You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

4183 lines
161 KiB

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/imgutils.h"
#include "internal.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "h264data.h"
#include "h264_mvpred.h"
#include "golomb.h"
#include "mathops.h"
#include "rectangle.h"
#include "thread.h"
#include "vdpau_internal.h"
#include "libavutil/avassert.h"
#include "cabac.h"
//#undef NDEBUG
#include <assert.h>
static const uint8_t rem6[QP_MAX_NUM+1]={
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
};
static const uint8_t div6[QP_MAX_NUM+1]={
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,
};
static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = {
PIX_FMT_DXVA2_VLD,
PIX_FMT_VAAPI_VLD,
PIX_FMT_YUVJ420P,
PIX_FMT_NONE
};
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
int i;
if(!(h->top_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
}
}
}
if((h->left_samples_available&0x8888)!=0x8888){
static const int mask[4]={0x8000,0x2000,0x80,0x20};
for(i=0; i<4; i++){
if(!(h->left_samples_available&mask[i])){
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
}
}
}
}
return 0;
} //FIXME cleanup like ff_h264_check_intra_pred_mode
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
MpegEncContext * const s = &h->s;
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
if(mode > 6U) {
av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if(!(h->top_samples_available&0x8000)){
mode= top[ mode ];
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
if((h->left_samples_available&0x8080) != 0x8080){
mode= left[ mode ];
if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
}
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
return mode;
}
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
int i, si, di;
uint8_t *dst;
int bufidx;
// src[0]&0x80; //forbidden bit
h->nal_ref_idc= src[0]>>5;
h->nal_unit_type= src[0]&0x1F;
src++; length--;
#if HAVE_FAST_UNALIGNED
# if HAVE_FAST_64BIT
# define RS 7
for(i=0; i+1<length; i+=9){
if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
# else
# define RS 3
for(i=0; i+1<length; i+=5){
if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
# endif
continue;
if(i>0 && !src[i]) i--;
while(src[i]) i++;
#else
# define RS 0
for(i=0; i+1<length; i+=2){
if(src[i]) continue;
if(i>0 && src[i-1]==0) i--;
#endif
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
if(src[i+2]!=3){
/* startcode, so we must be past the end */
length=i;
}
break;
}
i-= RS;
}
if(i>=length-1){ //no escaped 0
*dst_length= length;
*consumed= length+1; //+1 for the header
return src;
}
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
dst= h->rbsp_buffer[bufidx];
if (dst == NULL){
return NULL;
}
//printf("decoding esc\n");
memcpy(dst, src, i);
si=di=i;
while(si+2<length){
//remove escapes (very rare 1:2^22)
if(src[si+2]>3){
dst[di++]= src[si++];
dst[di++]= src[si++];
}else if(src[si]==0 && src[si+1]==0){
if(src[si+2]==3){ //escape
dst[di++]= 0;
dst[di++]= 0;
si+=3;
continue;
}else //next start code
goto nsc;
}
dst[di++]= src[si++];
}
while(si<length)
dst[di++]= src[si++];
nsc:
memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
*dst_length= di;
*consumed= si + 1;//+1 for the header
//FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
return dst;
}
/**
* Identify the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
int v= *src;
int r;
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
for(r=1; r<9; r++){
if(v&1) return r;
v>>=1;
}
return 0;
}
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height,
int y_offset, int list){
int raw_my= h->mv_cache[list][ scan8[n] ][1];
int filter_height= (raw_my&3) ? 2 : 0;
int full_my= (raw_my>>2) + y_offset;
int top = full_my - filter_height, bottom = full_my + height + filter_height;
return FFMAX(abs(top), bottom);
}
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, int height,
int y_offset, int list0, int list1, int *nrefs){
MpegEncContext * const s = &h->s;
int my;
y_offset += 16*(s->mb_y >> MB_FIELD);
if(list0){
int ref_n = h->ref_cache[0][ scan8[n] ];
Picture *ref= &h->ref_list[0][ref_n];
// Error resilience puts the current picture in the ref list.
// Don't try to wait on these as it will cause a deadlock.
// Fields can wait on each other, though.
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
(ref->f.reference & 3) != s->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
if (refs[0][ref_n] < 0) nrefs[0] += 1;
refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
}
}
if(list1){
int ref_n = h->ref_cache[1][ scan8[n] ];
Picture *ref= &h->ref_list[1][ref_n];
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
(ref->f.reference & 3) != s->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
if (refs[1][ref_n] < 0) nrefs[1] += 1;
refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
}
}
}
/**
* Wait until all reference frames are available for MC operations.
*
* @param h the H264 context
*/
static void await_references(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
int refs[2][48];
int nrefs[2] = {0};
int ref, list;
memset(refs, -1, sizeof(refs));
if(IS_16X16(mb_type)){
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
}else if(IS_16X8(mb_type)){
get_lowest_part_y(h, refs, 0, 8, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 8, 8, 8,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
}else if(IS_8X16(mb_type)){
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 4, 16, 0,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
}else{
int i;
assert(IS_8X8(mb_type));
for(i=0; i<4; i++){
const int sub_mb_type= h->sub_mb_type[i];
const int n= 4*i;
int y_offset= (i&2)<<2;
if(IS_SUB_8X8(sub_mb_type)){
get_lowest_part_y(h, refs, n , 8, y_offset,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
}else if(IS_SUB_8X4(sub_mb_type)){
get_lowest_part_y(h, refs, n , 4, y_offset,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, n+2, 4, y_offset+4,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
}else if(IS_SUB_4X8(sub_mb_type)){
get_lowest_part_y(h, refs, n , 8, y_offset,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, n+1, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
}else{
int j;
assert(IS_SUB_4X4(sub_mb_type));
for(j=0; j<4; j++){
int sub_y_offset= y_offset + 2*(j&2);
get_lowest_part_y(h, refs, n+j, 4, sub_y_offset,
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
}
}
}
}
for(list=h->list_count-1; list>=0; list--){
for(ref=0; ref<48 && nrefs[list]; ref++){
int row = refs[list][ref];
if(row >= 0){
Picture *ref_pic = &h->ref_list[list][ref];
int ref_field = ref_pic->f.reference - 1;
int ref_field_picture = ref_pic->field_picture;
int pic_height = 16*s->mb_height >> ref_field_picture;
row <<= MB_MBAFF;
nrefs[list]--;
if(!FIELD_PICTURE && ref_field_picture){ // frame referencing two fields
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) - !(row&1), pic_height-1), 1);
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) , pic_height-1), 0);
}else if(FIELD_PICTURE && !ref_field_picture){ // field referencing one field of a frame
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row*2 + ref_field , pic_height-1), 0);
}else if(FIELD_PICTURE){
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), ref_field);
}else{
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), 0);
}
}
}
}
}
#if 0
/**
* DCT transforms the 16 dc values.
* @param qp quantization parameter ??? FIXME
*/
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
// const int qmul= dequant_coeff[qp][0];
int i;
int temp[16]; //FIXME check if this is a good idea
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
for(i=0; i<4; i++){
const int offset= y_offset[i];
const int z0= block[offset+stride*0] + block[offset+stride*4];
const int z1= block[offset+stride*0] - block[offset+stride*4];
const int z2= block[offset+stride*1] - block[offset+stride*5];
const int z3= block[offset+stride*1] + block[offset+stride*5];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
block[stride*0 +offset]= (z0 + z3)>>1;
block[stride*2 +offset]= (z1 + z2)>>1;
block[stride*8 +offset]= (z1 - z2)>>1;
block[stride*10+offset]= (z0 - z3)>>1;
}
}
#endif
#undef xStride
#undef stride
#if 0
static void chroma_dc_dct_c(DCTELEM *block){
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= (a+c);
block[stride*0 + xStride*1]= (e+b);
block[stride*1 + xStride*0]= (a-c);
block[stride*1 + xStride*1]= (e-b);
}
#endif
static av_always_inline void
mc_dir_part(H264Context *h, Picture *pic, int n, int square,
int height, int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op,
int pixel_shift, int chroma_idc)
{
MpegEncContext * const s = &h->s;
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
const int luma_xy= (mx&3) + ((my&3)<<2);
int offset = ((mx>>2) << pixel_shift) + (my>>2)*h->mb_linesize;
uint8_t * src_y = pic->f.data[0] + offset;
uint8_t * src_cb, * src_cr;
int extra_width= h->emu_edge_width;
int extra_height= h->emu_edge_height;
int emu=0;
const int full_mx= mx>>2;
const int full_my= my>>2;
const int pic_width = 16*s->mb_width;
const int pic_height = 16*s->mb_height >> MB_FIELD;
int ysh;
if(mx&7) extra_width -= 3;
if(my&7) extra_height -= 3;
if( full_mx < 0-extra_width
|| full_my < 0-extra_height
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_y= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
emu=1;
}
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
}
if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
if(chroma_idc == 3 /* yuv444 */){
src_cb = pic->f.data[1] + offset;
if(emu){
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_cb= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
}
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
}
src_cr = pic->f.data[2] + offset;
if(emu){
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_cr= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
}
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
}
return;
}
ysh = 3 - (chroma_idc == 2 /* yuv422 */);
if(chroma_idc == 1 /* yuv420 */ && MB_FIELD){
// chroma offset when predicting from a field of opposite parity
my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1));
emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
}
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize;
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize;
if(emu){
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cb= s->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
mx&7, (my << (chroma_idc == 2 /* yuv422 */)) &7);
if(emu){
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cr= s->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
mx&7, (my << (chroma_idc == 2 /* yuv422 */)) &7);
}
static av_always_inline void
mc_part_std(H264Context *h, int n, int square, int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
int list0, int list1, int pixel_shift, int chroma_idc)
{
MpegEncContext * const s = &h->s;
qpel_mc_func *qpix_op= qpix_put;
h264_chroma_mc_func chroma_op= chroma_put;
dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
dest_cb += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
dest_cr += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
} else /* yuv420 */ {
dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
}
x_offset += 8*s->mb_x;
y_offset += 8*(s->mb_y >> MB_FIELD);
if(list0){
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
qpix_op= qpix_avg;
chroma_op= chroma_avg;
}
if(list1){
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
}
}
static av_always_inline void
mc_part_weighted(H264Context *h, int n, int square, int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
int list0, int list1, int pixel_shift, int chroma_idc){
MpegEncContext * const s = &h->s;
int chroma_height;
dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
chroma_height = height;
chroma_weight_avg = luma_weight_avg;
chroma_weight_op = luma_weight_op;
dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
chroma_height = height;
dest_cb += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
dest_cr += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
} else /* yuv420 */ {
chroma_height = height >> 1;
dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
}
x_offset += 8*s->mb_x;
y_offset += 8*(s->mb_y >> MB_FIELD);
if(list0 && list1){
/* don't optimize for luma-only case, since B-frames usually
* use implicit weights => chroma too. */
uint8_t *tmp_cb = s->obmc_scratchpad;
uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift);
uint8_t *tmp_y = s->obmc_scratchpad + 16*h->mb_uvlinesize;
int refn0 = h->ref_cache[0][ scan8[n] ];
int refn1 = h->ref_cache[1][ scan8[n] ];
mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0,
dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1,
tmp_y, tmp_cb, tmp_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
if(h->use_weight == 2){
int weight0 = h->implicit_weight[refn0][refn1][s->mb_y&1];
int weight1 = 64 - weight0;
luma_weight_avg( dest_y, tmp_y, h-> mb_linesize,
height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
}else{
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, h->luma_log2_weight_denom,
h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
}
}else{
int list = list1 ? 1 : 0;
int refn = h->ref_cache[list][ scan8[n] ];
Picture *ref= &h->ref_list[list][refn];
mc_dir_part(h, ref, n, square, height, delta, list,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put, chroma_put, pixel_shift, chroma_idc);
