You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

672 lines
21 KiB

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/cpu.h"
#include "libavutil/error.h"
#include "libavutil/fifo.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#include "libavutil/samplefmt.h"
#include "objpool.h"
#include "sync_queue.h"
/*
* How this works:
* --------------
* time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
* -------------------------------------------------------------------
* | | | | | | | | | | | | | |
* | ┌───┐┌────────┐┌───┐┌─────────────┐
* stream 0| │d=1││ d=2 ││d=1││ d=3 │
* | └───┘└────────┘└───┘└─────────────┘
* ┌───┐ ┌───────────────────────┐
* stream 1│d=1│ │ d=5 │
* └───┘ └───────────────────────┘
* | ┌───┐┌───┐┌───┐┌───┐
* stream 2| │d=1││d=1││d=1││d=1│ <- stream 2 is the head stream of the queue
* | └───┘└───┘└───┘└───┘
* ^ ^
* [stream 2 tail] [stream 2 head]
*
* We have N streams (N=3 in the diagram), each stream is a FIFO. The *tail* of
* each FIFO is the frame with smallest end time, the *head* is the frame with
* the largest end time. Frames submitted to the queue with sq_send() are placed
* after the head, frames returned to the caller with sq_receive() are taken
* from the tail.
*
* The head stream of the whole queue (SyncQueue.head_stream) is the limiting
* stream with the *smallest* head timestamp, i.e. the stream whose source lags
* furthest behind all other streams. It determines which frames can be output
* from the queue.
*
* In the diagram, the head stream is 2, because it head time is t=5, while
* streams 0 and 1 end at t=8 and t=9 respectively. All frames that _end_ at
* or before t=5 can be output, i.e. the first 3 frames from stream 0, first
* frame from stream 1, and all 4 frames from stream 2.
*/
typedef struct SyncQueueStream {
AVFifo *fifo;
AVRational tb;
/* number of audio samples in fifo */
uint64_t samples_queued;
/* stream head: largest timestamp seen */
int64_t head_ts;
int limiting;
/* no more frames will be sent for this stream */
int finished;
uint64_t frames_sent;
uint64_t samples_sent;
uint64_t frames_max;
int frame_samples;
} SyncQueueStream;
struct SyncQueue {
enum SyncQueueType type;
/* no more frames will be sent for any stream */
int finished;
/* sync head: the stream with the _smallest_ head timestamp
* this stream determines which frames can be output */
int head_stream;
/* the finished stream with the smallest finish timestamp or -1 */
int head_finished_stream;
// maximum buffering duration in microseconds
int64_t buf_size_us;
SyncQueueStream *streams;
unsigned int nb_streams;
// pool of preallocated frames to avoid constant allocations
ObjPool *pool;
int have_limiting;
uintptr_t align_mask;
};
static void frame_move(const SyncQueue *sq, SyncQueueFrame dst,
SyncQueueFrame src)
{
if (sq->type == SYNC_QUEUE_PACKETS)
av_packet_move_ref(dst.p, src.p);
else
av_frame_move_ref(dst.f, src.f);
}
/**
* Compute the end timestamp of a frame. If nb_samples is provided, consider
* the frame to have this number of audio samples, otherwise use frame duration.
*/
static int64_t frame_end(const SyncQueue *sq, SyncQueueFrame frame, int nb_samples)
{
if (nb_samples) {
int64_t d = av_rescale_q(nb_samples, (AVRational){ 1, frame.f->sample_rate},
frame.f->time_base);
return frame.f->pts + d;
}
return (sq->type == SYNC_QUEUE_PACKETS) ?
frame.p->pts + frame.p->duration :
frame.f->pts + frame.f->duration;
}
static int frame_samples(const SyncQueue *sq, SyncQueueFrame frame)
{
return (sq->type == SYNC_QUEUE_PACKETS) ? 0 : frame.f->nb_samples;
}
static int frame_null(const SyncQueue *sq, SyncQueueFrame frame)
{
return (sq->type == SYNC_QUEUE_PACKETS) ? (frame.p == NULL) : (frame.f == NULL);
}
static void tb_update(const SyncQueue *sq, SyncQueueStream *st,
const SyncQueueFrame frame)
{
AVRational tb = (sq->type == SYNC_QUEUE_PACKETS) ?
