block[j] = (level ^ sign) - sign; |
|
if (level) |
|
last_non_zero = i; |
|
} |
|
|
|
/* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */ |
|
if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE) |
|
ff_block_permute(block, ctx->idsp.idct_permutation, |
|
scantable, last_non_zero); |
|
|
|
return last_non_zero; |
|
} |
|
|
|
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx) |
|
{ |
|
int i, j, level, run; |
|
int max_level = 1 << (ctx->bit_depth + 2); |
|
|
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_codes, |
|
max_level, 4 * sizeof(*ctx->orig_vlc_codes), fail); |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_bits, |
|
max_level, 4 * sizeof(*ctx->orig_vlc_bits), fail); |
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, |
|
63 * 2, fail); |
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, |
|
63, fail); |
|
|
|
ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2; |
|
ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2; |
|
for (level = -max_level; level < max_level; level++) { |
|
for (run = 0; run < 2; run++) { |
|
int index = (level << 1) | run; |
|
int sign, offset = 0, alevel = level; |
|
|
|
MASK_ABS(sign, alevel); |
|
if (alevel > 64) { |
|
offset = (alevel - 1) >> 6; |
|
alevel -= offset << 6; |
|
} |
|
for (j = 0; j < 257; j++) { |
|
if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel && |
|
(!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) && |
|
(!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) { |
|
av_assert1(!ctx->vlc_codes[index]); |
|
if (alevel) { |
|
ctx->vlc_codes[index] = |
|
(ctx->cid_table->ac_codes[j] << 1) | (sign & 1); |
|
ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1; |
|
} else { |
|
ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; |
|
ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j]; |
|
} |
|
break; |
|
} |
|
} |
|
av_assert0(!alevel || j < 257); |
|
if (offset) { |
|
ctx->vlc_codes[index] = |
|
(ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset; |
|
ctx->vlc_bits[index] += ctx->cid_table->index_bits; |
|
} |
|
} |
|
} |
|
for (i = 0; i < 62; i++) { |
|
int run = ctx->cid_table->run[i]; |
|
av_assert0(run < 63); |
|
ctx->run_codes[run] = ctx->cid_table->run_codes[i]; |
|
ctx->run_bits[run] = ctx->cid_table->run_bits[i]; |
|
} |
|
return 0; |
|
fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) |
|
{ |
|
// init first elem to 1 to avoid div by 0 in convert_matrix |
|
uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t* |
|
int qscale, i; |
|
const uint8_t *luma_weight_table = ctx->cid_table->luma_weight; |
|
const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight; |
|
|
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, |
|
(ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail); |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, |
|
(ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail); |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, |
|
(ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t), |
|
fail); |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, |
|
(ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t), |
|
fail); |
|
|
|
if (ctx->bit_depth == 8) { |
|
for (i = 1; i < 64; i++) { |
|
int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; |
|
weight_matrix[j] = ctx->cid_table->luma_weight[i]; |
|
} |
|
ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16, |
|
weight_matrix, ctx->intra_quant_bias, 1, |
|
ctx->m.avctx->qmax, 1); |
|
for (i = 1; i < 64; i++) { |
|
int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; |
|
weight_matrix[j] = ctx->cid_table->chroma_weight[i]; |
|
} |
|
ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16, |
|
weight_matrix, ctx->intra_quant_bias, 1, |
|
ctx->m.avctx->qmax, 1); |
|
|
|
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { |
|
for (i = 0; i < 64; i++) { |
|
ctx->qmatrix_l[qscale][i] <<= 2; |
|
ctx->qmatrix_c[qscale][i] <<= 2; |
|
ctx->qmatrix_l16[qscale][0][i] <<= 2; |
|
ctx->qmatrix_l16[qscale][1][i] <<= 2; |
|
ctx->qmatrix_c16[qscale][0][i] <<= 2; |
|
ctx->qmatrix_c16[qscale][1][i] <<= 2; |
|
} |
|
} |
|
} else { |
|
// 10-bit |
|
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { |
|
for (i = 1; i < 64; i++) { |
|
int j = ff_zigzag_direct[i]; |
|
|
|
/* The quantization formula from the VC-3 standard is: |
|
* quantized = sign(block[i]) * floor(abs(block[i]/s) * p / |
|
* (qscale * weight_table[i])) |
|
* Where p is 32 for 8-bit samples and 8 for 10-bit ones. |
|
* The s factor compensates scaling of DCT coefficients done by |