luma_weight_op(dest_y, h->mb_linesize, height, h->luma_log2_weight_denom,
h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
if(h->use_weight_chroma){
chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
}
}
}
static av_always_inline void
mc_part(H264Context *h, int n, int square, int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
int list0, int list1, int pixel_shift, int chroma_idc)
{
if((h->use_weight==2 && list0 && list1
&& (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ][h->s.mb_y&1] != 32))
|| h->use_weight==1)
mc_part_weighted(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
weight_op[0], weight_op[1], weight_avg[0],
weight_avg[1], list0, list1, pixel_shift, chroma_idc);
else
mc_part_std(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put, qpix_avg,
chroma_avg, list0, list1, pixel_shift, chroma_idc);
}
static av_always_inline void
prefetch_motion(H264Context *h, int list, int pixel_shift, int chroma_idc)
{
/* fetch pixels for estimated mv 4 macroblocks ahead
* optimized for 64byte cache lines */
MpegEncContext * const s = &h->s;
const int refn = h->ref_cache[list][scan8[0]];
if(refn >= 0){
const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
uint8_t **src = h->ref_list[list][refn].f.data;
int off= (mx << pixel_shift) + (my + (s->mb_x&3)*4)*h->mb_linesize + (64 << pixel_shift);
s->dsp.prefetch(src[0]+off, s->linesize, 4);
if (chroma_idc == 3 /* yuv444 */) {
s->dsp.prefetch(src[1]+off, s->linesize, 4);
s->dsp.prefetch(src[2]+off, s->linesize, 4);
}else{
off= ((mx>>1) << pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + (64 << pixel_shift);
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
}
}
}
static av_always_inline void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
int pixel_shift, int chroma_idc)
{
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
assert(IS_INTER(mb_type));
if(HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
await_references(h);
prefetch_motion(h, 0, pixel_shift, chroma_idc);
if(IS_16X16(mb_type)){
mc_part(h, 0, 1, 16, 0, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
}else if(IS_16X8(mb_type)){
mc_part(h, 0, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, 8, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 4,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
pixel_shift, chroma_idc);
}else if(IS_8X16(mb_type)){
mc_part(h, 0, 0, 16, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, 4, 0, 16, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
pixel_shift, chroma_idc);
}else{
int i;
assert(IS_8X8(mb_type));
for(i=0; i<4; i++){
const int sub_mb_type= h->sub_mb_type[i];
const int n= 4*i;
int x_offset= (i&1)<<2;
int y_offset= (i&2)<<1;
if(IS_SUB_8X8(sub_mb_type)){
mc_part(h, n, 1, 8, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
}else if(IS_SUB_8X4(sub_mb_type)){
mc_part(h, n , 0, 4, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, n+2, 0, 4, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
}else if(IS_SUB_4X8(sub_mb_type)){
mc_part(h, n , 0, 8, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, n+1, 0, 8, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
}else{
int j;
assert(IS_SUB_4X4(sub_mb_type));
for(j=0; j<4; j++){
int sub_x_offset= x_offset + 2*(j&1);
int sub_y_offset= y_offset + (j&2);
mc_part(h, n+j, 1, 4, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
}
}
}
}
prefetch_motion(h, 1, pixel_shift, chroma_idc);
}
static av_always_inline void
hl_motion_420(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
int pixel_shift)
{
hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 1);
}
static av_always_inline void
hl_motion_422(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
int pixel_shift)
{
hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 2);
}
static void free_tables(H264Context *h, int free_rbsp){
int i;
H264Context *hx;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table= NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2br_xy);
for(i = 0; i < MAX_THREADS; i++) {
hx = h->thread_context[i];
if(!hx) continue;
av_freep(&hx->top_borders[1]);
av_freep(&hx->top_borders[0]);
av_freep(&hx->s.obmc_scratchpad);
if (free_rbsp){
av_freep(&hx->rbsp_buffer[1]);
av_freep(&hx->rbsp_buffer[0]);
hx->rbsp_buffer_size[0] = 0;
hx->rbsp_buffer_size[1] = 0;
}
if (i) av_freep(&h->thread_context[i]);
}
}
static void init_dequant8_coeff_table(H264Context *h){
int i,j,q,x;
const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
for(i=0; i<6; i++ ){
h->dequant8_coeff[i] = h->dequant8_buffer[i];
for(j=0; j<i; j++){
if(!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64*sizeof(uint8_t))){
h->dequant8_coeff[i] = h->dequant8_buffer[j];
break;
}
}
if(j<i)
continue;
for(q=0; q<max_qp+1; q++){
int shift = div6[q];
int idx = rem6[q];
for(x=0; x<64; x++)
h->dequant8_coeff[i][q][(x>>3)|((x&7)<<3)] =
((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
h->pps.scaling_matrix8[i][x]) << shift;
}
}
}
static void init_dequant4_coeff_table(H264Context *h){
int i,j,q,x;
const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
for(i=0; i<6; i++ ){
h->dequant4_coeff[i] = h->dequant4_buffer[i];
for(j=0; j<i; j++){
if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
h->dequant4_coeff[i] = h->dequant4_buffer[j];
break;
}
}
if(j<i)
continue;
for(q=0; q<max_qp+1; q++){
int shift = div6[q] + 2;
int idx = rem6[q];
for(x=0; x<16; x++)
h->dequant4_coeff[i][q][(x>>2)|((x<<2)&0xF)] =
((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
h->pps.scaling_matrix4[i][x]) << shift;
}
}
}
static void init_dequant_tables(H264Context *h){
int i,x;
init_dequant4_coeff_table(h);
if(h->pps.transform_8x8_mode)
init_dequant8_coeff_table(h);
if(h->sps.transform_bypass){
for(i=0; i<6; i++)
for(x=0; x<16; x++)
h->dequant4_coeff[i][0][x] = 1<<6;
if(h->pps.transform_8x8_mode)
for(i=0; i<6; i++)
for(x=0; x<64; x++)
h->dequant8_coeff[i][0][x] = 1<<6;
}
}
int ff_h264_alloc_tables(H264Context *h){
MpegEncContext * const s = &h->s;
const int big_mb_num= s->mb_stride * (s->mb_height+1);
const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
int x,y;
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 48 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
for(y=0; y<s->mb_height; y++){
for(x=0; x<s->mb_width; x++){
const int mb_xy= x + y*s->mb_stride;
const int b_xy = 4*x + 4*y*h->b_stride;
h->mb2b_xy [mb_xy]= b_xy;
h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
}
}
s->obmc_scratchpad = NULL;
if(!h->dequant4_coeff[0])
init_dequant_tables(h);
return 0;
fail:
free_tables(h, 1);
return -1;
}
/**
* Mimic alloc_tables(), but for every context thread.
*/
static void clone_tables(H264Context *dst, H264Context *src, int i){
MpegEncContext * const s = &src->s;
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
dst->non_zero_count = src->non_zero_count;
dst->slice_table = src->slice_table;
dst->cbp_table = src->cbp_table;
dst->mb2b_xy = src->mb2b_xy;
dst->mb2br_xy = src->mb2br_xy;
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
dst->direct_table = src->direct_table;
dst->list_counts = src->list_counts;
dst->s.obmc_scratchpad = NULL;
ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma, src->sps.chroma_format_idc);
}
/**
* Init context
* Allocate buffers which are not shared amongst multiple threads.
*/
static int context_init(H264Context *h){
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
return 0;
fail:
return -1; // free_tables will clean up for us
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
static av_cold void common_init(H264Context *h){
MpegEncContext * const s = &h->s;
s->width = s->avctx->width;
s->height = s->avctx->height;
s->codec_id= s->avctx->codec->id;
ff_h264dsp_init(&h->h264dsp, 8, 1);
ff_h264_pred_init(&h->hpc, s->codec_id, 8, 1);
h->dequant_coeff_pps= -1;
s->unrestricted_mv=1;
s->decode=1; //FIXME
dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
}
int ff_h264_decode_extradata(H264Context *h)
{
AVCodecContext *avctx = h->s.avctx;
if(avctx->extradata[0] == 1){
int i, cnt, nalsize;
unsigned char *p = avctx->extradata;
h->is_avc = 1;
if(avctx->extradata_size < 7) {
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
return -1;
}
/* sps and pps in the avcC always have length coded with 2 bytes,
so put a fake nal_length_size = 2 while parsing them */
h->nal_length_size = 2;
// Decode sps from avcC
cnt = *(p+5) & 0x1f; // Number of sps
p += 6;
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if (p - avctx->extradata + nalsize > avctx->extradata_size)
return -1;
if(decode_nal_units(h, p, nalsize) < 0) {
av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Decode pps from avcC
cnt = *(p++); // Number of pps
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if (p - avctx->extradata + nalsize > avctx->extradata_size)
return -1;
if (decode_nal_units(h, p, nalsize) < 0) {
av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Now store right nal length size, that will be use to parse all other nals
h->nal_length_size = (avctx->extradata[4] & 0x03) + 1;
} else {
h->is_avc = 0;
if(decode_nal_units(h, avctx->extradata, avctx->extradata_size) < 0)
return -1;
}
return 0;
}
av_cold int ff_h264_decode_init(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
MpegEncContext * const s = &h->s;
MPV_decode_defaults(s);
s->avctx = avctx;
common_init(h);
s->out_format = FMT_H264;
s->workaround_bugs= avctx->workaround_bugs;
// set defaults
// s->decode_mb= ff_h263_decode_mb;
s->quarter_sample = 1;
if(!avctx->has_b_frames)
s->low_delay= 1;
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
ff_h264_decode_init_vlc();
h->pixel_shift = 0;
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
h->thread_context[0] = h;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
h->prev_poc_msb= 1<<16;
h->x264_build = -1;
ff_h264_reset_sei(h);
if(avctx->codec_id == CODEC_ID_H264){
if(avctx->ticks_per_frame == 1){
s->avctx->time_base.den *=2;
}
avctx->ticks_per_frame = 2;
}
if(avctx->extradata_size > 0 && avctx->extradata &&
ff_h264_decode_extradata(h))
return -1;
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
s->avctx->has_b_frames = h->sps.num_reorder_frames;
s->low_delay = 0;
}
return 0;
}
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b)+(size))))
static void copy_picture_range(Picture **to, Picture **from, int count, MpegEncContext *new_base, MpegEncContext *old_base)
{
int i;
for (i=0; i<count; i++){
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
IN_RANGE(from[i], old_base->picture, sizeof(Picture) * old_base->picture_count) ||
!from[i]));
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
}
}
static void copy_parameter_set(void **to, void **from, int count, int size)
{
int i;
for (i=0; i<count; i++){
if (to[i] && !from[i]) av_freep(&to[i]);
else if (from[i] && !to[i]) to[i] = av_malloc(size);
if (from[i]) memcpy(to[i], from[i], size);
}
}
static int decode_init_thread_copy(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
if (!avctx->is_copy) return 0;
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
return 0;
}
#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){
H264Context *h= dst->priv_data, *h1= src->priv_data;
MpegEncContext * const s = &h->s, * const s1 = &h1->s;
int inited = s->context_initialized, err;
int i;
if(dst == src || !s1->context_initialized) return 0;
err = ff_mpeg_update_thread_context(dst, src);
if(err) return err;
//FIXME handle width/height changing
if(!inited){
for(i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for(i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
if (ff_h264_alloc_tables(h) < 0) {
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
context_init(h);
for(i=0; i<2; i++){
h->rbsp_buffer[i] = NULL;
h->rbsp_buffer_size[i] = 0;
}
h->thread_context[0] = h;
// frame_start may not be called for the next thread (if it's decoding a bottom field)
// so this has to be allocated here
h->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb+(24*16<<h->pixel_shift));
}
//extradata/NAL handling
h->is_avc = h1->is_avc;
//SPS/PPS
copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS));
h->sps = h1->sps;
copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS));
h->pps = h1->pps;
//Dequantization matrices
//FIXME these are big - can they be only copied when PPS changes?
copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
for(i=0; i<6; i++)
h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
for(i=0; i<6; i++)
h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
h->dequant_coeff_pps = h1->dequant_coeff_pps;
//POC timing
copy_fields(h, h1, poc_lsb, redundant_pic_count);
//reference lists
copy_fields(h, h1, ref_count, list_count);
copy_fields(h, h1, ref_list, intra_gb);
copy_fields(h, h1, short_ref, cabac_init_idc);
copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1);
copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1);
copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1);
h->last_slice_type = h1->last_slice_type;
if(!s->current_picture_ptr) return 0;
if(!s->dropable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset= h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
return err;
}
int ff_h264_frame_start(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
const int pixel_shift = h->pixel_shift;
int thread_count = (s->avctx->active_thread_type & FF_THREAD_SLICE) ? s->avctx->thread_count : 1;
if(MPV_frame_start(s, s->avctx) < 0)
return -1;
ff_er_frame_start(s);
/*
* MPV_frame_start uses pict_type to derive key_frame.
