mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
14 KiB
372 lines
14 KiB
/* |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc., |
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
|
*/ |
|
|
|
#include <string.h> |
|
|
|
#include "libavutil/common.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/mem_internal.h" |
|
|
|
#include "libswscale/swscale.h" |
|
#include "libswscale/swscale_internal.h" |
|
|
|
#include "checkasm.h" |
|
|
|
#define randomize_buffers(buf, size) \ |
|
do { \ |
|
int j; \ |
|
for (j = 0; j < size; j+=4) \ |
|
AV_WN32(buf + j, rnd()); \ |
|
} while (0) |
|
|
|
static void yuv2planeX_8_ref(const int16_t *filter, int filterSize, |
|
const int16_t **src, uint8_t *dest, int dstW, |
|
const uint8_t *dither, int offset) |
|
{ |
|
// This corresponds to the yuv2planeX_8_c function |
|
int i; |
|
for (i = 0; i < dstW; i++) { |
|
int val = dither[(i + offset) & 7] << 12; |
|
int j; |
|
for (j = 0; j < filterSize; j++) |
|
val += src[j][i] * filter[j]; |
|
|
|
dest[i]= av_clip_uint8(val >> 19); |
|
} |
|
} |
|
|
|
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy) |
|
{ |
|
for (size_t i = 0; i < n; i++) { |
|
if (abs(ref[i] - test[i]) > accuracy) |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
static void print_data(uint8_t *p, size_t len, size_t offset) |
|
{ |
|
size_t i = 0; |
|
for (; i < len; i++) { |
|
if (i % 8 == 0) { |
|
printf("0x%04zx: ", i+offset); |
|
} |
|
printf("0x%02x ", (uint32_t) p[i]); |
|
if (i % 8 == 7) { |
|
printf("\n"); |
|
} |
|
} |
|
if (i % 8 != 0) { |
|
printf("\n"); |
|
} |
|
} |
|
|
|
static size_t show_differences(uint8_t *a, uint8_t *b, size_t len) |
|
{ |
|
for (size_t i = 0; i < len; i++) { |
|
if (a[i] != b[i]) { |
|
size_t offset_of_mismatch = i; |
|
size_t offset; |
|
if (i >= 8) i-=8; |
|
offset = i & (~7); |
|
printf("test a:\n"); |
|
print_data(&a[offset], 32, offset); |
|
printf("\ntest b:\n"); |
|
print_data(&b[offset], 32, offset); |
|
printf("\n"); |
|
return offset_of_mismatch; |
|
} |
|
} |
|
return len; |
|
} |
|
|
|
static void check_yuv2yuv1(int accurate) |
|
{ |
|
struct SwsContext *ctx; |
|
int osi, isi; |
|
int dstW, offset; |
|
size_t fail_offset; |
|
const int input_sizes[] = {8, 24, 128, 144, 256, 512}; |
|
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]); |
|
#define LARGEST_INPUT_SIZE 512 |
|
|
|
const int offsets[] = {0, 3, 8, 11, 16, 19}; |
|
const int OFFSET_SIZES = sizeof(offsets)/sizeof(offsets[0]); |
|
const char *accurate_str = (accurate) ? "accurate" : "approximate"; |
|
|
|
declare_func(void, |
|
const int16_t *src, uint8_t *dest, |
|
int dstW, const uint8_t *dither, int offset); |
|
|
|
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_8(uint8_t, dither, [8]); |
|
|
|
randomize_buffers((uint8_t*)dither, 8); |
|
randomize_buffers((uint8_t*)src_pixels, LARGEST_INPUT_SIZE * sizeof(int16_t)); |
|
ctx = sws_alloc_context(); |
|
if (accurate) |
|
ctx->flags |= SWS_ACCURATE_RND; |
|
if (sws_init_context(ctx, NULL, NULL) < 0) |
|
fail(); |
|
|
|
ff_sws_init_scale(ctx); |
|
for (isi = 0; isi < INPUT_SIZES; ++isi) { |
|
dstW = input_sizes[isi]; |
|
for (osi = 0; osi < OFFSET_SIZES; osi++) { |
|
offset = offsets[osi]; |
|
if (check_func(ctx->yuv2plane1, "yuv2yuv1_%d_%d_%s", offset, dstW, accurate_str)){ |
|
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0])); |
|
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0])); |
|
|
|
call_ref(src_pixels, dst0, dstW, dither, offset); |
|
call_new(src_pixels, dst1, dstW, dither, offset); |
|
if (cmp_off_by_n(dst0, dst1, dstW * sizeof(dst0[0]), accurate ? 0 : 2)) { |
|
fail(); |
|
printf("failed: yuv2yuv1_%d_%di_%s\n", offset, dstW, accurate_str); |
|
fail_offset = show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])); |
|
printf("failing values: src: 0x%04x dither: 0x%02x dst-c: %02x dst-asm: %02x\n", |
|
(int) src_pixels[fail_offset], |
|
(int) dither[(fail_offset + fail_offset) & 7], |