|
* the DCT routines, and therefore is not present in standard. |
|
* It's 8 for 8-bit samples and 4 for 10-bit ones. |
|
* We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be: |
|
* ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / |
|
* (qscale * weight_table[i]) |
|
* For 10-bit samples, p / s == 2 */ |
|
ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / |
|
(qscale * luma_weight_table[i]); |
|
ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / |
|
(qscale * chroma_weight_table[i]); |
|
} |
|
} |
|
} |
|
|
|
ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16; |
|
ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c; |
|
ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; |
|
ctx->m.q_intra_matrix = ctx->qmatrix_l; |
|
|
|
return 0; |
|
fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx) |
|
{ |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1), |
|
ctx->m.mb_num * sizeof(RCEntry), fail); |
|
if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) { |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, |
|
ctx->m.mb_num, sizeof(RCCMPEntry), fail); |
|
FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp_tmp, |
|
ctx->m.mb_num, sizeof(RCCMPEntry), fail); |
|
} |
|
ctx->frame_bits = (ctx->coding_unit_size - |
|
ctx->data_offset - 4 - ctx->min_padding) * 8; |
|
ctx->qscale = 1; |
|
ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2 |
|
return 0; |
|
fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static av_cold int dnxhd_encode_init(AVCodecContext *avctx) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int i, index, ret; |
|
|
|
switch (avctx->pix_fmt) { |
|
case AV_PIX_FMT_YUV422P: |
|
ctx->bit_depth = 8; |
|
break; |
|
case AV_PIX_FMT_YUV422P10: |
|
case AV_PIX_FMT_YUV444P10: |
|
case AV_PIX_FMT_GBRP10: |
|
ctx->bit_depth = 10; |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, |
|
"pixel format is incompatible with DNxHD\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 && |
|
avctx->pix_fmt != AV_PIX_FMT_GBRP10)) || |
|
(ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || |
|
avctx->pix_fmt == AV_PIX_FMT_GBRP10))) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"pixel format is incompatible with DNxHD profile\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"pixel format is incompatible with DNxHR HQX profile\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if ((ctx->profile == FF_PROFILE_DNXHR_LB || |
|
ctx->profile == FF_PROFILE_DNXHR_SQ || |
|
ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"pixel format is incompatible with DNxHR LB/SQ/HQ profile\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444; |
|
avctx->profile = ctx->profile; |
|
ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth); |
|
if (!ctx->cid) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"video parameters incompatible with DNxHD. Valid DNxHD profiles:\n"); |
|
ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR); |
|
return AVERROR(EINVAL); |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); |
|
|
|
if (ctx->cid >= 1270 && ctx->cid <= 1274) |
|
avctx->codec_tag = MKTAG('A','V','d','h'); |
|
|
|
if (avctx->width < 256 || avctx->height < 120) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Input dimensions too small, input must be at least 256x120\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
index = ff_dnxhd_get_cid_table(ctx->cid); |
|
av_assert0(index >= 0); |
|
|
|
ctx->cid_table = &ff_dnxhd_cid_table[index]; |
|
|
|
ctx->m.avctx = avctx; |
|
ctx->m.mb_intra = 1; |
|
ctx->m.h263_aic = 1; |
|
|
|
avctx->bits_per_raw_sample = ctx->bit_depth; |
|
|
|
ff_blockdsp_init(&ctx->bdsp, avctx); |
|
ff_fdctdsp_init(&ctx->m.fdsp, avctx); |
|
ff_mpv_idct_init(&ctx->m); |
|
ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx); |
|
ff_pixblockdsp_init(&ctx->m.pdsp, avctx); |
|
ff_dct_encode_init(&ctx->m); |
|
|
|
if (ctx->profile != FF_PROFILE_DNXHD) |
|
ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth); |
|
|
|
if (!ctx->m.dct_quantize) |
|
ctx->m.dct_quantize = ff_dct_quantize_c; |
|
|
|
if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) { |
|
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444; |
|
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; |
|
ctx->block_width_l2 = 4; |
|
} else if (ctx->bit_depth == 10) { |
|
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize; |
|
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; |
|
ctx->block_width_l2 = 4; |
|
} else { |
|
ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym; |