frame.p->time_base : frame.f->time_base;
av_assert0(tb.num > 0 && tb.den > 0);
if (tb.num == st->tb.num && tb.den == st->tb.den)
return;
// timebase should not change after the first frame
av_assert0(!av_fifo_can_read(st->fifo));
if (st->head_ts != AV_NOPTS_VALUE)
st->head_ts = av_rescale_q(st->head_ts, st->tb, tb);
st->tb = tb;
}
static void finish_stream(SyncQueue *sq, unsigned int stream_idx)
{
SyncQueueStream *st = &sq->streams[stream_idx];
st->finished = 1;
if (st->limiting && st->head_ts != AV_NOPTS_VALUE) {
/* check if this stream is the new finished head */
if (sq->head_finished_stream < 0 ||
av_compare_ts(st->head_ts, st->tb,
sq->streams[sq->head_finished_stream].head_ts,
sq->streams[sq->head_finished_stream].tb) < 0) {
sq->head_finished_stream = stream_idx;
}
/* mark as finished all streams that should no longer receive new frames,
* due to them being ahead of some finished stream */
st = &sq->streams[sq->head_finished_stream];
for (unsigned int i = 0; i < sq->nb_streams; i++) {
SyncQueueStream *st1 = &sq->streams[i];
if (st != st1 && st1->head_ts != AV_NOPTS_VALUE &&
av_compare_ts(st->head_ts, st->tb, st1->head_ts, st1->tb) <= 0)
st1->finished = 1;
}
}
/* mark the whole queue as finished if all streams are finished */
for (unsigned int i = 0; i < sq->nb_streams; i++) {
if (!sq->streams[i].finished)
return;
}
sq->finished = 1;
}
static void queue_head_update(SyncQueue *sq)
{
if (sq->head_stream < 0) {
/* wait for one timestamp in each stream before determining
* the queue head */
for (unsigned int i = 0; i < sq->nb_streams; i++) {
SyncQueueStream *st = &sq->streams[i];
if (st->limiting && st->head_ts == AV_NOPTS_VALUE)
return;
}
// placeholder value, correct one will be found below
sq->head_stream = 0;
}
for (unsigned int i = 0; i < sq->nb_streams; i++) {
SyncQueueStream *st_head = &sq->streams[sq->head_stream];
SyncQueueStream *st_other = &sq->streams[i];
if (st_other->limiting && st_other->head_ts != AV_NOPTS_VALUE &&
av_compare_ts(st_other->head_ts, st_other->tb,
st_head->head_ts, st_head->tb) < 0)
sq->head_stream = i;
}
}
/* update this stream's head timestamp */
static void stream_update_ts(SyncQueue *sq, unsigned int stream_idx, int64_t ts)
{
SyncQueueStream *st = &sq->streams[stream_idx];
if (ts == AV_NOPTS_VALUE ||
(st->head_ts != AV_NOPTS_VALUE && st->head_ts >= ts))
return;
st->head_ts = ts;
/* if this stream is now ahead of some finished stream, then
* this stream is also finished */
if (sq->head_finished_stream >= 0 &&
av_compare_ts(sq->streams[sq->head_finished_stream].head_ts,
sq->streams[sq->head_finished_stream].tb,
ts, st->tb) <= 0)
finish_stream(sq, stream_idx);
/* update the overall head timestamp if it could have changed */
if (st->limiting &&
(sq->head_stream < 0 || sq->head_stream == stream_idx))
queue_head_update(sq);
}
/* If the queue for the given stream (or all streams when stream_idx=-1)
* is overflowing, trigger a fake heartbeat on lagging streams.