|
(int) dst0[fail_offset], |
|
(int) dst1[fail_offset]); |
|
} |
|
if(dstW == LARGEST_INPUT_SIZE) |
|
bench_new(src_pixels, dst1, dstW, dither, offset); |
|
} |
|
} |
|
} |
|
sws_freeContext(ctx); |
|
} |
|
|
|
static void check_yuv2yuvX(int accurate) |
|
{ |
|
struct SwsContext *ctx; |
|
int fsi, osi, isi, i, j; |
|
int dstW; |
|
#define LARGEST_FILTER 16 |
|
// ff_yuv2planeX_8_sse2 can't handle odd filter sizes |
|
const int filter_sizes[] = {2, 4, 8, 16}; |
|
const int FILTER_SIZES = sizeof(filter_sizes)/sizeof(filter_sizes[0]); |
|
#define LARGEST_INPUT_SIZE 512 |
|
static const int input_sizes[] = {8, 24, 128, 144, 256, 512}; |
|
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]); |
|
const char *accurate_str = (accurate) ? "accurate" : "approximate"; |
|
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter, |
|
int filterSize, const int16_t **src, uint8_t *dest, |
|
int dstW, const uint8_t *dither, int offset); |
|
|
|
const int16_t **src; |
|
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]); |
|
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]); |
|
LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]); |
|
union VFilterData{ |
|
const int16_t *src; |
|
uint16_t coeff[8]; |
|
} *vFilterData; |
|
uint8_t d_val = rnd(); |
|
memset(dither, d_val, LARGEST_INPUT_SIZE); |
|
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t)); |
|
ctx = sws_alloc_context(); |
|
if (accurate) |
|
ctx->flags |= SWS_ACCURATE_RND; |
|
if (sws_init_context(ctx, NULL, NULL) < 0) |
|
fail(); |
|
|
|
ff_sws_init_scale(ctx); |
|
for(isi = 0; isi < INPUT_SIZES; ++isi){ |
|
dstW = input_sizes[isi]; |
|
for(osi = 0; osi < 64; osi += 16){ |
|
if (dstW <= osi) |
|
continue; |
|
for (fsi = 0; fsi < FILTER_SIZES; ++fsi) { |
|
// Generate filter coefficients for the given filter size, |
|
// with some properties: |
|
// - The coefficients add up to the intended sum (4096, 1<<12) |
|
// - The coefficients contain negative values |
|
// - The filter intermediates don't overflow for worst case |
|
// inputs (all positive coefficients are coupled with |
|
// input_max and all negative coefficients with input_min, |
|
// or vice versa). |
|
// Produce a filter with all coefficients set to |
|
// -((1<<12)/(filter_size-1)) except for one (randomly chosen) |
|
// which is set to ((1<<13)-1). |
|
for (i = 0; i < filter_sizes[fsi]; ++i) |
|
filter_coeff[i] = -((1 << 12) / (filter_sizes[fsi] - 1)); |
|
filter_coeff[rnd() % filter_sizes[fsi]] = (1 << 13) - 1; |
|
|
|
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]); |
|
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData)); |
|
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData)); |
|
for (i = 0; i < filter_sizes[fsi]; ++i) { |
|
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE]; |
|
vFilterData[i].src = src[i] - osi; |
|
for(j = 0; j < 4; ++j) |
|
vFilterData[i].coeff[j + 4] = filter_coeff[i]; |
|
} |
|
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d_%s", filter_sizes[fsi], osi, dstW, accurate_str)){ |
|
// use vFilterData for the mmx function |
|
const int16_t *filter = ctx->use_mmx_vfilter ? (const int16_t*)vFilterData : &filter_coeff[0]; |
|
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0])); |
|
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0])); |
|
|
|
// We can't use call_ref here, because we don't know if use_mmx_vfilter was set for that |
|
// function or not, so we can't pass it the parameters correctly. |
|
yuv2planeX_8_ref(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi); |
|
|
|
call_new(filter, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); |
|
if (cmp_off_by_n(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]), accurate ? 0 : 2)) { |
|
fail(); |
|
printf("failed: yuv2yuvX_%d_%d_%d_%s\n", filter_sizes[fsi], osi, dstW, accurate_str); |
|
show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])); |
|
} |
|
if(dstW == LARGEST_INPUT_SIZE) |