|
ctx->block_width_l2 = 3; |
|
} |
|
|
|
if (ARCH_X86) |
|
ff_dnxhdenc_init_x86(ctx); |
|
|
|
ctx->m.mb_height = (avctx->height + 15) / 16; |
|
ctx->m.mb_width = (avctx->width + 15) / 16; |
|
|
|
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { |
|
ctx->interlaced = 1; |
|
ctx->m.mb_height /= 2; |
|
} |
|
|
|
ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; |
|
|
|
if (ctx->cid_table->frame_size == DNXHD_VARIABLE) { |
|
ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid, |
|
avctx->width, avctx->height); |
|
av_assert0(ctx->frame_size >= 0); |
|
ctx->coding_unit_size = ctx->frame_size; |
|
} else { |
|
ctx->frame_size = ctx->cid_table->frame_size; |
|
ctx->coding_unit_size = ctx->cid_table->coding_unit_size; |
|
} |
|
|
|
if (ctx->m.mb_height > 68) |
|
ctx->data_offset = 0x170 + (ctx->m.mb_height << 2); |
|
else |
|
ctx->data_offset = 0x280; |
|
|
|
// XXX tune lbias/cbias |
|
if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0) |
|
return ret; |
|
|
|
/* Avid Nitris hardware decoder requires a minimum amount of padding |
|
* in the coding unit payload */ |
|
if (ctx->nitris_compat) |
|
ctx->min_padding = 1600; |
|
|
|
if ((ret = dnxhd_init_vlc(ctx)) < 0) |
|
return ret; |
|
if ((ret = dnxhd_init_rc(ctx)) < 0) |
|
return ret; |
|
|
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, |
|
ctx->m.mb_height * sizeof(uint32_t), fail); |
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, |
|
ctx->m.mb_height * sizeof(uint32_t), fail); |
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, |
|
ctx->m.mb_num * sizeof(uint16_t), fail); |
|
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, |
|
ctx->m.mb_num * sizeof(uint8_t), fail); |
|
|
|
#if FF_API_CODED_FRAME |
|
FF_DISABLE_DEPRECATION_WARNINGS |
|
avctx->coded_frame->key_frame = 1; |
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
|
FF_ENABLE_DEPRECATION_WARNINGS |
|
#endif |
|
|
|
if (avctx->active_thread_type == FF_THREAD_SLICE) { |
|
if (avctx->thread_count > MAX_THREADS) { |
|
av_log(avctx, AV_LOG_ERROR, "too many threads\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
|
|
if (avctx->qmax <= 1) { |
|
av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
ctx->thread[0] = ctx; |
|
if (avctx->active_thread_type == FF_THREAD_SLICE) { |
|
for (i = 1; i < avctx->thread_count; i++) { |
|
ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); |
|
memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); |
|
} |
|
} |
|
|
|
return 0; |
|
fail: // for FF_ALLOCZ_OR_GOTO |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
|
|
memset(buf, 0, ctx->data_offset); |
|
|
|
// * write prefix */ |
|
AV_WB16(buf + 0x02, ctx->data_offset); |
|
if (ctx->cid >= 1270 && ctx->cid <= 1274) |
|
buf[4] = 0x03; |
|
else |
|
buf[4] = 0x01; |
|
|
|
buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01; |
|
buf[6] = 0x80; // crc flag off |
|
buf[7] = 0xa0; // reserved |
|
AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF |
|
AV_WB16(buf + 0x1a, avctx->width); // SPL |
|
AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL |
|
|
|
buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38; |
|
buf[0x22] = 0x88 + (ctx->interlaced << 2); |
|
AV_WB32(buf + 0x28, ctx->cid); // CID |
|
buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10); |
|
|
|
buf[0x5f] = 0x01; // UDL |
|
|
|
buf[0x167] = 0x02; // reserved |
|
AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS |
|
AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns |
|
buf[0x16f] = 0x10; // reserved |
|
|
|
ctx->msip = buf + 0x170; |
|
return 0; |
|
} |
|
|
|
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) |
|
{ |
|
int nbits; |
|
if (diff < 0) { |
|
nbits = av_log2_16bit(-2 * diff); |
|
diff--; |
|
} else { |
|
nbits = av_log2_16bit(2 * diff); |
|
} |
|
put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, |
|
(ctx->cid_table->dc_codes[nbits] << nbits) + |
|
av_mod_uintp2(diff, nbits)); |
|
} |
|
|
|
static av_always_inline |
|
void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, |
|
int last_index, int n) |
|
{ |
|
int last_non_zero = 0; |
|
int slevel, i, j; |
|
|
|
dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]); |
|
ctx->m.last_dc[n] = block[0]; |
|
|
|
for (i = 1; i <= last_index; i++) { |
|
j = ctx->m.intra_scantable.permutated[i]; |
|
slevel = block[j]; |
|
if (slevel) { |
|
int run_level = i - last_non_zero - 1; |
|
int rlevel = (slevel << 1) | !!run_level; |
|
put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); |
|
if (run_level) |
|