* This is incorrect for H.264; IDR markings must be used.
* Zero here; IDR markings per slice in frame or fields are ORed in later.
* See decode_nal_units().
*/
s->current_picture_ptr->f.key_frame = 0;
s->current_picture_ptr->mmco_reset= 0;
assert(s->linesize && s->uvlinesize);
for(i=0; i<16; i++){
h->block_offset[i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
h->block_offset[48+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
}
for(i=0; i<16; i++){
h->block_offset[16+i]=
h->block_offset[32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
h->block_offset[48+16+i]=
h->block_offset[48+32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
}
/* can't be in alloc_tables because linesize isn't known there.
* FIXME: redo bipred weight to not require extra buffer? */
for(i = 0; i < thread_count; i++)
if(h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad)
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
/* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
// s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.f.reference /*|| h->contains_intra*/ || 1;
// We mark the current picture as non-reference after allocating it, so
// that if we break out due to an error it can be released automatically
// in the next MPV_frame_start().
// SVQ3 as well as most other codecs have only last/next/current and thus
// get released even with set reference, besides SVQ3 and others do not
// mark frames as reference later "naturally".
if(s->codec_id != CODEC_ID_SVQ3)
s->current_picture_ptr->f.reference = 0;
s->current_picture_ptr->field_poc[0]=
s->current_picture_ptr->field_poc[1]= INT_MAX;
h->next_output_pic = NULL;
assert(s->current_picture_ptr->long_ref==0);
return 0;
}
/**
* Run setup operations that must be run after slice header decoding.
* This includes finding the next displayed frame.
*
* @param h h264 master context
* @param setup_finished enough NALs have been read that we can call
* ff_thread_finish_setup()
*/
static void decode_postinit(H264Context *h, int setup_finished){
MpegEncContext * const s = &h->s;
Picture *out = s->current_picture_ptr;
Picture *cur = s->current_picture_ptr;
int i, pics, out_of_order, out_idx;
s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264;
s->current_picture_ptr->f.pict_type = s->pict_type;
if (h->next_output_pic) return;
if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
//FIXME: if we have two PAFF fields in one packet, we can't start the next thread here.
//If we have one field per packet, we can. The check in decode_nal_units() is not good enough
//to find this yet, so we assume the worst for now.
//if (setup_finished)
// ff_thread_finish_setup(s->avctx);
return;
}
cur->f.interlaced_frame = 0;
cur->f.repeat_pict = 0;
/* Signal interlacing information externally. */
/* Prioritize picture timing SEI information over used decoding process if it exists. */
if(h->sps.pic_struct_present_flag){
switch (h->sei_pic_struct)
{
case SEI_PIC_STRUCT_FRAME:
break;
case SEI_PIC_STRUCT_TOP_FIELD:
case SEI_PIC_STRUCT_BOTTOM_FIELD:
cur->f.interlaced_frame = 1;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM:
case SEI_PIC_STRUCT_BOTTOM_TOP:
if (FIELD_OR_MBAFF_PICTURE)
cur->f.interlaced_frame = 1;
else
// try to flag soft telecine progressive
cur->f.interlaced_frame = h->prev_interlaced_frame;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
// Signal the possibility of telecined film externally (pic_struct 5,6)
// From these hints, let the applications decide if they apply deinterlacing.
cur->f.repeat_pict = 1;
break;
case SEI_PIC_STRUCT_FRAME_DOUBLING:
// Force progressive here, as doubling interlaced frame is a bad idea.
cur->f.repeat_pict = 2;
break;
case SEI_PIC_STRUCT_FRAME_TRIPLING:
cur->f.repeat_pict = 4;
break;
}
if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
}else{
/* Derive interlacing flag from used decoding process. */
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE;
}
h->prev_interlaced_frame = cur->f.interlaced_frame;
if (cur->field_poc[0] != cur->field_poc[1]){
/* Derive top_field_first from field pocs. */
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
}else{
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
/* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
|| h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
cur->f.top_field_first = 1;
else
cur->f.top_field_first = 0;
}else{
/* Most likely progressive */
cur->f.top_field_first = 0;
}
}
//FIXME do something with unavailable reference frames
/* Sort B-frames into display order */
if(h->sps.bitstream_restriction_flag
&& s->avctx->has_b_frames < h->sps.num_reorder_frames){
s->avctx->has_b_frames = h->sps.num_reorder_frames;
s->low_delay = 0;
}
if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
&& !h->sps.bitstream_restriction_flag){
s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
s->low_delay= 0;
}
pics = 0;
while(h->delayed_pic[pics]) pics++;
assert(pics <= MAX_DELAYED_PIC_COUNT);
h->delayed_pic[pics++] = cur;
if (cur->f.reference == 0)
cur->f.reference = DELAYED_PIC_REF;
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
if(h->delayed_pic[i]->poc < out->poc){
out = h->delayed_pic[i];
out_idx = i;
}
if (s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
h->next_outputed_poc= INT_MIN;
out_of_order = out->poc < h->next_outputed_poc;
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
{ }
else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
|| (s->low_delay &&
((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2)
|| cur->f.pict_type == AV_PICTURE_TYPE_B)))
{
s->low_delay = 0;
s->avctx->has_b_frames++;
}
if(out_of_order || pics > s->avctx->has_b_frames){
out->f.reference &= ~DELAYED_PIC_REF;
out->owner2 = s; // for frame threading, the owner must be the second field's thread
// or else the first thread can release the picture and reuse it unsafely
for(i=out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i+1];
}
if(!out_of_order && pics > s->avctx->has_b_frames){
h->next_output_pic = out;
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
h->next_outputed_poc = INT_MIN;
} else
h->next_outputed_poc = out->poc;
}else{
av_log(s->avctx, AV_LOG_DEBUG, "no picture\n");
}
if (setup_finished)
ff_thread_finish_setup(s->avctx);
}
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize, int simple)
{
MpegEncContext * const s = &h->s;
uint8_t *top_border;
int top_idx = 1;
const int pixel_shift = h->pixel_shift;
int chroma444 = CHROMA444;
int chroma422 = CHROMA422;
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
if(!simple && FRAME_MBAFF){
if(s->mb_y&1){
if(!MB_MBAFF){
top_border = h->top_borders[0][s->mb_x];
AV_COPY128(top_border, src_y + 15*linesize);
if (pixel_shift)
AV_COPY128(top_border+16, src_y+15*linesize+16);
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(chroma444){
if (pixel_shift){
AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
AV_COPY128(top_border+48, src_cb + 15*uvlinesize+16);
AV_COPY128(top_border+64, src_cr + 15*uvlinesize);
AV_COPY128(top_border+80, src_cr + 15*uvlinesize+16);
} else {
AV_COPY128(top_border+16, src_cb + 15*uvlinesize);
AV_COPY128(top_border+32, src_cr + 15*uvlinesize);
}
} else if(chroma422) {
if (pixel_shift) {
AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
AV_COPY128(top_border+48, src_cr + 15*uvlinesize);
} else {
AV_COPY64(top_border+16, src_cb + 15*uvlinesize);
AV_COPY64(top_border+24, src_cr + 15*uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border+32, src_cb+7*uvlinesize);
AV_COPY128(top_border+48, src_cr+7*uvlinesize);
} else {
AV_COPY64(top_border+16, src_cb+7*uvlinesize);
AV_COPY64(top_border+24, src_cr+7*uvlinesize);
}
}
}
}
}else if(MB_MBAFF){
top_idx = 0;
}else
return;
}
top_border = h->top_borders[top_idx][s->mb_x];
// There are two lines saved, the line above the the top macroblock of a pair,
// and the line above the bottom macroblock
AV_COPY128(top_border, src_y + 16*linesize);
if (pixel_shift)
AV_COPY128(top_border+16, src_y+16*linesize+16);
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(chroma444){
if (pixel_shift){
AV_COPY128(top_border+32, src_cb + 16*linesize);
AV_COPY128(top_border+48, src_cb + 16*linesize+16);
AV_COPY128(top_border+64, src_cr + 16*linesize);
AV_COPY128(top_border+80, src_cr + 16*linesize+16);
} else {
AV_COPY128(top_border+16, src_cb + 16*linesize);
AV_COPY128(top_border+32, src_cr + 16*linesize);
}
} else if(chroma422) {
if (pixel_shift) {
AV_COPY128(top_border+32, src_cb+16*uvlinesize);
AV_COPY128(top_border+48, src_cr+16*uvlinesize);
} else {
AV_COPY64(top_border+16, src_cb+16*uvlinesize);
AV_COPY64(top_border+24, src_cr+16*uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border+32, src_cb+8*uvlinesize);
AV_COPY128(top_border+48, src_cr+8*uvlinesize);
} else {
AV_COPY64(top_border+16, src_cb+8*uvlinesize);
AV_COPY64(top_border+24, src_cr+8*uvlinesize);
}
}
}
}
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int xchg, int chroma444,
int simple, int pixel_shift){
MpegEncContext * const s = &h->s;
int deblock_topleft;
int deblock_top;
int top_idx = 1;
uint8_t *top_border_m1;
uint8_t *top_border;
if(!simple && FRAME_MBAFF){
if(s->mb_y&1){
if(!MB_MBAFF)
return;
}else{
top_idx = MB_MBAFF ? 0 : 1;
}
}
if(h->deblocking_filter == 2) {
deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num;
deblock_top = h->top_type;
} else {
deblock_topleft = (s->mb_x > 0);
deblock_top = (s->mb_y > !!MB_FIELD);
}
src_y -= linesize + 1 + pixel_shift;
src_cb -= uvlinesize + 1 + pixel_shift;
src_cr -= uvlinesize + 1 + pixel_shift;
top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
top_border = h->top_borders[top_idx][s->mb_x];
#define XCHG(a,b,xchg)\
if (pixel_shift) {\
if (xchg) {\
AV_SWAP64(b+0,a+0);\
AV_SWAP64(b+8,a+8);\
} else {\
AV_COPY128(b,a); \
}\
} else \
if (xchg) AV_SWAP64(b,a);\
else AV_COPY64(b,a);
if(deblock_top){
if(deblock_topleft){
XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1);
}
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
if(s->mb_x+1 < s->mb_width){
XCHG(h->top_borders[top_idx][s->mb_x+1], src_y + (17 << pixel_shift), 1);
}
}
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(chroma444){
if(deblock_topleft){
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
if(s->mb_x+1 < s->mb_width){
XCHG(h->top_borders[top_idx][s->mb_x+1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
XCHG(h->top_borders[top_idx][s->mb_x+1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
}
} else {
if(deblock_top){
if(deblock_topleft){
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb+1+pixel_shift, 1);
XCHG(top_border + (24 << pixel_shift), src_cr+1+pixel_shift, 1);
}
}
}
}
static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth, int index) {
if (high_bit_depth) {
return AV_RN32A(((int32_t*)mb) + index);
} else
return AV_RN16A(mb + index);
}
static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth, int index, int value) {
if (high_bit_depth) {
AV_WN32A(((int32_t*)mb) + index, value);
} else
AV_WN16A(mb + index, value);
}
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
{
MpegEncContext * const s = &h->s;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
int i;
int qscale = p == 0 ? s->qscale : h->chroma_qp[p-1];
block_offset += 16*p;
if(IS_INTRA4x4(mb_type)){
if(simple || !s->encoding){
if(IS_8x8DCT(mb_type)){
if(transform_bypass){
idct_dc_add =
idct_add = s->dsp.add_pixels8;
}else{
idct_dc_add = h->h264dsp.h264_idct8_dc_add;
idct_add = h->h264dsp.h264_idct8_add;
}
for(i=0; i<16; i+=4){
uint8_t * const ptr= dest_y + block_offset[i];