*
* @return 1 if heartbeat triggered, 0 otherwise
*/
static int overflow_heartbeat(SyncQueue *sq, int stream_idx)
{
SyncQueueStream *st;
SyncQueueFrame frame;
int64_t tail_ts = AV_NOPTS_VALUE;
/* if no stream specified, pick the one that is most ahead */
if (stream_idx < 0) {
int64_t ts = AV_NOPTS_VALUE;
for (int i = 0; i < sq->nb_streams; i++) {
st = &sq->streams[i];
if (st->head_ts != AV_NOPTS_VALUE &&
(ts == AV_NOPTS_VALUE ||
av_compare_ts(ts, sq->streams[stream_idx].tb,
st->head_ts, st->tb) < 0)) {
ts = st->head_ts;
stream_idx = i;
}
}
/* no stream has a timestamp yet -> nothing to do */
if (stream_idx < 0)
return 0;
}
st = &sq->streams[stream_idx];
/* get the chosen stream's tail timestamp */
for (size_t i = 0; tail_ts == AV_NOPTS_VALUE &&
av_fifo_peek(st->fifo, &frame, 1, i) >= 0; i++)
tail_ts = frame_end(sq, frame, 0);
/* overflow triggers when the tail is over specified duration behind the head */
if (tail_ts == AV_NOPTS_VALUE || tail_ts >= st->head_ts ||
av_rescale_q(st->head_ts - tail_ts, st->tb, AV_TIME_BASE_Q) < sq->buf_size_us)
return 0;
/* signal a fake timestamp for all streams that prevent tail_ts from being output */
tail_ts++;
for (unsigned int i = 0; i < sq->nb_streams; i++) {
SyncQueueStream *st1 = &sq->streams[i];
int64_t ts;
if (st == st1 || st1->finished ||
(st1->head_ts != AV_NOPTS_VALUE &&
av_compare_ts(tail_ts, st->tb, st1->head_ts, st1->tb) <= 0))
continue;
ts = av_rescale_q(tail_ts, st->tb, st1->tb);
if (st1->head_ts != AV_NOPTS_VALUE)
ts = FFMAX(st1->head_ts + 1, ts);
stream_update_ts(sq, i, ts);
}
return 1;
}
int sq_send(SyncQueue *sq, unsigned int stream_idx, SyncQueueFrame frame)
{
SyncQueueStream *st;
SyncQueueFrame dst;
int64_t ts;
int ret, nb_samples;
av_assert0(stream_idx < sq->nb_streams);
st = &sq->streams[stream_idx];
if (frame_null(sq, frame)) {
finish_stream(sq, stream_idx);
return 0;
}
if (st->finished)
return AVERROR_EOF;
tb_update(sq, st, frame);
ret = objpool_get(sq->pool, (void**)&dst);
if (ret < 0)
return ret;
frame_move(sq, dst, frame);
nb_samples = frame_samples(sq, dst);
// make sure frame duration is consistent with sample count
if (nb_samples) {
av_assert0(dst.f->sample_rate > 0);
dst.f->duration = av_rescale_q(nb_samples, (AVRational){ 1, dst.f->sample_rate },
dst.f->time_base);
}
ts = frame_end(sq, dst, 0);
ret = av_fifo_write(st->fifo, &dst, 1);
if (ret < 0) {
frame_move(sq, frame, dst);
objpool_release(sq->pool, (void**)&dst);
return ret;
}
stream_update_ts(sq, stream_idx, ts);
st->samples_queued += nb_samples;
st->samples_sent += nb_samples;
if (st->frame_samples)
st->frames_sent = st->samples_sent / st->frame_samples;
else
st->frames_sent++;
if (st->frames_sent >= st->frames_max)
finish_stream(sq, stream_idx);
return 0;
}
static void offset_audio(AVFrame *f, int nb_samples)
{
const int planar = av_sample_fmt_is_planar(f->format);
const int planes = planar ? f->ch_layout.nb_channels : 1;
const int bps = av_get_bytes_per_sample(f->format);
const int offset = nb_samples * bps * (planar ? 1 : f->ch_layout.nb_channels);
av_assert0(bps > 0);
av_assert0(nb_samples < f->nb_samples);
for (int i = 0; i < planes; i++) {
f->extended_data[i] += offset;
if (i < FF_ARRAY_ELEMS(f->data))
f->data[i] = f->extended_data[i];
}
f->linesize[0] -= offset;
f->nb_samples -= nb_samples;
f->duration = av_rescale_q(f->nb_samples, (AVRational){ 1, f->sample_rate },
f->time_base);
f->pts += av_rescale_q(nb_samples, (AVRational){ 1, f->sample_rate },
f->time_base);
}