put_bits(&ctx->m.pb, ctx->run_bits[run_level], |
|
ctx->run_codes[run_level]); |
|
last_non_zero = i; |
|
} |
|
} |
|
put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB |
|
} |
|
|
|
static av_always_inline |
|
void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, |
|
int qscale, int last_index) |
|
{ |
|
const uint8_t *weight_matrix; |
|
int level; |
|
int i; |
|
|
|
if (ctx->is_444) { |
|
weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight |
|
: ctx->cid_table->chroma_weight; |
|
} else { |
|
weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight |
|
: ctx->cid_table->luma_weight; |
|
} |
|
|
|
for (i = 1; i <= last_index; i++) { |
|
int j = ctx->m.intra_scantable.permutated[i]; |
|
level = block[j]; |
|
if (level) { |
|
if (level < 0) { |
|
level = (1 - 2 * level) * qscale * weight_matrix[i]; |
|
if (ctx->bit_depth == 10) { |
|
if (weight_matrix[i] != 8) |
|
level += 8; |
|
level >>= 4; |
|
} else { |
|
if (weight_matrix[i] != 32) |
|
level += 32; |
|
level >>= 6; |
|
} |
|
level = -level; |
|
} else { |
|
level = (2 * level + 1) * qscale * weight_matrix[i]; |
|
if (ctx->bit_depth == 10) { |
|
if (weight_matrix[i] != 8) |
|
level += 8; |
|
level >>= 4; |
|
} else { |
|
if (weight_matrix[i] != 32) |
|
level += 32; |
|
level >>= 6; |
|
} |
|
} |
|
block[j] = level; |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block) |
|
{ |
|
int score = 0; |
|
int i; |
|
for (i = 0; i < 64; i++) |
|
score += (block[i] - qblock[i]) * (block[i] - qblock[i]); |
|
return score; |
|
} |
|
|
|
static av_always_inline |
|
int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index) |
|
{ |
|
int last_non_zero = 0; |
|
int bits = 0; |
|
int i, j, level; |
|
for (i = 1; i <= last_index; i++) { |
|
j = ctx->m.intra_scantable.permutated[i]; |
|
level = block[j]; |
|
if (level) { |
|
int run_level = i - last_non_zero - 1; |
|
bits += ctx->vlc_bits[(level << 1) | |
|
!!run_level] + ctx->run_bits[run_level]; |
|
last_non_zero = i; |
|
} |
|
} |
|
return bits; |
|
} |
|
|
|
static av_always_inline |
|
void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) |
|
{ |
|
const int bs = ctx->block_width_l2; |
|
const int bw = 1 << bs; |
|
int dct_y_offset = ctx->dct_y_offset; |
|
int dct_uv_offset = ctx->dct_uv_offset; |
|
int linesize = ctx->m.linesize; |
|
int uvlinesize = ctx->m.uvlinesize; |
|
const uint8_t *ptr_y = ctx->thread[0]->src[0] + |
|
((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1); |
|
const uint8_t *ptr_u = ctx->thread[0]->src[1] + |
|
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444); |
|
const uint8_t *ptr_v = ctx->thread[0]->src[2] + |
|
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444); |
|
PixblockDSPContext *pdsp = &ctx->m.pdsp; |
|
VideoDSPContext *vdsp = &ctx->m.vdsp; |
|
|
|
if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width || |
|
(mb_y << 4) + 16 > ctx->m.avctx->height)) { |
|
int y_w = ctx->m.avctx->width - (mb_x << 4); |
|
int y_h = ctx->m.avctx->height - (mb_y << 4); |
|
int uv_w = (y_w + 1) / 2; |
|
int uv_h = y_h; |
|
linesize = 16; |
|
uvlinesize = 8; |
|
|
|
vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y, |
|
linesize, ctx->m.linesize, |
|
linesize, 16, |
|
0, 0, y_w, y_h); |
|
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u, |
|
uvlinesize, ctx->m.uvlinesize, |
|
uvlinesize, 16, |
|
0, 0, uv_w, uv_h); |
|
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v, |
|
uvlinesize, ctx->m.uvlinesize, |
|
uvlinesize, 16, |
|
0, 0, uv_w, uv_h); |
|
|
|
dct_y_offset = bw * linesize; |
|
dct_uv_offset = bw * uvlinesize; |
|
ptr_y = &ctx->edge_buf_y[0]; |
|
ptr_u = &ctx->edge_buf_uv[0][0]; |
|
ptr_v = &ctx->edge_buf_uv[1][0]; |
|
} else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width || |
|
(mb_y << 4) + 16 > ctx->m.avctx->height)) { |
|
int y_w = ctx->m.avctx->width - (mb_x << 4); |
|
int y_h = ctx->m.avctx->height - (mb_y << 4); |
|
int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2; |
|
int uv_h = y_h; |
|
linesize = 32; |
|
uvlinesize = 16 + 16 * ctx->is_444; |
|
|
|
vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y, |
|
linesize, ctx->m.linesize, |
|
linesize / 2, 16, |
|
0, 0, y_w, y_h); |
|
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u, |
|
uvlinesize, ctx->m.uvlinesize, |
|
uvlinesize / 2, 16, |
|
0, 0, uv_w, uv_h); |
|
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v, |
|
uvlinesize, ctx->m.uvlinesize, |
|
uvlinesize / 2, 16, |
|
0, 0, uv_w, uv_h); |
|
|
|
dct_y_offset = bw * linesize / 2; |
|
dct_uv_offset = bw * uvlinesize / 2; |
|
ptr_y = &ctx->edge_buf_y[0]; |