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
}else{
const int nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
(h->topright_samples_available<<i)&0x4000, linesize);
if(nnz){
if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
else
idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
}
}
}
}else{
if(transform_bypass){
idct_dc_add =
idct_add = s->dsp.add_pixels4;
}else{
idct_dc_add = h->h264dsp.h264_idct_dc_add;
idct_add = h->h264dsp.h264_idct_add;
}
for(i=0; i<16; i++){
uint8_t * const ptr= dest_y + block_offset[i];
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
h->hpc.pred4x4_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
}else{
uint8_t *topright;
int nnz, tr;
uint64_t tr_high;
if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
const int topright_avail= (h->topright_samples_available<<i)&0x8000;
assert(s->mb_y || linesize <= block_offset[i]);
if(!topright_avail){
if (pixel_shift) {
tr_high= ((uint16_t*)ptr)[3 - linesize/2]*0x0001000100010001ULL;
topright= (uint8_t*) &tr_high;
} else {
tr= ptr[3 - linesize]*0x01010101u;
topright= (uint8_t*) &tr;
}
}else
topright= ptr + (4 << pixel_shift) - linesize;
}else
topright= NULL;
h->hpc.pred4x4[ dir ](ptr, topright, linesize);
nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
if(nnz){
if(is_h264){
if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
else
idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
}else
ff_svq3_add_idct_c(ptr, h->mb + i*16+p*256, linesize, qscale, 0);
}
}
}
}
}
}else{
h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
if(is_h264){
if(h->non_zero_count_cache[ scan8[LUMA_DC_BLOCK_INDEX+p] ]){
if(!transform_bypass)
h->h264dsp.h264_luma_dc_dequant_idct(h->mb+(p*256 << pixel_shift), h->mb_luma_dc[p], h->dequant4_coeff[p][qscale][0]);
else{
static const uint8_t dc_mapping[16] = { 0*16, 1*16, 4*16, 5*16, 2*16, 3*16, 6*16, 7*16,
8*16, 9*16,12*16,13*16,10*16,11*16,14*16,15*16};
for(i = 0; i < 16; i++)
dctcoef_set(h->mb+p*256, pixel_shift, dc_mapping[i], dctcoef_get(h->mb_luma_dc[p], pixel_shift, i));
}
}
}else
ff_svq3_luma_dc_dequant_idct_c(h->mb+p*256, h->mb_luma_dc[p], qscale);
}
}
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
{
MpegEncContext * const s = &h->s;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
int i;
block_offset += 16*p;
if(!IS_INTRA4x4(mb_type)){
if(is_h264){
if(IS_INTRA16x16(mb_type)){
if(transform_bypass){
if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize);
}else{
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i+p*16] ] || dctcoef_get(h->mb, pixel_shift, i*16+p*256))
s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
}
}
}else{
h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
}
}else if(h->cbp&15){
if(transform_bypass){
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
for(i=0; i<16; i+=di){
if(h->non_zero_count_cache[ scan8[i+p*16] ]){
idct_add(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
}
}
}else{
if(IS_8x8DCT(mb_type)){
h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
}else{
h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
}
}
}
}else{
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i+p*16] ] || h->mb[i*16+p*256]){ //FIXME benchmark weird rule, & below
uint8_t * const ptr= dest_y + block_offset[i];
ff_svq3_add_idct_c(ptr, h->mb + i*16 + p*256, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
}
}
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple, int pixel_shift)
{
MpegEncContext * const s = &h->s;
const int mb_x= s->mb_x;
const int mb_y= s->mb_y;
const int mb_xy= h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize /*dct_offset*/;
int i, j;
int *block_offset = &h->block_offset[0];
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
/* is_h264 should always be true if SVQ3 is disabled. */
const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
const int block_h = 16 >> s->chroma_y_shift;
const int chroma422 = CHROMA422;
dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + (64 << pixel_shift), dest_cr - dest_cb, 2);
h->list_counts[mb_xy]= h->list_count;
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
block_offset = &h->block_offset[48];
if(mb_y&1){ //FIXME move out of this function?
dest_y -= s->linesize*15;
dest_cb-= s->uvlinesize * (block_h - 1);
dest_cr-= s->uvlinesize * (block_h - 1);
}
if(FRAME_MBAFF) {
int list;
for(list=0; list<h->list_count; list++){
if(!USES_LIST(mb_type, list))
continue;
if(IS_16X16(mb_type)){
int8_t *ref = &h->ref_cache[list][scan8[0]];
fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
}else{
for(i=0; i<16; i+=4){
int ref = h->ref_cache[list][scan8[i]];
if(ref >= 0)
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
}
}
}
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
// dct_offset = s->linesize * 16;
}
if (!simple && IS_INTRA_PCM(mb_type)) {
if (pixel_shift) {
const int bit_depth = h->sps.bit_depth_luma;
int j;
GetBitContext gb;
init_get_bits(&gb, (uint8_t*)h->mb, 384*bit_depth);
for (i = 0; i < 16; i++) {
uint16_t *tmp_y = (uint16_t*)(dest_y + i*linesize);
for (j = 0; j < 16; j++)
tmp_y[j] = get_bits(&gb, bit_depth);
}
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if (!h->sps.chroma_format_idc) {
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
for (j = 0; j < 8; j++) {
tmp_cb[j] = 1 << (bit_depth - 1);
}
}
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
for (j = 0; j < 8; j++) {
tmp_cr[j] = 1 << (bit_depth - 1);
}
}
} else {
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
for (j = 0; j < 8; j++)
tmp_cb[j] = get_bits(&gb, bit_depth);
}
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
for (j = 0; j < 8; j++)
tmp_cr[j] = get_bits(&gb, bit_depth);
}
}
}
} else {
for (i=0; i<16; i++) {
memcpy(dest_y + i* linesize, h->mb + i*8, 16);
}
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if (!h->sps.chroma_format_idc) {
for (i = 0; i < block_h; i++) {
memset(dest_cb + i*uvlinesize, 128, 8);
memset(dest_cr + i*uvlinesize, 128, 8);
}
} else {
for (i = 0; i < block_h; i++) {
memcpy(dest_cb + i*uvlinesize, h->mb + 128 + i*4, 8);
memcpy(dest_cr + i*uvlinesize, h->mb + 160 + i*4, 8);
}
}
}
}
} else {
if(IS_INTRA(mb_type)){
if(h->deblocking_filter)
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, 0, simple, pixel_shift);
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
}
hl_decode_mb_predict_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
if(h->deblocking_filter)
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, 0, simple, pixel_shift);
}else if(is_h264){
if (chroma422) {
hl_motion_422(h, dest_y, dest_cb, dest_cr,
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab,
pixel_shift);
} else {
hl_motion_420(h, dest_y, dest_cb, dest_cr,
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab,
pixel_shift);
}
}
hl_decode_mb_idct_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
uint8_t *dest[2] = {dest_cb, dest_cr};
if(transform_bypass){
if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + (16*16*1 << pixel_shift), uvlinesize);
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 32, h->mb + (16*16*2 << pixel_shift), uvlinesize);
}else{
idct_add = s->dsp.add_pixels4;
for(j=1; j<3; j++){
for(i=j*16; i<j*16+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h->mb, pixel_shift, i*16))
idct_add (dest[j-1] + block_offset[i], h->mb + (i*16 << pixel_shift), uvlinesize);
}
if (chroma422) {
for(i=j*16+4; i<j*16+8; i++){
if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h->mb, pixel_shift, i*16))
idct_add (dest[j-1] + block_offset[i+4], h->mb + (i*16 << pixel_shift), uvlinesize);
}
}
}
}
}else{
if(is_h264){
int qp[2];
if (chroma422) {
qp[0] = h->chroma_qp[0] + 3;
qp[1] = h->chroma_qp[1] + 3;
} else {
qp[0] = h->chroma_qp[0];
qp[1] = h->chroma_qp[1];
}
if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+0] ])
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*1 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][qp[0]][0]);
if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+1] ])
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*2 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][qp[1]][0]);
h->h264dsp.h264_idct_add8(dest, block_offset,
h->mb, uvlinesize,
h->non_zero_count_cache);
}else{
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*1, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*2, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
for(j=1; j<3; j++){
for(i=j*16; i<j*16+4; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest[j-1] + block_offset[i];
ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
}
}
}
}
}
}
}
if(h->cbp || IS_INTRA(mb_type))
{
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
}
}
static av_always_inline void hl_decode_mb_444_internal(H264Context *h, int simple, int pixel_shift){
MpegEncContext * const s = &h->s;
const int mb_x= s->mb_x;
const int mb_y= s->mb_y;
const int mb_xy= h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
uint8_t *dest[3];
int linesize;
int i, j, p;
int *block_offset = &h->block_offset[0];
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
const int plane_count = (simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) ? 3 : 1;
for (p = 0; p < plane_count; p++)
{
dest[p] = s->current_picture.f.data[p] + ((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
s->dsp.prefetch(dest[p] + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
}
h->list_counts[mb_xy]= h->list_count;
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize * 2;
block_offset = &h->block_offset[48];
if(mb_y&1) //FIXME move out of this function?
for (p = 0; p < 3; p++)
dest[p] -= s->linesize*15;
if(FRAME_MBAFF) {
int list;
for(list=0; list<h->list_count; list++){
if(!USES_LIST(mb_type, list))
continue;
if(IS_16X16(mb_type)){
int8_t *ref = &h->ref_cache[list][scan8[0]];
fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
}else{
for(i=0; i<16; i+=4){
int ref = h->ref_cache[list][scan8[i]];
if(ref >= 0)
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
}
}
}
}
} else {
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize;
}
if (!simple && IS_INTRA_PCM(mb_type)) {
if (pixel_shift) {
const int bit_depth = h->sps.bit_depth_luma;
GetBitContext gb;
init_get_bits(&gb, (uint8_t*)h->mb, 768*bit_depth);
for (p = 0; p < plane_count; p++) {
for (i = 0; i < 16; i++) {
uint16_t *tmp = (uint16_t*)(dest[p] + i*linesize);
for (j = 0; j < 16; j++)
tmp[j] = get_bits(&gb, bit_depth);
}
}
} else {
for (p = 0; p < plane_count; p++) {
for (i = 0; i < 16; i++) {
memcpy(dest[p] + i*linesize, h->mb + p*128 + i*8, 16);
}
}
}
} else {
if(IS_INTRA(mb_type)){
if(h->deblocking_filter)
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 1, 1, simple, pixel_shift);
for (p = 0; p < plane_count; p++)
hl_decode_mb_predict_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
if(h->deblocking_filter)
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 0, 1, simple, pixel_shift);
}else{
hl_motion(h, dest[0], dest[1], dest[2],
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 3);
}
for (p = 0; p < plane_count; p++)
hl_decode_mb_idct_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
}
if(h->cbp || IS_INTRA(mb_type))
{
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
}
}
/**
* Process a macroblock; this case avoids checks for expensive uncommon cases.
*/
#define hl_decode_mb_simple(sh, bits) \
static void hl_decode_mb_simple_ ## bits(H264Context *h){ \
hl_decode_mb_internal(h, 1, sh); \
}
hl_decode_mb_simple(0, 8);
hl_decode_mb_simple(1, 16);
/**
* Process a macroblock; this handles edge cases, such as interlacing.