static int frame_is_aligned(const SyncQueue *sq, const AVFrame *frame)
{
// only checks linesize[0], so only works for audio
av_assert0(frame->nb_samples > 0);
av_assert0(sq->align_mask);
// only check data[0], because we always offset all data pointers
// by the same offset, so if one is aligned, all are
if (!((uintptr_t)frame->data[0] & sq->align_mask) &&
!(frame->linesize[0] & sq->align_mask) &&
frame->linesize[0] > sq->align_mask)
return 1;
return 0;
}
static int receive_samples(SyncQueue *sq, SyncQueueStream *st,
AVFrame *dst, int nb_samples)
{
SyncQueueFrame src;
int ret;
av_assert0(st->samples_queued >= nb_samples);
ret = av_fifo_peek(st->fifo, &src, 1, 0);
av_assert0(ret >= 0);
// peeked frame has enough samples and its data is aligned
// -> we can just make a reference and limit its sample count
if (src.f->nb_samples > nb_samples && frame_is_aligned(sq, src.f)) {
ret = av_frame_ref(dst, src.f);
if (ret < 0)
return ret;
dst->nb_samples = nb_samples;
offset_audio(src.f, nb_samples);
st->samples_queued -= nb_samples;
return 0;
}
// otherwise allocate a new frame and copy the data
ret = av_channel_layout_copy(&dst->ch_layout, &src.f->ch_layout);
if (ret < 0)
return ret;
dst->format = src.f->format;
dst->nb_samples = nb_samples;
ret = av_frame_get_buffer(dst, 0);
if (ret < 0)
goto fail;
ret = av_frame_copy_props(dst, src.f);
if (ret < 0)
goto fail;
dst->nb_samples = 0;
while (dst->nb_samples < nb_samples) {
int to_copy;
ret = av_fifo_peek(st->fifo, &src, 1, 0);
av_assert0(ret >= 0);
to_copy = FFMIN(nb_samples - dst->nb_samples, src.f->nb_samples);
av_samples_copy(dst->extended_data, src.f->extended_data, dst->nb_samples,
0, to_copy, dst->ch_layout.nb_channels, dst->format);
if (to_copy < src.f->nb_samples)
offset_audio(src.f, to_copy);
else {
av_frame_unref(src.f);
objpool_release(sq->pool, (void**)&src);
av_fifo_drain2(st->fifo, 1);
}
st->samples_queued -= to_copy;
dst->nb_samples += to_copy;
}
return 0;
fail:
av_frame_unref(dst);
return ret;
}
static int receive_for_stream(SyncQueue *sq, unsigned int stream_idx,
SyncQueueFrame frame)
{
SyncQueueStream *st_head = sq->head_stream >= 0 ?
&sq->streams[sq->head_stream] : NULL;
SyncQueueStream *st;
av_assert0(stream_idx < sq->nb_streams);
st = &sq->streams[stream_idx];
if (av_fifo_can_read(st->fifo) &&
(st->frame_samples <= st->samples_queued || st->finished)) {
int nb_samples = st->frame_samples;
SyncQueueFrame peek;
int64_t ts;
int cmp = 1;
if (st->finished)
nb_samples = FFMIN(nb_samples, st->samples_queued);
av_fifo_peek(st->fifo, &peek, 1, 0);
ts = frame_end(sq, peek, nb_samples);
/* check if this stream's tail timestamp does not overtake
* the overall queue head */
if (ts != AV_NOPTS_VALUE && st_head)
cmp = av_compare_ts(ts, st->tb, st_head->head_ts, st_head->tb);
/* We can release frames that do not end after the queue head.
* Frames with no timestamps are just passed through with no conditions.
* Frames are also passed through when there are no limiting streams.
*/
if (cmp <= 0 || ts == AV_NOPTS_VALUE || !sq->have_limiting) {
if (nb_samples &&
(nb_samples != peek.f->nb_samples || !frame_is_aligned(sq, peek.f))) {
int ret = receive_samples(sq, st, frame.f, nb_samples);
if (ret < 0)
return ret;
} else {
frame_move(sq, frame, peek);
objpool_release(sq->pool, (void**)&peek);
av_fifo_drain2(st->fifo, 1);
av_assert0(st->samples_queued >= frame_samples(sq, frame));
st->samples_queued -= frame_samples(sq, frame);
}
return 0;
}
}
return (sq->finished || (st->finished && !av_fifo_can_read(st->fifo))) ?