|
ptr_u = &ctx->edge_buf_uv[0][0]; |
|
ptr_v = &ctx->edge_buf_uv[1][0]; |
|
} |
|
|
|
if (!ctx->is_444) { |
|
pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize); |
|
pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize); |
|
pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize); |
|
|
|
if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { |
|
if (ctx->interlaced) { |
|
ctx->get_pixels_8x4_sym(ctx->blocks[4], |
|
ptr_y + dct_y_offset, |
|
linesize); |
|
ctx->get_pixels_8x4_sym(ctx->blocks[5], |
|
ptr_y + dct_y_offset + bw, |
|
linesize); |
|
ctx->get_pixels_8x4_sym(ctx->blocks[6], |
|
ptr_u + dct_uv_offset, |
|
uvlinesize); |
|
ctx->get_pixels_8x4_sym(ctx->blocks[7], |
|
ptr_v + dct_uv_offset, |
|
uvlinesize); |
|
} else { |
|
ctx->bdsp.clear_block(ctx->blocks[4]); |
|
ctx->bdsp.clear_block(ctx->blocks[5]); |
|
ctx->bdsp.clear_block(ctx->blocks[6]); |
|
ctx->bdsp.clear_block(ctx->blocks[7]); |
|
} |
|
} else { |
|
pdsp->get_pixels(ctx->blocks[4], |
|
ptr_y + dct_y_offset, linesize); |
|
pdsp->get_pixels(ctx->blocks[5], |
|
ptr_y + dct_y_offset + bw, linesize); |
|
pdsp->get_pixels(ctx->blocks[6], |
|
ptr_u + dct_uv_offset, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[7], |
|
ptr_v + dct_uv_offset, uvlinesize); |
|
} |
|
} else { |
|
pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize); |
|
pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize); |
|
pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize); |
|
pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize); |
|
|
|
pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize); |
|
|
|
pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize); |
|
pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize); |
|
} |
|
} |
|
|
|
static av_always_inline |
|
int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) |
|
{ |
|
int x; |
|
|
|
if (ctx->is_444) { |
|
x = (i >> 1) % 3; |
|
} else { |
|
const static uint8_t component[8]={0,0,1,2,0,0,1,2}; |
|
x = component[i]; |
|
} |
|
return x; |
|
} |
|
|
|
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, |
|
int jobnr, int threadnr) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int mb_y = jobnr, mb_x; |
|
int qscale = ctx->qscale; |
|
LOCAL_ALIGNED_16(int16_t, block, [64]); |
|
ctx = ctx->thread[threadnr]; |
|
|
|
ctx->m.last_dc[0] = |
|
ctx->m.last_dc[1] = |
|
ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2); |
|
|
|
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
|
unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
|
int ssd = 0; |
|
int ac_bits = 0; |
|
int dc_bits = 0; |
|
int i; |
|
|
|
dnxhd_get_blocks(ctx, mb_x, mb_y); |
|
|
|
for (i = 0; i < 8 + 4 * ctx->is_444; i++) { |
|
int16_t *src_block = ctx->blocks[i]; |
|
int overflow, nbits, diff, last_index; |
|
int n = dnxhd_switch_matrix(ctx, i); |
|
|
|
memcpy(block, src_block, 64 * sizeof(*block)); |
|
last_index = ctx->m.dct_quantize(&ctx->m, block, |
|
ctx->is_444 ? 4 * (n > 0): 4 & (2*i), |
|
qscale, &overflow); |
|
ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); |
|
|
|
diff = block[0] - ctx->m.last_dc[n]; |
|
if (diff < 0) |
|
nbits = av_log2_16bit(-2 * diff); |
|
else |
|
nbits = av_log2_16bit(2 * diff); |
|
|
|
av_assert1(nbits < ctx->bit_depth + 4); |
|
dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; |
|
|
|
ctx->m.last_dc[n] = block[0]; |
|
|
|
if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { |
|
dnxhd_unquantize_c(ctx, block, i, qscale, last_index); |
|
ctx->m.idsp.idct(block); |
|
ssd += dnxhd_ssd_block(block, src_block); |
|
} |
|
} |
|
ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd; |
|
ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 + |
|
(1 + ctx->is_444) * 8 * ctx->vlc_bits[0]; |
|
} |
|
return 0; |
|
} |
|
|
|
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, |
|
int jobnr, int threadnr) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int mb_y = jobnr, mb_x; |
|
ctx = ctx->thread[threadnr]; |
|
init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr], |
|
ctx->slice_size[jobnr]); |
|
|
|
ctx->m.last_dc[0] = |
|
ctx->m.last_dc[1] = |
|
ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2); |
|
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
|
unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
|
int qscale = ctx->mb_qscale[mb]; |
|
int i; |
|
|
|
put_bits(&ctx->m.pb, 11, qscale); |
|
put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10); |
|
|
|
dnxhd_get_blocks(ctx, mb_x, mb_y); |
|
|
|
for (i = 0; i < 8 + 4 * ctx->is_444; i++) { |
|