*/
static void av_noinline hl_decode_mb_complex(H264Context *h){
hl_decode_mb_internal(h, 0, h->pixel_shift);
}
static void av_noinline hl_decode_mb_444_complex(H264Context *h){
hl_decode_mb_444_internal(h, 0, h->pixel_shift);
}
static void av_noinline hl_decode_mb_444_simple(H264Context *h){
hl_decode_mb_444_internal(h, 1, 0);
}
void ff_h264_hl_decode_mb(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
if (CHROMA444) {
if(is_complex || h->pixel_shift)
hl_decode_mb_444_complex(h);
else
hl_decode_mb_444_simple(h);
} else if (is_complex) {
hl_decode_mb_complex(h);
} else if (h->pixel_shift) {
hl_decode_mb_simple_16(h);
} else
hl_decode_mb_simple_8(h);
}
static int pred_weight_table(H264Context *h){
MpegEncContext * const s = &h->s;
int list, i;
int luma_def, chroma_def;
h->use_weight= 0;
h->use_weight_chroma= 0;
h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
if(h->sps.chroma_format_idc)
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
luma_def = 1<<h->luma_log2_weight_denom;
chroma_def = 1<<h->chroma_log2_weight_denom;
for(list=0; list<2; list++){
h->luma_weight_flag[list] = 0;
h->chroma_weight_flag[list] = 0;
for(i=0; i<h->ref_count[list]; i++){
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag= get_bits1(&s->gb);
if(luma_weight_flag){
h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
if( h->luma_weight[i][list][0] != luma_def
|| h->luma_weight[i][list][1] != 0) {
h->use_weight= 1;
h->luma_weight_flag[list]= 1;
}
}else{
h->luma_weight[i][list][0]= luma_def;
h->luma_weight[i][list][1]= 0;
}
if(h->sps.chroma_format_idc){
chroma_weight_flag= get_bits1(&s->gb);
if(chroma_weight_flag){
int j;
for(j=0; j<2; j++){
h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
if( h->chroma_weight[i][list][j][0] != chroma_def
|| h->chroma_weight[i][list][j][1] != 0) {
h->use_weight_chroma= 1;
h->chroma_weight_flag[list]= 1;
}
}
}else{
int j;
for(j=0; j<2; j++){
h->chroma_weight[i][list][j][0]= chroma_def;
h->chroma_weight[i][list][j][1]= 0;
}
}
}
}
if(h->slice_type_nos != AV_PICTURE_TYPE_B) break;
}
h->use_weight= h->use_weight || h->use_weight_chroma;
return 0;
}
/**
* Initialize implicit_weight table.
* @param field 0/1 initialize the weight for interlaced MBAFF
* -1 initializes the rest
*/
static void implicit_weight_table(H264Context *h, int field){
MpegEncContext * const s = &h->s;
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
if(field < 0){
if (s->picture_structure == PICT_FRAME) {
cur_poc = s->current_picture_ptr->poc;
} else {
cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1];
}
if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF
&& h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
h->use_weight= 0;
h->use_weight_chroma= 0;
return;
}
ref_start= 0;
ref_count0= h->ref_count[0];
ref_count1= h->ref_count[1];
}else{
cur_poc = s->current_picture_ptr->field_poc[field];
ref_start= 16;
ref_count0= 16+2*h->ref_count[0];
ref_count1= 16+2*h->ref_count[1];
}
h->use_weight= 2;
h->use_weight_chroma= 2;
h->luma_log2_weight_denom= 5;
h->chroma_log2_weight_denom= 5;
for(ref0=ref_start; ref0 < ref_count0; ref0++){
int poc0 = h->ref_list[0][ref0].poc;
for(ref1=ref_start; ref1 < ref_count1; ref1++){
int w = 32;
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
int poc1 = h->ref_list[1][ref1].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if(td){
int tb = av_clip(cur_poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = (tb*tx + 32) >> 8;
if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
w = 64 - dist_scale_factor;
}
}
if(field<0){
h->implicit_weight[ref0][ref1][0]=
h->implicit_weight[ref0][ref1][1]= w;
}else{
h->implicit_weight[ref0][ref1][field]=w;
}
}
}
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h){
ff_h264_remove_all_refs(h);
h->prev_frame_num= 0;
h->prev_frame_num_offset= 0;
h->prev_poc_msb=
h->prev_poc_lsb= 0;
}
/* forget old pics after a seek */
static void flush_dpb(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
int i;
for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
if(h->delayed_pic[i])
h->delayed_pic[i]->f.reference = 0;
h->delayed_pic[i]= NULL;
}
h->outputed_poc=h->next_outputed_poc= INT_MIN;
h->prev_interlaced_frame = 1;
idr(h);
if(h->s.current_picture_ptr)
h->s.current_picture_ptr->f.reference = 0;
h->s.first_field= 0;
ff_h264_reset_sei(h);
ff_mpeg_flush(avctx);
}
static int init_poc(H264Context *h){
MpegEncContext * const s = &h->s;
const int max_frame_num= 1<<h->sps.log2_max_frame_num;
int field_poc[2];
Picture *cur = s->current_picture_ptr;
h->frame_num_offset= h->prev_frame_num_offset;
if(h->frame_num < h->prev_frame_num)
h->frame_num_offset += max_frame_num;
if(h->sps.poc_type==0){
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
}else if(h->sps.poc_type==1){
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if(h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if(h->nal_ref_idc==0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for(i=0; i < h->sps.poc_cycle_length; i++)
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
if(abs_frame_num > 0){
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for(i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
} else
expectedpoc = 0;
if(h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
}else{
int poc= 2*(h->frame_num_offset + h->frame_num);
if(!h->nal_ref_idc)
poc--;
field_poc[0]= poc;
field_poc[1]= poc;
}
if(s->picture_structure != PICT_BOTTOM_FIELD)
s->current_picture_ptr->field_poc[0]= field_poc[0];
if(s->picture_structure != PICT_TOP_FIELD)
s->current_picture_ptr->field_poc[1]= field_poc[1];
cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
return 0;
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h){
int i;
for(i=0; i<16; i++){
#define T(x) (x>>2) | ((x<<2) & 0xF)
h->zigzag_scan[i] = T(zigzag_scan[i]);
h-> field_scan[i] = T( field_scan[i]);
#undef T
}
for(i=0; i<64; i++){
#define T(x) (x>>3) | ((x&7)<<3)
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = T(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
#undef T
}
if(h->sps.transform_bypass){ //FIXME same ugly
h->zigzag_scan_q0 = zigzag_scan;
h->zigzag_scan8x8_q0 = ff_zigzag_direct;
h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
h->field_scan_q0 = field_scan;
h->field_scan8x8_q0 = field_scan8x8;
h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
}else{
h->zigzag_scan_q0 = h->zigzag_scan;
h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
h->field_scan_q0 = h->field_scan;
h->field_scan8x8_q0 = h->field_scan8x8;
h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
}
}
static int field_end(H264Context *h, int in_setup){
MpegEncContext * const s = &h->s;
AVCodecContext * const avctx= s->avctx;
int err = 0;
s->mb_y= 0;
if (!in_setup && !s->dropable)
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, (16*s->mb_height >> FIELD_PICTURE) - 1,
s->picture_structure==PICT_BOTTOM_FIELD);
if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_set_reference_frames(s);
if(in_setup || !(avctx->active_thread_type&FF_THREAD_FRAME)){
if(!s->dropable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb= h->poc_msb;
h->prev_poc_lsb= h->poc_lsb;
}
h->prev_frame_num_offset= h->frame_num_offset;
h->prev_frame_num= h->frame_num;
h->outputed_poc = h->next_outputed_poc;
}
if (avctx->hwaccel) {
if (avctx->hwaccel->end_frame(avctx) < 0)
av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
}
if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_complete(s);
/*
* FIXME: Error handling code does not seem to support interlaced
* when slices span multiple rows
* The ff_er_add_slice calls don't work right for bottom
* fields; they cause massive erroneous error concealing
* Error marking covers both fields (top and bottom).
* This causes a mismatched s->error_count
* and a bad error table. Further, the error count goes to
* INT_MAX when called for bottom field, because mb_y is
* past end by one (callers fault) and resync_mb_y != 0
* causes problems for the first MB line, too.
*/
if (!FIELD_PICTURE)
ff_er_frame_end(s);
MPV_frame_end(s);
h->current_slice=0;
return err;
}
/**
* Replicate H264 "master" context to thread contexts.
*/
static void clone_slice(H264Context *dst, H264Context *src)
{
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
dst->s.current_picture_ptr = src->s.current_picture_ptr;
dst->s.current_picture = src->s.current_picture;
dst->s.linesize = src->s.linesize;
dst->s.uvlinesize = src->s.uvlinesize;
dst->s.first_field = src->s.first_field;
dst->prev_poc_msb = src->prev_poc_msb;
dst->prev_poc_lsb = src->prev_poc_lsb;
dst->prev_frame_num_offset = src->prev_frame_num_offset;
dst->prev_frame_num = src->prev_frame_num;
dst->short_ref_count = src->short_ref_count;
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
}
/**
* computes profile from profile_idc and constraint_set?_flags
*
* @param sps SPS
*
* @return profile as defined by FF_PROFILE_H264_*
*/
int ff_h264_get_profile(SPS *sps)
{
int profile = sps->profile_idc;
switch(sps->profile_idc) {
case FF_PROFILE_H264_BASELINE:
// constraint_set1_flag set to 1
profile |= (sps->constraint_set_flags & 1<<1) ? FF_PROFILE_H264_CONSTRAINED : 0;
break;
case FF_PROFILE_H264_HIGH_10:
case FF_PROFILE_H264_HIGH_422:
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
// constraint_set3_flag set to 1
profile |= (sps->constraint_set_flags & 1<<3) ? FF_PROFILE_H264_INTRA : 0;
break;
}
return profile;
}
/**
* decodes a slice header.
* This will also call MPV_common_init() and frame_start() as needed.
*
* @param h h264context
* @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
*
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
*/
static int decode_slice_header(H264Context *h, H264Context *h0){
MpegEncContext * const s = &h->s;
MpegEncContext * const s0 = &h0->s;
unsigned int first_mb_in_slice;
unsigned int pps_id;
int num_ref_idx_active_override_flag;
unsigned int slice_type, tmp, i, j;
int default_ref_list_done = 0;
int last_pic_structure;
s->dropable= h->nal_ref_idc == 0;
/* FIXME: 2tap qpel isn't implemented for high bit depth. */
if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc && !h->pixel_shift){
s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
}else{
s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
}
first_mb_in_slice= get_ue_golomb(&s->gb);
if(first_mb_in_slice == 0){ //FIXME better field boundary detection
if(h0->current_slice && FIELD_PICTURE){
field_end(h, 1);
}
h0->current_slice = 0;
if (!s0->first_field)
s->current_picture_ptr= NULL;
}
slice_type= get_ue_golomb_31(&s->gb);
if(slice_type > 9){
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
return -1;
}
if(slice_type > 4){
slice_type -= 5;
h->slice_type_fixed=1;
}else
h->slice_type_fixed=0;
slice_type= golomb_to_pict_type[ slice_type ];
if (slice_type == AV_PICTURE_TYPE_I
|| (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
default_ref_list_done = 1;
}
h->slice_type= slice_type;
h->slice_type_nos= slice_type & 3;
s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
pps_id= get_ue_golomb(&s->gb);
if(pps_id>=MAX_PPS_COUNT){
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
return -1;
}
if(!h0->pps_buffers[pps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
return -1;
}
h->pps= *h0->pps_buffers[pps_id];
if(!h0->sps_buffers[h->pps.sps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
return -1;
}
h->sps = *h0->sps_buffers[h->pps.sps_id];
s->avctx->profile = ff_h264_get_profile(&h->sps);
s->avctx->level = h->sps.level_idc;
s->avctx->refs = h->sps.ref_frame_count;
if(h == h0 && h->dequant_coeff_pps != pps_id){
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
s->mb_width= h->sps.mb_width;
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
h->b_stride= s->mb_width*4;
s->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
s->width = 16*s->mb_width - (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1);
if(h->sps.frame_mbs_only_flag)
s->height= 16*s->mb_height - (1<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1);
else
s->height= 16*s->mb_height - (2<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1);
if (s->context_initialized
&& ( s->width != s->avctx->width || s->height != s->avctx->height
|| av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) {
if(h != h0) {
av_log_missing_feature(s->avctx, "Width/height changing with threads is", 0);
return -1; // width / height changed during parallelized decoding
}
free_tables(h, 0);
flush_dpb(s->avctx);
MPV_common_end(s);
}
if (!s->context_initialized) {
if (h != h0) {
av_log(h->s.avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n");
return -1;
}
avcodec_set_dimensions(s->avctx, s->width, s->height);
s->avctx->sample_aspect_ratio= h->sps.sar;
av_assert0(s->avctx->sample_aspect_ratio.den);
if(h->sps.video_signal_type_present_flag){
s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
if(h->sps.colour_description_present_flag){
s->avctx->color_primaries = h->sps.color_primaries;
s->avctx->color_trc = h->sps.color_trc;
s->avctx->colorspace = h->sps.colorspace;
}
}
if(h->sps.timing_info_present_flag){
int64_t den= h->sps.time_scale;
if(h->x264_build < 44U)
den *= 2;
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
h->sps.num_units_in_tick, den, 1<<30);
}
switch (h->sps.bit_depth_luma) {
case 9 :
if (CHROMA444)
s->avctx->pix_fmt = PIX_FMT_YUV444P9;
else if (CHROMA422)
s->avctx->pix_fmt = PIX_FMT_YUV422P9;
else
s->avctx->pix_fmt = PIX_FMT_YUV420P9;
break;
case 10 :
if (CHROMA444)
s->avctx->pix_fmt = PIX_FMT_YUV444P10;
else if (CHROMA422)
s->avctx->pix_fmt = PIX_FMT_YUV422P10;
else
s->avctx->pix_fmt = PIX_FMT_YUV420P10;
break;
default:
if (CHROMA444){
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P;
} else if (CHROMA422) {
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ422P : PIX_FMT_YUV422P;
}else{
s->avctx->pix_fmt = s->avctx->get_format(s->avctx,
s->avctx->codec->pix_fmts ?