|
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); |
|
|
|
} |
|
av_freep(&src); |
|
av_freep(&vFilterData); |
|
} |
|
} |
|
} |
|
sws_freeContext(ctx); |
|
#undef FILTER_SIZES |
|
} |
|
|
|
#undef SRC_PIXELS |
|
#define SRC_PIXELS 512 |
|
|
|
static void check_hscale(void) |
|
{ |
|
#define MAX_FILTER_WIDTH 40 |
|
#define FILTER_SIZES 6 |
|
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 }; |
|
|
|
#define HSCALE_PAIRS 2 |
|
static const int hscale_pairs[HSCALE_PAIRS][2] = { |
|
{ 8, 14 }, |
|
{ 8, 18 }, |
|
}; |
|
|
|
#define LARGEST_INPUT_SIZE 512 |
|
#define INPUT_SIZES 6 |
|
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512}; |
|
|
|
int i, j, fsi, hpi, width, dstWi; |
|
struct SwsContext *ctx; |
|
|
|
// padded |
|
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]); |
|
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]); |
|
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]); |
|
|
|
// padded |
|
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]); |
|
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]); |
|
LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]); |
|
LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]); |
|
|
|
// The dst parameter here is either int16_t or int32_t but we use void* to |
|
// just cover both cases. |
|
declare_func(void, void *c, void *dst, int dstW, |
|
const uint8_t *src, const int16_t *filter, |
|
const int32_t *filterPos, int filterSize); |
|
|
|
ctx = sws_alloc_context(); |
|
if (sws_init_context(ctx, NULL, NULL) < 0) |
|
fail(); |
|
|
|
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1); |
|
|
|
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) { |
|
for (fsi = 0; fsi < FILTER_SIZES; fsi++) { |
|
for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) { |
|
width = filter_sizes[fsi]; |
|
|
|
ctx->srcBpc = hscale_pairs[hpi][0]; |
|
ctx->dstBpc = hscale_pairs[hpi][1]; |
|
ctx->hLumFilterSize = ctx->hChrFilterSize = width; |
|
|
|
for (i = 0; i < SRC_PIXELS; i++) { |
|
filterPos[i] = i; |
|
filterPosAvx[i] = i; |
|
|
|
// These filter cofficients are chosen to try break two corner |
|
// cases, namely: |
|
// |
|
// - Negative filter coefficients. The filters output signed |
|
// values, and it should be possible to end up with negative |
|
// output values. |
|
// |
|
// - Positive clipping. The hscale filter function has clipping |
|
// at (1<<15) - 1 |
|
// |
|
// The coefficients sum to the 1.0 point for the hscale |
|
// functions (1 << 14). |
|
|
|
for (j = 0; j < width; j++) { |
|
filter[i * width + j] = -((1 << 14) / (width - 1)); |
|
} |
|
filter[i * width + (rnd() % width)] = ((1 << 15) - 1); |
|
} |
|
|
|
for (i = 0; i < MAX_FILTER_WIDTH; i++) { |
|
// These values should be unused in SIMD implementations but |
|
// may still be read, random coefficients here should help show |
|
// issues where they are used in error. |
|
|
|
filter[SRC_PIXELS * width + i] = rnd(); |
|
} |
|
ctx->dstW = ctx->chrDstW = input_sizes[dstWi]; |
|
ff_sws_init_scale(ctx); |
|
memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH)); |
|
ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, ctx->dstW); |
|
|
|
if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) { |
|
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0])); |
|
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0])); |
|
|
|
call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width); |
|
call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width); |
|
if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0]))) |
|
fail(); |
|
bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width); |
|
} |
|
} |
|
} |
|
} |
|
sws_freeContext(ctx); |
|
} |
|
|
|
void checkasm_check_sw_scale(void) |
|
{ |
|
check_hscale(); |
|
report("hscale"); |
|
check_yuv2yuv1(0); |
|
check_yuv2yuv1(1); |
|
report("yuv2yuv1"); |
|
check_yuv2yuvX(0); |
|
check_yuv2yuvX(1); |
|
report("yuv2yuvX"); |
|
}
|
|
|