int16_t *block = ctx->blocks[i]; |
|
int overflow, n = dnxhd_switch_matrix(ctx, i); |
|
int last_index = ctx->m.dct_quantize(&ctx->m, block, |
|
ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i), |
|
qscale, &overflow); |
|
// START_TIMER; |
|
dnxhd_encode_block(ctx, block, last_index, n); |
|
// STOP_TIMER("encode_block"); |
|
} |
|
} |
|
if (put_bits_count(&ctx->m.pb) & 31) |
|
put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0); |
|
flush_put_bits(&ctx->m.pb); |
|
return 0; |
|
} |
|
|
|
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) |
|
{ |
|
int mb_y, mb_x; |
|
int offset = 0; |
|
for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { |
|
int thread_size; |
|
ctx->slice_offs[mb_y] = offset; |
|
ctx->slice_size[mb_y] = 0; |
|
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
|
unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
|
ctx->slice_size[mb_y] += ctx->mb_bits[mb]; |
|
} |
|
ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31; |
|
ctx->slice_size[mb_y] >>= 3; |
|
thread_size = ctx->slice_size[mb_y]; |
|
offset += thread_size; |
|
} |
|
} |
|
|
|
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, |
|
int jobnr, int threadnr) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int mb_y = jobnr, mb_x, x, y; |
|
int partial_last_row = (mb_y == ctx->m.mb_height - 1) && |
|
((avctx->height >> ctx->interlaced) & 0xF); |
|
|
|
ctx = ctx->thread[threadnr]; |
|
if (ctx->bit_depth == 8) { |
|
uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize); |
|
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) { |
|
unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
|
int sum; |
|
int varc; |
|
|
|
if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) { |
|
sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize); |
|
varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize); |
|
} else { |
|
int bw = FFMIN(avctx->width - 16 * mb_x, 16); |
|
int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); |
|
sum = varc = 0; |
|
for (y = 0; y < bh; y++) { |
|
for (x = 0; x < bw; x++) { |
|
uint8_t val = pix[x + y * ctx->m.linesize]; |
|
sum += val; |
|
varc += val * val; |
|
} |
|
} |
|
} |
|
varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8; |
|
|
|
ctx->mb_cmp[mb].value = varc; |
|
ctx->mb_cmp[mb].mb = mb; |
|
} |
|
} else { // 10-bit |
|
const int linesize = ctx->m.linesize >> 1; |
|
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) { |
|
uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] + |
|
((mb_y << 4) * linesize) + (mb_x << 4); |
|
unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
|
int sum = 0; |
|
int sqsum = 0; |
|
int bw = FFMIN(avctx->width - 16 * mb_x, 16); |
|
int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); |
|
int mean, sqmean; |
|
int i, j; |
|
// Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8. |
|
for (i = 0; i < bh; ++i) { |
|
for (j = 0; j < bw; ++j) { |
|
// Turn 16-bit pixels into 10-bit ones. |
|
const int sample = (unsigned) pix[j] >> 6; |
|
sum += sample; |
|
sqsum += sample * sample; |
|
// 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX |
|
} |
|
pix += linesize; |
|
} |
|
mean = sum >> 8; // 16*16 == 2^8 |
|
sqmean = sqsum >> 8; |
|
ctx->mb_cmp[mb].value = sqmean - mean * mean; |
|
ctx->mb_cmp[mb].mb = mb; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) |
|
{ |
|
int lambda, up_step, down_step; |
|
int last_lower = INT_MAX, last_higher = 0; |
|
int x, y, q; |
|
|
|
for (q = 1; q < avctx->qmax; q++) { |
|
ctx->qscale = q; |
|
avctx->execute2(avctx, dnxhd_calc_bits_thread, |
|
NULL, NULL, ctx->m.mb_height); |
|
} |
|
up_step = down_step = 2 << LAMBDA_FRAC_BITS; |
|
lambda = ctx->lambda; |
|
|
|
for (;;) { |
|
int bits = 0; |
|
int end = 0; |
|
if (lambda == last_higher) { |
|
lambda++; |
|
end = 1; // need to set final qscales/bits |
|
} |
|
for (y = 0; y < ctx->m.mb_height; y++) { |
|
for (x = 0; x < ctx->m.mb_width; x++) { |
|
unsigned min = UINT_MAX; |
|
int qscale = 1; |
|
int mb = y * ctx->m.mb_width + x; |
|
int rc = 0; |
|
for (q = 1; q < avctx->qmax; q++) { |
|
int i = (q*ctx->m.mb_num) + mb; |
|
unsigned score = ctx->mb_rc[i].bits * lambda + |
|
((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS); |
|
if (score < min) { |
|
min = score; |
|
qscale = q; |
|
rc = i; |
|
} |
|
} |
|
bits += ctx->mb_rc[rc].bits; |
|
ctx->mb_qscale[mb] = qscale; |
|
ctx->mb_bits[mb] = ctx->mb_rc[rc].bits; |
|
} |
|
bits = (bits + 31) & ~31; // padding |
|
if (bits > ctx->frame_bits) |
|
break; |
|
} |
|
if (end) { |
|
if (bits > ctx->frame_bits) |