s->avctx->codec->pix_fmts :
s->avctx->color_range == AVCOL_RANGE_JPEG ?
hwaccel_pixfmt_list_h264_jpeg_420 :
ff_hwaccel_pixfmt_list_420);
}
}
s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
if (MPV_common_init(s) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "MPV_common_init() failed.\n");
return -1;
}
s->first_field = 0;
h->prev_interlaced_frame = 1;
init_scan_tables(h);
if (ff_h264_alloc_tables(h) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_SLICE)) {
if (context_init(h) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
return -1;
}
} else {
for(i = 1; i < s->avctx->thread_count; i++) {
H264Context *c;
c = h->thread_context[i] = av_malloc(sizeof(H264Context));
memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
c->h264dsp = h->h264dsp;
c->sps = h->sps;
c->pps = h->pps;
c->pixel_shift = h->pixel_shift;
init_scan_tables(c);
clone_tables(c, h, i);
}
for(i = 0; i < s->avctx->thread_count; i++)
if (context_init(h->thread_context[i]) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
return -1;
}
}
}
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0;
h->mb_aff_frame = 0;
last_pic_structure = s0->picture_structure;
if(h->sps.frame_mbs_only_flag){
s->picture_structure= PICT_FRAME;
}else{
if(get_bits1(&s->gb)) { //field_pic_flag
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
} else {
s->picture_structure= PICT_FRAME;
h->mb_aff_frame = h->sps.mb_aff;
}
}
h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
if(h0->current_slice == 0){
// Shorten frame num gaps so we don't have to allocate reference frames just to throw them away
if(h->frame_num != h->prev_frame_num) {
int unwrap_prev_frame_num = h->prev_frame_num, max_frame_num = 1<<h->sps.log2_max_frame_num;
if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num;
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
if (unwrap_prev_frame_num < 0)
unwrap_prev_frame_num += max_frame_num;
h->prev_frame_num = unwrap_prev_frame_num;
}
}
while(h->frame_num != h->prev_frame_num &&
h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
if (ff_h264_frame_start(h) < 0)
return -1;
h->prev_frame_num++;
h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
s->current_picture_ptr->frame_num= h->prev_frame_num;
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 0);
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 1);
ff_generate_sliding_window_mmcos(h);
if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
s->avctx->error_recognition >= FF_ER_EXPLODE)
return AVERROR_INVALIDDATA;
/* Error concealment: if a ref is missing, copy the previous ref in its place.
* FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
* about there being no actual duplicates.
* FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
* concealing a lost frame, this probably isn't noticable by comparison, but it should
* be fixed. */
if (h->short_ref_count) {
if (prev) {
av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
(const uint8_t**)prev->f.data, prev->f.linesize,
s->avctx->pix_fmt, s->mb_width*16, s->mb_height*16);
h->short_ref[0]->poc = prev->poc+2;
}
h->short_ref[0]->frame_num = h->prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair... */
if (s0->first_field) {
assert(s0->current_picture_ptr);
assert(s0->current_picture_ptr->f.data[0]);
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
/*
* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such.
*/
s0->current_picture_ptr = NULL;
s0->first_field = FIELD_PICTURE;
} else {
if (h->nal_ref_idc &&
s0->current_picture_ptr->f.reference &&
s0->current_picture_ptr->frame_num != h->frame_num) {
/*
* This and previous field were reference, but had
* different frame_nums. Consider this field first in
* pair. Throw away previous field except for reference
* purposes.
*/
s0->first_field = 1;
s0->current_picture_ptr = NULL;
} else {
/* Second field in complementary pair */
s0->first_field = 0;
}
}
} else {
/* Frame or first field in a potentially complementary pair */
assert(!s0->current_picture_ptr);
s0->first_field = FIELD_PICTURE;
}
if(!FIELD_PICTURE || s0->first_field) {
if (ff_h264_frame_start(h) < 0) {
s0->first_field = 0;
return -1;
}
} else {
ff_release_unused_pictures(s, 0);
}
}
if(h != h0)
clone_slice(h, h0);
s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
assert(s->mb_num == s->mb_width * s->mb_height);
if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
first_mb_in_slice >= s->mb_num){
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return -1;
}
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
if (s->picture_structure == PICT_BOTTOM_FIELD)
s->resync_mb_y = s->mb_y = s->mb_y + 1;
assert(s->mb_y < s->mb_height);
if(s->picture_structure==PICT_FRAME){
h->curr_pic_num= h->frame_num;
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
}else{
h->curr_pic_num= 2*h->frame_num + 1;
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
}
if(h->nal_unit_type == NAL_IDR_SLICE){
get_ue_golomb(&s->gb); /* idr_pic_id */
}
if(h->sps.poc_type==0){
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
h->delta_poc_bottom= get_se_golomb(&s->gb);
}
}
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
h->delta_poc[0]= get_se_golomb(&s->gb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
h->delta_poc[1]= get_se_golomb(&s->gb);
}
init_poc(h);
if(h->pps.redundant_pic_cnt_present){
h->redundant_pic_count= get_ue_golomb(&s->gb);
}
//set defaults, might be overridden a few lines later
h->ref_count[0]= h->pps.ref_count[0];
h->ref_count[1]= h->pps.ref_count[1];
if(h->slice_type_nos != AV_PICTURE_TYPE_I){
if(h->slice_type_nos == AV_PICTURE_TYPE_B){
h->direct_spatial_mv_pred= get_bits1(&s->gb);
}
num_ref_idx_active_override_flag= get_bits1(&s->gb);
if(num_ref_idx_active_override_flag){
h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
if(h->slice_type_nos==AV_PICTURE_TYPE_B)
h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
h->ref_count[0]= h->ref_count[1]= 1;
return -1;
}
}
if(h->slice_type_nos == AV_PICTURE_TYPE_B)
h->list_count= 2;
else
h->list_count= 1;
}else
h->list_count= 0;
if(!default_ref_list_done){
ff_h264_fill_default_ref_list(h);
}
if(h->slice_type_nos!=AV_PICTURE_TYPE_I && ff_h264_decode_ref_pic_list_reordering(h) < 0) {
h->ref_count[1]= h->ref_count[0]= 0;
return -1;
}
if(h->slice_type_nos!=AV_PICTURE_TYPE_I){
s->last_picture_ptr= &h->ref_list[0][0];
ff_copy_picture(&s->last_picture, s->last_picture_ptr);
}
if(h->slice_type_nos==AV_PICTURE_TYPE_B){
s->next_picture_ptr= &h->ref_list[1][0];
ff_copy_picture(&s->next_picture, s->next_picture_ptr);
}
if( (h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P )
|| (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== AV_PICTURE_TYPE_B ) )
pred_weight_table(h);
else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
implicit_weight_table(h, -1);
}else {
h->use_weight = 0;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
}
if(h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 &&
s->avctx->error_recognition >= FF_ER_EXPLODE)
return AVERROR_INVALIDDATA;
if(FRAME_MBAFF){
ff_h264_fill_mbaff_ref_list(h);
if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
implicit_weight_table(h, 0);
implicit_weight_table(h, 1);
}
}
if(h->slice_type_nos==AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
ff_h264_direct_dist_scale_factor(h);
ff_h264_direct_ref_list_init(h);
if( h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac ){
tmp = get_ue_golomb_31(&s->gb);
if(tmp > 2){
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
return -1;
}
h->cabac_init_idc= tmp;
}
h->last_qscale_diff = 0;
tmp = h->pps.init_qp + get_se_golomb(&s->gb);
if(tmp>51+6*(h->sps.bit_depth_luma-8)){
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return -1;
}
s->qscale= tmp;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
//FIXME qscale / qp ... stuff
if(h->slice_type == AV_PICTURE_TYPE_SP){
get_bits1(&s->gb); /* sp_for_switch_flag */
}
if(h->slice_type==AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI){
get_se_golomb(&s->gb); /* slice_qs_delta */
}
h->deblocking_filter = 1;
h->slice_alpha_c0_offset = 52;
h->slice_beta_offset = 52;
if( h->pps.deblocking_filter_parameters_present ) {
tmp= get_ue_golomb_31(&s->gb);
if(tmp > 2){
av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
return -1;
}
h->deblocking_filter= tmp;
if(h->deblocking_filter < 2)
h->deblocking_filter^= 1; // 1<->0
if( h->deblocking_filter ) {
h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
if( h->slice_alpha_c0_offset > 104U
|| h->slice_beta_offset > 104U){
av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
return -1;
}
}
}
if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != AV_PICTURE_TYPE_I)
||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B)
||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
h->deblocking_filter= 0;
if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
/* Cheat slightly for speed:
Do not bother to deblock across slices. */
h->deblocking_filter = 2;
} else {
h0->max_contexts = 1;
if(!h0->single_decode_warning) {
av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
h0->single_decode_warning = 1;
}
if (h != h0) {
av_log(h->s.avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n");
return 1;
}
}
}
h->qp_thresh = 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset)
- FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1])
+ 6 * (h->sps.bit_depth_luma - 8);
#if 0 //FMO
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
slice_group_change_cycle= get_bits(&s->gb, ?);
#endif
h0->last_slice_type = slice_type;
h->slice_num = ++h0->current_slice;
if(h->slice_num >= MAX_SLICES){
av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
}
for(j=0; j<2; j++){
int id_list[16];
int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
for(i=0; i<16; i++){
id_list[i]= 60;
if (h->ref_list[j][i].f.data[0]) {
int k;
uint8_t *base = h->ref_list[j][i].f.base[0];
for(k=0; k<h->short_ref_count; k++)
if (h->short_ref[k]->f.base[0] == base) {
id_list[i]= k;
break;
}
for(k=0; k<h->long_ref_count; k++)
if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) {
id_list[i]= h->short_ref_count + k;
break;
}
}
}
ref2frm[0]=
ref2frm[1]= -1;
for(i=0; i<16; i++)
ref2frm[i+2]= 4*id_list[i]
+ (h->ref_list[j][i].f.reference & 3);
ref2frm[18+0]=
ref2frm[18+1]= -1;
for(i=16; i<48; i++)
ref2frm[i+4]= 4*id_list[(i-16)>>1]
+ (h->ref_list[j][i].f.reference & 3);
}
//FIXME: fix draw_edges+PAFF+frame threads
h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && s->avctx->active_thread_type)) ? 0 : 16;
h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
h->slice_num,
(s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
first_mb_in_slice,
av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
pps_id, h->frame_num,
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
s->qscale,
h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
h->use_weight,
h->use_weight==1 && h->use_weight_chroma ? "c" : "",
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
);
}
return 0;
}
int ff_h264_get_slice_type(const H264Context *h)
{
switch (h->slice_type) {
case AV_PICTURE_TYPE_P: return 0;
case AV_PICTURE_TYPE_B: return 1;
case AV_PICTURE_TYPE_I: return 2;