AVERROR_EOF : AVERROR(EAGAIN);
}
static int receive_internal(SyncQueue *sq, int stream_idx, SyncQueueFrame frame)
{
int nb_eof = 0;
int ret;
/* read a frame for a specific stream */
if (stream_idx >= 0) {
ret = receive_for_stream(sq, stream_idx, frame);
return (ret < 0) ? ret : stream_idx;
}
/* read a frame for any stream with available output */
for (unsigned int i = 0; i < sq->nb_streams; i++) {
ret = receive_for_stream(sq, i, frame);
if (ret == AVERROR_EOF || ret == AVERROR(EAGAIN)) {
nb_eof += (ret == AVERROR_EOF);
continue;
}
return (ret < 0) ? ret : i;
}
return (nb_eof == sq->nb_streams) ? AVERROR_EOF : AVERROR(EAGAIN);
}
int sq_receive(SyncQueue *sq, int stream_idx, SyncQueueFrame frame)
{
int ret = receive_internal(sq, stream_idx, frame);
/* try again if the queue overflowed and triggered a fake heartbeat
* for lagging streams */
if (ret == AVERROR(EAGAIN) && overflow_heartbeat(sq, stream_idx))
ret = receive_internal(sq, stream_idx, frame);
return ret;
}
int sq_add_stream(SyncQueue *sq, int limiting)
{
SyncQueueStream *tmp, *st;
tmp = av_realloc_array(sq->streams, sq->nb_streams + 1, sizeof(*sq->streams));
if (!tmp)
return AVERROR(ENOMEM);
sq->streams = tmp;
st = &sq->streams[sq->nb_streams];
memset(st, 0, sizeof(*st));
st->fifo = av_fifo_alloc2(1, sizeof(SyncQueueFrame), AV_FIFO_FLAG_AUTO_GROW);
if (!st->fifo)
return AVERROR(ENOMEM);
/* we set a valid default, so that a pathological stream that never
* receives even a real timebase (and no frames) won't stall all other
* streams forever; cf. overflow_heartbeat() */
st->tb = (AVRational){ 1, 1 };
st->head_ts = AV_NOPTS_VALUE;
st->frames_max = UINT64_MAX;
st->limiting = limiting;
sq->have_limiting |= limiting;
return sq->nb_streams++;
}
void sq_limit_frames(SyncQueue *sq, unsigned int stream_idx, uint64_t frames)
{
SyncQueueStream *st;
av_assert0(stream_idx < sq->nb_streams);
st = &sq->streams[stream_idx];
st->frames_max = frames;
if (st->frames_sent >= st->frames_max)
finish_stream(sq, stream_idx);
}
void sq_frame_samples(SyncQueue *sq, unsigned int stream_idx,
int frame_samples)
{
SyncQueueStream *st;
av_assert0(sq->type == SYNC_QUEUE_FRAMES);
av_assert0(stream_idx < sq->nb_streams);
st = &sq->streams[stream_idx];
st->frame_samples = frame_samples;
sq->align_mask = av_cpu_max_align() - 1;
}
SyncQueue *sq_alloc(enum SyncQueueType type, int64_t buf_size_us)
{
SyncQueue *sq = av_mallocz(sizeof(*sq));
if (!sq)
return NULL;
sq->type = type;
sq->buf_size_us = buf_size_us;
sq->head_stream = -1;
sq->head_finished_stream = -1;
sq->pool = (type == SYNC_QUEUE_PACKETS) ? objpool_alloc_packets() :
objpool_alloc_frames();
if (!sq->pool) {
av_freep(&sq);
return NULL;
}
return sq;
}
void sq_free(SyncQueue **psq)
{
SyncQueue *sq = *psq;
if (!sq)
return;
for (unsigned int i = 0; i < sq->nb_streams; i++) {
SyncQueueFrame frame;
while (av_fifo_read(sq->streams[i].fifo, &frame, 1) >= 0)
objpool_release(sq->pool, (void**)&frame);
av_fifo_freep2(&sq->streams[i].fifo);
}
av_freep(&sq->streams);
objpool_free(&sq->pool);
av_freep(psq);
}