|
return AVERROR(EINVAL); |
|
break; |
|
} |
|
if (bits < ctx->frame_bits) { |
|
last_lower = FFMIN(lambda, last_lower); |
|
if (last_higher != 0) |
|
lambda = (lambda+last_higher)>>1; |
|
else |
|
lambda -= down_step; |
|
down_step = FFMIN((int64_t)down_step*5, INT_MAX); |
|
up_step = 1<<LAMBDA_FRAC_BITS; |
|
lambda = FFMAX(1, lambda); |
|
if (lambda == last_lower) |
|
break; |
|
} else { |
|
last_higher = FFMAX(lambda, last_higher); |
|
if (last_lower != INT_MAX) |
|
lambda = (lambda+last_lower)>>1; |
|
else if ((int64_t)lambda + up_step > INT_MAX) |
|
return AVERROR(EINVAL); |
|
else |
|
lambda += up_step; |
|
up_step = FFMIN((int64_t)up_step*5, INT_MAX); |
|
down_step = 1<<LAMBDA_FRAC_BITS; |
|
} |
|
} |
|
ctx->lambda = lambda; |
|
return 0; |
|
} |
|
|
|
static int dnxhd_find_qscale(DNXHDEncContext *ctx) |
|
{ |
|
int bits = 0; |
|
int up_step = 1; |
|
int down_step = 1; |
|
int last_higher = 0; |
|
int last_lower = INT_MAX; |
|
int qscale; |
|
int x, y; |
|
|
|
qscale = ctx->qscale; |
|
for (;;) { |
|
bits = 0; |
|
ctx->qscale = qscale; |
|
// XXX avoid recalculating bits |
|
ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, |
|
NULL, NULL, ctx->m.mb_height); |
|
for (y = 0; y < ctx->m.mb_height; y++) { |
|
for (x = 0; x < ctx->m.mb_width; x++) |
|
bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits; |
|
bits = (bits+31)&~31; // padding |
|
if (bits > ctx->frame_bits) |
|
break; |
|
} |
|
if (bits < ctx->frame_bits) { |
|
if (qscale == 1) |
|
return 1; |
|
if (last_higher == qscale - 1) { |
|
qscale = last_higher; |
|
break; |
|
} |
|
last_lower = FFMIN(qscale, last_lower); |
|
if (last_higher != 0) |
|
qscale = (qscale + last_higher) >> 1; |
|
else |
|
qscale -= down_step++; |
|
if (qscale < 1) |
|
qscale = 1; |
|
up_step = 1; |
|
} else { |
|
if (last_lower == qscale + 1) |
|
break; |
|
last_higher = FFMAX(qscale, last_higher); |
|
if (last_lower != INT_MAX) |
|
qscale = (qscale + last_lower) >> 1; |
|
else |
|
qscale += up_step++; |
|
down_step = 1; |
|
if (qscale >= ctx->m.avctx->qmax) |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
ctx->qscale = qscale; |
|
return 0; |
|
} |
|
|
|
#define BUCKET_BITS 8 |
|
#define RADIX_PASSES 4 |
|
#define NBUCKETS (1 << BUCKET_BITS) |
|
|
|
static inline int get_bucket(int value, int shift) |
|
{ |
|
value >>= shift; |
|
value &= NBUCKETS - 1; |
|
return NBUCKETS - 1 - value; |
|
} |
|
|
|
static void radix_count(const RCCMPEntry *data, int size, |
|
int buckets[RADIX_PASSES][NBUCKETS]) |
|
{ |
|
int i, j; |
|
memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); |
|
for (i = 0; i < size; i++) { |
|
int v = data[i].value; |
|
for (j = 0; j < RADIX_PASSES; j++) { |
|
buckets[j][get_bucket(v, 0)]++; |
|
v >>= BUCKET_BITS; |
|
} |
|
av_assert1(!v); |
|
} |
|
for (j = 0; j < RADIX_PASSES; j++) { |
|
int offset = size; |
|
for (i = NBUCKETS - 1; i >= 0; i--) |
|
buckets[j][i] = offset -= buckets[j][i]; |
|
av_assert1(!buckets[j][0]); |
|
} |
|
} |
|
|
|
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, |
|
int size, int buckets[NBUCKETS], int pass) |
|
{ |
|
int shift = pass * BUCKET_BITS; |
|
int i; |
|
for (i = 0; i < size; i++) { |
|
int v = get_bucket(data[i].value, shift); |
|
int pos = buckets[v]++; |
|
dst[pos] = data[i]; |
|
} |
|
} |
|
|
|
static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size) |
|
{ |
|
int buckets[RADIX_PASSES][NBUCKETS]; |
|
radix_count(data, size, buckets); |
|
radix_sort_pass(tmp, data, size, buckets[0], 0); |
|
radix_sort_pass(data, tmp, size, buckets[1], 1); |
|
if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { |
|
radix_sort_pass(tmp, data, size, buckets[2], 2); |
|
radix_sort_pass(data, tmp, size, buckets[3], 3); |
|
} |
|
} |
|
|
|
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) |
|
{ |
|
int max_bits = 0; |
|
int ret, x, y; |
|
if ((ret = dnxhd_find_qscale(ctx)) < 0) |
|
return ret; |
|
for (y = 0; y < ctx->m.mb_height; y++) { |
|
for (x = 0; x < ctx->m.mb_width; x++) { |
|
int mb = y * ctx->m.mb_width + x; |
|
int rc = (ctx->qscale * ctx->m.mb_num ) + mb; |
|
int delta_bits; |
|
ctx->mb_qscale[mb] = ctx->qscale; |
|
ctx->mb_bits[mb] = ctx->mb_rc[rc].bits; |
|
max_bits += ctx->mb_rc[rc].bits; |
|
if (!RC_VARIANCE) { |
|
delta_bits = ctx->mb_rc[rc].bits - |
|
ctx->mb_rc[rc + ctx->m.mb_num].bits; |
|
ctx->mb_cmp[mb].mb = mb; |
|
ctx->mb_cmp[mb].value = |
|
delta_bits ? ((ctx->mb_rc[rc].ssd - |
|
ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) / |
|
delta_bits |
|
: INT_MIN; // avoid increasing qscale |
|
} |