case AV_PICTURE_TYPE_SP: return 3;
case AV_PICTURE_TYPE_SI: return 4;
default: return -1;
}
}
static av_always_inline void fill_filter_caches_inter(H264Context *h, MpegEncContext * const s, int mb_type, int top_xy,
int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
{
int b_stride = h->b_stride;
int16_t (*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride;
const int b8_xy= 4*top_xy + 2;
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
AV_COPY128(mv_dst - 1*8, s->current_picture.f.motion_val[list][b_xy + 0]);
ref_cache[0 - 1*8]=
ref_cache[1 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]];
ref_cache[2 - 1*8]=
ref_cache[3 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]];
}else{
AV_ZERO128(mv_dst - 1*8);
AV_WN32A(&ref_cache[0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
}
if(!IS_INTERLACED(mb_type^left_type[LTOP])){
if(USES_LIST(left_type[LTOP], list)){
const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy= 4*left_xy[LTOP] + 1;
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[LTOP]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride*0]);
AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride*1]);
AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride*2]);
AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride*3]);
ref_cache[-1 + 0]=
ref_cache[-1 + 8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*0]];
ref_cache[-1 + 16]=
ref_cache[-1 + 24]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*1]];
}else{
AV_ZERO32(mv_dst - 1 + 0);
AV_ZERO32(mv_dst - 1 + 8);
AV_ZERO32(mv_dst - 1 +16);
AV_ZERO32(mv_dst - 1 +24);
ref_cache[-1 + 0]=
ref_cache[-1 + 8]=
ref_cache[-1 + 16]=
ref_cache[-1 + 24]= LIST_NOT_USED;
}
}
}
if(!USES_LIST(mb_type, list)){
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0,0), 4);
AV_WN32A(&ref_cache[0*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
AV_WN32A(&ref_cache[1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
AV_WN32A(&ref_cache[2*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
AV_WN32A(&ref_cache[3*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
return;
}
{
int8_t *ref = &s->current_picture.f.ref_index[list][4*mb_xy];
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]],ref2frm[list][ref[3]])&0x00FF00FF)*0x0101;
AV_WN32A(&ref_cache[0*8], ref01);
AV_WN32A(&ref_cache[1*8], ref01);
AV_WN32A(&ref_cache[2*8], ref23);
AV_WN32A(&ref_cache[3*8], ref23);
}
{
int16_t (*mv_src)[2] = &s->current_picture.f.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
AV_COPY128(mv_dst + 8*0, mv_src + 0*b_stride);
AV_COPY128(mv_dst + 8*1, mv_src + 1*b_stride);
AV_COPY128(mv_dst + 8*2, mv_src + 2*b_stride);
AV_COPY128(mv_dst + 8*3, mv_src + 3*b_stride);
}
}
/**
*
* @return non zero if the loop filter can be skiped
*/
static int fill_filter_caches(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int top_xy, left_xy[LEFT_MBS];
int top_type, left_type[LEFT_MBS];
uint8_t *nnz;
uint8_t *nnz_cache;
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
left_xy[LBOT] = left_xy[LTOP] = mb_xy-1;
if(FRAME_MBAFF){
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if(s->mb_y&1){
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[LTOP] -= s->mb_stride;
}
}else{
if(curr_mb_field_flag){
top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
}
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[LBOT] += s->mb_stride;
}
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[LTOP] = left_xy[LTOP];
h->left_mb_xy[LBOT] = left_xy[LBOT];
{
//for sufficiently low qp, filtering wouldn't do anything
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
int qp = s->current_picture.f.qscale_table[mb_xy];
if(qp <= qp_thresh
&& (left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh)
&& (top_xy < 0 || ((qp + s->current_picture.f.qscale_table[top_xy ] + 1) >> 1) <= qp_thresh)) {
if(!FRAME_MBAFF)
return 1;
if ((left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LBOT] ] + 1) >> 1) <= qp_thresh) &&
(top_xy < s->mb_stride || ((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh))
return 1;
}
}
top_type = s->current_picture.f.mb_type[top_xy];
left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
if(h->deblocking_filter == 2){
if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
if(h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP]= left_type[LBOT]= 0;
}else{
if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
if(h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP]= left_type[LBOT] =0;
}
h->top_type = top_type;
h->left_type[LTOP]= left_type[LTOP];
h->left_type[LBOT]= left_type[LBOT];
if(IS_INTRA(mb_type))
return 0;
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0);
if(h->list_count == 2)
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1);
nnz = h->non_zero_count[mb_xy];
nnz_cache = h->non_zero_count_cache;
AV_COPY32(&nnz_cache[4+8*1], &nnz[ 0]);
AV_COPY32(&nnz_cache[4+8*2], &nnz[ 4]);
AV_COPY32(&nnz_cache[4+8*3], &nnz[ 8]);
AV_COPY32(&nnz_cache[4+8*4], &nnz[12]);
h->cbp= h->cbp_table[mb_xy];
if(top_type){
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4+8*0], &nnz[3*4]);
}
if(left_type[LTOP]){
nnz = h->non_zero_count[left_xy[LTOP]];
nnz_cache[3+8*1]= nnz[3+0*4];
nnz_cache[3+8*2]= nnz[3+1*4];
nnz_cache[3+8*3]= nnz[3+2*4];
nnz_cache[3+8*4]= nnz[3+3*4];
}
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
if(!CABAC && h->pps.transform_8x8_mode){
if(IS_8x8DCT(top_type)){
nnz_cache[4+8*0]=
nnz_cache[5+8*0]= (h->cbp_table[top_xy] & 0x4000) >> 12;
nnz_cache[6+8*0]=
nnz_cache[7+8*0]= (h->cbp_table[top_xy] & 0x8000) >> 12;
}
if(IS_8x8DCT(left_type[LTOP])){
nnz_cache[3+8*1]=
nnz_cache[3+8*2]= (h->cbp_table[left_xy[LTOP]]&0x2000) >> 12; //FIXME check MBAFF
}
if(IS_8x8DCT(left_type[LBOT])){
nnz_cache[3+8*3]=
nnz_cache[3+8*4]= (h->cbp_table[left_xy[LBOT]]&0x8000) >> 12; //FIXME check MBAFF
}
if(IS_8x8DCT(mb_type)){
nnz_cache[scan8[0 ]]= nnz_cache[scan8[1 ]]=
nnz_cache[scan8[2 ]]= nnz_cache[scan8[3 ]]= (h->cbp & 0x1000) >> 12;
nnz_cache[scan8[0+ 4]]= nnz_cache[scan8[1+ 4]]=
nnz_cache[scan8[2+ 4]]= nnz_cache[scan8[3+ 4]]= (h->cbp & 0x2000) >> 12;
nnz_cache[scan8[0+ 8]]= nnz_cache[scan8[1+ 8]]=
nnz_cache[scan8[2+ 8]]= nnz_cache[scan8[3+ 8]]= (h->cbp & 0x4000) >> 12;
nnz_cache[scan8[0+12]]= nnz_cache[scan8[1+12]]=
nnz_cache[scan8[2+12]]= nnz_cache[scan8[3+12]]= (h->cbp & 0x8000) >> 12;
}
}
return 0;
}
static void loop_filter(H264Context *h, int start_x, int end_x){
MpegEncContext * const s = &h->s;
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y= s->mb_y + FRAME_MBAFF;
const int old_slice_type= h->slice_type;
const int pixel_shift = h->pixel_shift;
const int block_h = 16 >> s->chroma_y_shift;
if(h->deblocking_filter) {
for(mb_x= start_x; mb_x<end_x; mb_x++){
for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
int mb_xy, mb_type;
mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
h->slice_num= h->slice_table[mb_xy];
mb_type = s->current_picture.f.mb_type[mb_xy];
h->list_count= h->list_counts[mb_xy];
if(FRAME_MBAFF)
h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
s->mb_x= mb_x;
s->mb_y= mb_y;
dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * s->uvlinesize * block_h;
dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * s->uvlinesize * block_h;
//FIXME simplify above
if (MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
if(mb_y&1){ //FIXME move out of this function?
dest_y -= s->linesize*15;
dest_cb-= s->uvlinesize * (block_h - 1);
dest_cr-= s->uvlinesize * (block_h - 1);
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
}
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
if(fill_filter_caches(h, mb_type))
continue;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]);
if (FRAME_MBAFF) {
ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
}
}
}
}
h->slice_type= old_slice_type;
s->mb_x= end_x;
s->mb_y= end_mb_y - FRAME_MBAFF;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
}
static void predict_field_decoding_flag(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
? s->current_picture.f.mb_type[mb_xy - 1]
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
? s->current_picture.f.mb_type[mb_xy - s->mb_stride]
: 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* Draw edges and report progress for the last MB row.
*/
static void decode_finish_row(H264Context *h){
MpegEncContext * const s = &h->s;
int top = 16*(s->mb_y >> FIELD_PICTURE);
int height = 16 << FRAME_MBAFF;
int deblock_border = (16 + 4) << FRAME_MBAFF;
int pic_height = 16*s->mb_height >> FIELD_PICTURE;
if (h->deblocking_filter) {
if((top + height) >= pic_height)
height += deblock_border;
top -= deblock_border;
}
if (top >= pic_height || (top + height) < h->emu_edge_height)
return;
height = FFMIN(height, pic_height - top);
if (top < h->emu_edge_height) {
height = top+height;
top = 0;
}
ff_draw_horiz_band(s, top, height);
if (s->dropable) return;
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, top + height - 1,
s->picture_structure==PICT_BOTTOM_FIELD);
}
static int decode_slice(struct AVCodecContext *avctx, void *arg){
H264Context *h = *(void**)arg;
MpegEncContext * const s = &h->s;
const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
int lf_x_start = s->mb_x;
s->mb_skip_run= -1;
h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
(CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
if( h->pps.cabac ) {
/* realign */
align_get_bits( &s->gb );
/* init cabac */
ff_init_cabac_states( &h->cabac);
ff_init_cabac_decoder( &h->cabac,
s->gb.buffer + get_bits_count(&s->gb)/8,
(get_bits_left(&s->gb) + 7)/8);
ff_h264_init_cabac_states(h);
for(;;){
//START_TIMER
int ret = ff_h264_decode_mb_cabac(h);
int eos;
//STOP_TIMER("decode_mb_cabac")
if(ret>=0) ff_h264_hl_decode_mb(h);
if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
s->mb_y++;
ret = ff_h264_decode_mb_cabac(h);
if(ret>=0) ff_h264_hl_decode_mb(h);
s->mb_y--;
}
eos = get_cabac_terminate( &h->cabac );
if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
if (s->mb_x >= lf_x_start) loop_filter(h, lf_x_start, s->mb_x + 1);
return 0;
}
if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if( ++s->mb_x >= s->mb_width ) {
loop_filter(h, lf_x_start, s->mb_x);
s->mb_x = lf_x_start = 0;
decode_finish_row(h);
++s->mb_y;
if(FIELD_OR_MBAFF_PICTURE) {
++s->mb_y;
if(FRAME_MBAFF && s->mb_y < s->mb_height)
predict_field_decoding_flag(h);
}
}
if( eos || s->mb_y >= s->mb_height ) {
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
return 0;
}
}
} else {
for(;;){
int ret = ff_h264_decode_mb_cavlc(h);
if(ret>=0) ff_h264_hl_decode_mb(h);
if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
s->mb_y++;
ret = ff_h264_decode_mb_cavlc(h);
if(ret>=0) ff_h264_hl_decode_mb(h);
s->mb_y--;
}
if(ret<0){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if(++s->mb_x >= s->mb_width){
loop_filter(h, lf_x_start, s->mb_x);
s->mb_x = lf_x_start = 0;
decode_finish_row(h);
++s->mb_y;
if(FIELD_OR_MBAFF_PICTURE) {
++s->mb_y;
if(FRAME_MBAFF && s->mb_y < s->mb_height)
predict_field_decoding_flag(h);
}
if(s->mb_y >= s->mb_height){
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return -1;
}
}
}
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
}
}
}
}
/**
* Call decode_slice() for each context.