|
} |
|
max_bits += 31; // worst padding |
|
} |
|
if (!ret) { |
|
if (RC_VARIANCE) |
|
avctx->execute2(avctx, dnxhd_mb_var_thread, |
|
NULL, NULL, ctx->m.mb_height); |
|
radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num); |
|
for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { |
|
int mb = ctx->mb_cmp[x].mb; |
|
int rc = (ctx->qscale * ctx->m.mb_num ) + mb; |
|
max_bits -= ctx->mb_rc[rc].bits - |
|
ctx->mb_rc[rc + ctx->m.mb_num].bits; |
|
ctx->mb_qscale[mb] = ctx->qscale + 1; |
|
ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < ctx->m.avctx->thread_count; i++) { |
|
ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced; |
|
ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced; |
|
ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; |
|
ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; |
|
} |
|
|
|
#if FF_API_CODED_FRAME |
|
FF_DISABLE_DEPRECATION_WARNINGS |
|
ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame; |
|
FF_ENABLE_DEPRECATION_WARNINGS |
|
#endif |
|
ctx->cur_field = frame->interlaced_frame && !frame->top_field_first; |
|
} |
|
|
|
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *frame, int *got_packet) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int first_field = 1; |
|
int offset, i, ret; |
|
uint8_t *buf; |
|
|
|
if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0) |
|
return ret; |
|
buf = pkt->data; |
|
|
|
dnxhd_load_picture(ctx, frame); |
|
|
|
encode_coding_unit: |
|
for (i = 0; i < 3; i++) { |
|
ctx->src[i] = frame->data[i]; |
|
if (ctx->interlaced && ctx->cur_field) |
|
ctx->src[i] += frame->linesize[i]; |
|
} |
|
|
|
dnxhd_write_header(avctx, buf); |
|
|
|
if (avctx->mb_decision == FF_MB_DECISION_RD) |
|
ret = dnxhd_encode_rdo(avctx, ctx); |
|
else |
|
ret = dnxhd_encode_fast(avctx, ctx); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"picture could not fit ratecontrol constraints, increase qmax\n"); |
|
return ret; |
|
} |
|
|
|
dnxhd_setup_threads_slices(ctx); |
|
|
|
offset = 0; |
|
for (i = 0; i < ctx->m.mb_height; i++) { |
|
AV_WB32(ctx->msip + i * 4, offset); |
|
offset += ctx->slice_size[i]; |
|
av_assert1(!(ctx->slice_size[i] & 3)); |
|
} |
|
|
|
avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); |
|
|
|
av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size); |
|
memset(buf + ctx->data_offset + offset, 0, |
|
ctx->coding_unit_size - 4 - offset - ctx->data_offset); |
|
|
|
AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF |
|
|
|
if (ctx->interlaced && first_field) { |
|
first_field = 0; |
|
ctx->cur_field ^= 1; |
|
buf += ctx->coding_unit_size; |
|
goto encode_coding_unit; |
|
} |
|
|
|
#if FF_API_CODED_FRAME |
|
FF_DISABLE_DEPRECATION_WARNINGS |
|
avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA; |
|
FF_ENABLE_DEPRECATION_WARNINGS |
|
#endif |
|
|
|
ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I); |
|
|
|
pkt->flags |= AV_PKT_FLAG_KEY; |
|
*got_packet = 1; |
|
return 0; |
|
} |
|
|
|
static av_cold int dnxhd_encode_end(AVCodecContext *avctx) |
|
{ |
|
DNXHDEncContext *ctx = avctx->priv_data; |
|
int i; |
|
|
|
av_freep(&ctx->orig_vlc_codes); |
|
av_freep(&ctx->orig_vlc_bits); |
|
av_freep(&ctx->run_codes); |
|
av_freep(&ctx->run_bits); |
|
|
|
av_freep(&ctx->mb_bits); |
|
av_freep(&ctx->mb_qscale); |
|
av_freep(&ctx->mb_rc); |
|
av_freep(&ctx->mb_cmp); |
|
av_freep(&ctx->mb_cmp_tmp); |
|
av_freep(&ctx->slice_size); |
|
av_freep(&ctx->slice_offs); |
|
|
|
av_freep(&ctx->qmatrix_c); |
|
av_freep(&ctx->qmatrix_l); |
|
av_freep(&ctx->qmatrix_c16); |
|
av_freep(&ctx->qmatrix_l16); |
|
|
|
if (avctx->active_thread_type == FF_THREAD_SLICE) { |
|
for (i = 1; i < avctx->thread_count; i++) |
|
av_freep(&ctx->thread[i]); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static const AVCodecDefault dnxhd_defaults[] = { |
|
{ "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */ |
|
{ NULL }, |
|
}; |
|
|
|
AVCodec ff_dnxhd_encoder = { |
|
.name = "dnxhd", |
|
.long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_DNXHD, |
|
.priv_data_size = sizeof(DNXHDEncContext), |
|
.init = dnxhd_encode_init, |
|
.encode2 = dnxhd_encode_picture, |
|
.close = dnxhd_encode_end, |
|
.capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
.pix_fmts = (const enum AVPixelFormat[]) { |
|
AV_PIX_FMT_YUV422P, |
|
AV_PIX_FMT_YUV422P10, |
|
AV_PIX_FMT_YUV444P10, |
|
AV_PIX_FMT_GBRP10, |
|
AV_PIX_FMT_NONE |
|
}, |
|
.priv_class = &dnxhd_class, |
|
.defaults = dnxhd_defaults, |
|
.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles), |
|
};
|
|
|