*
* @param h h264 master context
* @param context_count number of contexts to execute
*/
static int execute_decode_slices(H264Context *h, int context_count){
MpegEncContext * const s = &h->s;
AVCodecContext * const avctx= s->avctx;
H264Context *hx;
int i;
if (s->avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
return 0;
if(context_count == 1) {
return decode_slice(avctx, &h);
} else {
for(i = 1; i < context_count; i++) {
hx = h->thread_context[i];
hx->s.error_recognition = avctx->error_recognition;
hx->s.error_count = 0;
}
avctx->execute(avctx, (void *)decode_slice,
h->thread_context, NULL, context_count, sizeof(void*));
/* pull back stuff from slices to master context */
hx = h->thread_context[context_count - 1];
s->mb_x = hx->s.mb_x;
s->mb_y = hx->s.mb_y;
s->dropable = hx->s.dropable;
s->picture_structure = hx->s.picture_structure;
for(i = 1; i < context_count; i++)
h->s.error_count += h->thread_context[i]->s.error_count;
}
return 0;
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
MpegEncContext * const s = &h->s;
AVCodecContext * const avctx= s->avctx;
H264Context *hx; ///< thread context
int buf_index;
int context_count;
int next_avc;
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
int nals_needed=0; ///< number of NALs that need decoding before the next frame thread starts
int nal_index;
h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1;
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
h->current_slice = 0;
if (!s->first_field)
s->current_picture_ptr= NULL;
ff_h264_reset_sei(h);
}
for(;pass <= 1;pass++){
buf_index = 0;
context_count = 0;
next_avc = h->is_avc ? 0 : buf_size;
nal_index = 0;
for(;;){
int consumed;
int dst_length;
int bit_length;
const uint8_t *ptr;
int i, nalsize = 0;
int err;
if(buf_index >= next_avc) {
if(buf_index >= buf_size) break;
nalsize = 0;
for(i = 0; i < h->nal_length_size; i++)
nalsize = (nalsize << 8) | buf[buf_index++];
if(nalsize <= 0 || nalsize > buf_size - buf_index){
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
break;
}
next_avc= buf_index + nalsize;
} else {
// start code prefix search
for(; buf_index + 3 < next_avc; buf_index++){
// This should always succeed in the first iteration.
if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
break;
}
if(buf_index+3 >= buf_size) break;
buf_index+=3;
if(buf_index >= next_avc) continue;
}
hx = h->thread_context[context_count];
ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
if (ptr==NULL || dst_length < 0){
return -1;
}
i= buf_index + consumed;
if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
s->workaround_bugs |= FF_BUG_TRUNCATED;
if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
while(ptr[dst_length - 1] == 0 && dst_length > 0)
dst_length--;
}
bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
if(s->avctx->debug&FF_DEBUG_STARTCODE){
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
}
if (h->is_avc && (nalsize != consumed) && nalsize){
av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
}
buf_index += consumed;
nal_index++;
if(pass == 0) {
// packets can sometimes contain multiple PPS/SPS
// e.g. two PAFF field pictures in one packet, or a demuxer which splits NALs strangely
// if so, when frame threading we can't start the next thread until we've read all of them
switch (hx->nal_unit_type) {
case NAL_SPS:
case NAL_PPS:
nals_needed = nal_index;
break;
case NAL_IDR_SLICE:
case NAL_SLICE:
init_get_bits(&hx->s.gb, ptr, bit_length);
if (!get_ue_golomb(&hx->s.gb))
nals_needed = nal_index;
}
continue;
}
//FIXME do not discard SEI id
if(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
continue;
again:
err = 0;
switch(hx->nal_unit_type){
case NAL_IDR_SLICE:
if (h->nal_unit_type != NAL_IDR_SLICE) {
av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
return -1;
}
idr(h); //FIXME ensure we don't loose some frames if there is reordering
case NAL_SLICE:
init_get_bits(&hx->s.gb, ptr, bit_length);
hx->intra_gb_ptr=
hx->inter_gb_ptr= &hx->s.gb;
hx->s.data_partitioning = 0;
if((err = decode_slice_header(hx, h)))
break;
s->current_picture_ptr->f.key_frame |=
(hx->nal_unit_type == NAL_IDR_SLICE) ||
(h->sei_recovery_frame_cnt >= 0);
if (h->current_slice == 1) {
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) {
decode_postinit(h, nal_index >= nals_needed);
}
if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
return -1;
if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_start(s);
}
if(hx->redundant_pic_count==0
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
&& avctx->skip_frame < AVDISCARD_ALL){
if(avctx->hwaccel) {
if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
return -1;
}else
if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
static const uint8_t start_code[] = {0x00, 0x00, 0x01};
ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
}else
context_count++;
}
break;
case NAL_DPA:
init_get_bits(&hx->s.gb, ptr, bit_length);
hx->intra_gb_ptr=
hx->inter_gb_ptr= NULL;
if ((err = decode_slice_header(hx, h)) < 0)
break;
hx->s.data_partitioning = 1;
break;
case NAL_DPB:
init_get_bits(&hx->intra_gb, ptr, bit_length);
hx->intra_gb_ptr= &hx->intra_gb;
break;
case NAL_DPC:
init_get_bits(&hx->inter_gb, ptr, bit_length);
hx->inter_gb_ptr= &hx->inter_gb;
if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
&& s->context_initialized
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
&& avctx->skip_frame < AVDISCARD_ALL)
context_count++;
break;
case NAL_SEI:
init_get_bits(&s->gb, ptr, bit_length);
ff_h264_decode_sei(h);
break;
case NAL_SPS:
init_get_bits(&s->gb, ptr, bit_length);
ff_h264_decode_seq_parameter_set(h);
if (s->flags& CODEC_FLAG_LOW_DELAY ||
(h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames))
s->low_delay=1;
if(avctx->has_b_frames < 2)
avctx->has_b_frames= !s->low_delay;
if (avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) {
avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
h->cur_chroma_format_idc = h->sps.chroma_format_idc;
h->pixel_shift = h->sps.bit_depth_luma > 8;
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16;
dsputil_init(&s->dsp, s->avctx);
} else {
av_log(avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma);
return -1;
}
}
break;
case NAL_PPS:
init_get_bits(&s->gb, ptr, bit_length);
ff_h264_decode_picture_parameter_set(h, bit_length);
break;
case NAL_AUD:
case NAL_END_SEQUENCE:
case NAL_END_STREAM:
case NAL_FILLER_DATA:
case NAL_SPS_EXT:
case NAL_AUXILIARY_SLICE:
break;
default:
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
}
if(context_count == h->max_contexts) {
execute_decode_slices(h, context_count);
context_count = 0;
}
if (err < 0)
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
else if(err == 1) {
/* Slice could not be decoded in parallel mode, copy down
* NAL unit stuff to context 0 and restart. Note that
* rbsp_buffer is not transferred, but since we no longer
* run in parallel mode this should not be an issue. */
h->nal_unit_type = hx->nal_unit_type;
h->nal_ref_idc = hx->nal_ref_idc;
hx = h;
goto again;
}
}
}
if(context_count)
execute_decode_slices(h, context_count);
return buf_index;
}
/**
* returns the number of bytes consumed for building the current frame
*/
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
if(pos+10>buf_size) pos=buf_size; // oops ;)
return pos;
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
AVFrame *pict = data;
int buf_index;
s->flags= avctx->flags;
s->flags2= avctx->flags2;
/* end of stream, output what is still in the buffers */
out:
if (buf_size == 0) {
Picture *out;
int i, out_idx;
s->current_picture_ptr = NULL;
//FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
if(h->delayed_pic[i]->poc < out->poc){
out = h->delayed_pic[i];
out_idx = i;
}
for(i=out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i+1];
if(out){
*data_size = sizeof(AVFrame);
*pict= *(AVFrame*)out;
}
return 0;
}
buf_index=decode_nal_units(h, buf, buf_size);
if(buf_index < 0)
return -1;
if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
buf_size = 0;
goto out;
}
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
if (avctx->skip_frame >= AVDISCARD_NONREF)
return 0;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return -1;
}
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1);
field_end(h, 0);
if (!h->next_output_pic) {
/* Wait for second field. */
*data_size = 0;
} else {
*data_size = sizeof(AVFrame);
*pict = *(AVFrame*)h->next_output_pic;
}
}
assert(pict->data[0] || !*data_size);
ff_print_debug_info(s, pict);
//printf("out %d\n", (int)pict->data[0]);
return get_consumed_bytes(s, buf_index, buf_size);
}
#if 0
static inline void fill_mb_avail(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
if(s->mb_y){
h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
}else{
h->mb_avail[0]=
h->mb_avail[1]=
h->mb_avail[2]= 0;
}
h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
h->mb_avail[4]= 1; //FIXME move out
h->mb_avail[5]= 0; //FIXME move out
}
#endif
#ifdef TEST
#undef printf
#undef random
#define COUNT 8000
#define SIZE (COUNT*40)
int main(void){
int i;
uint8_t temp[SIZE];
PutBitContext pb;
GetBitContext gb;
// int int_temp[10000];
DSPContext dsp;
AVCodecContext avctx;
dsputil_init(&dsp, &avctx);
init_put_bits(&pb, temp, SIZE);
printf("testing unsigned exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_ue_golomb(&pb, i);
STOP_TIMER("set_ue_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_ue_golomb(&gb);
if(j != i){
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_ue_golomb");
}
init_put_bits(&pb, temp, SIZE);
printf("testing signed exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_se_golomb(&pb, i - COUNT/2);
STOP_TIMER("set_se_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_se_golomb(&gb);
if(j != i - COUNT/2){
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_se_golomb");
}
printf("Testing RBSP\n");
return 0;
}
#endif /* TEST */
av_cold void ff_h264_free_context(H264Context *h)
{
int i;
free_tables(h, 1); //FIXME cleanup init stuff perhaps
for(i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for(i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
}
av_cold int ff_h264_decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
ff_h264_free_context(h);
MPV_common_end(s);
// memset(h, 0, sizeof(H264Context));
return 0;
}
static const AVProfile profiles[] = {
{ FF_PROFILE_H264_BASELINE, "Baseline" },
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
{ FF_PROFILE_H264_MAIN, "Main" },
{ FF_PROFILE_H264_EXTENDED, "Extended" },
{ FF_PROFILE_H264_HIGH, "High" },
{ FF_PROFILE_H264_HIGH_10, "High 10" },
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
{ FF_PROFILE_UNKNOWN },
};
AVCodec ff_h264_decoder = {
.name = "h264",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = ff_h264_decode_end,
.decode = decode_frame,
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY |
CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
.flush= flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
.profiles = NULL_IF_CONFIG_SMALL(profiles),
};
#if CONFIG_H264_VDPAU_DECODER
AVCodec ff_h264_vdpau_decoder = {
.name = "h264_vdpau",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = ff_h264_decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
.flush= flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
.pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
.profiles = NULL_IF_CONFIG_SMALL(profiles),
};
#endif