mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
989 lines
26 KiB
989 lines
26 KiB
/* |
|
* RKA decoder |
|
* Copyright (c) 2023 Paul B Mahol |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/intreadwrite.h" |
|
|
|
#include "avcodec.h" |
|
#include "codec_internal.h" |
|
#include "bytestream.h" |
|
#include "decode.h" |
|
|
|
typedef struct ACoder { |
|
GetByteContext gb; |
|
uint32_t low, high; |
|
uint32_t value; |
|
} ACoder; |
|
|
|
typedef struct FiltCoeffs { |
|
int32_t coeffs[257]; |
|
unsigned size; |
|
} FiltCoeffs; |
|
|
|
typedef struct Model64 { |
|
uint32_t zero[2]; |
|
uint32_t sign[2]; |
|
unsigned size; |
|
int bits; |
|
|
|
uint16_t val4[65]; |
|
uint16_t val1[65]; |
|
} Model64; |
|
|
|
typedef struct AdaptiveModel { |
|
int last; |
|
int total; |
|
int buf_size; |
|
int16_t sum; |
|
uint16_t aprob0; |
|
uint16_t aprob1; |
|
uint16_t *prob[2]; |
|
} AdaptiveModel; |
|
|
|
typedef struct ChContext { |
|
int cmode; |
|
int cmode2; |
|
int last_nb_decoded; |
|
unsigned srate_pad; |
|
unsigned pos_idx; |
|
|
|
AdaptiveModel *filt_size; |
|
AdaptiveModel *filt_bits; |
|
|
|
uint32_t *bprob[2]; |
|
|
|
AdaptiveModel position; |
|
AdaptiveModel fshift; |
|
AdaptiveModel nb_segments; |
|
AdaptiveModel coeff_bits[11]; |
|
|
|
Model64 mdl64[4][11]; |
|
|
|
int32_t buf0[131072+2560]; |
|
int32_t buf1[131072+2560]; |
|
} ChContext; |
|
|
|
typedef struct RKAContext { |
|
AVClass *class; |
|
|
|
ACoder ac; |
|
ChContext ch[2]; |
|
|
|
int bps; |
|
int align; |
|
int channels; |
|
int correlated; |
|
int frame_samples; |
|
int last_nb_samples; |
|
uint32_t total_nb_samples; |
|
uint32_t samples_left; |
|
|
|
uint32_t bprob[2][257]; |
|
|
|
AdaptiveModel filt_size; |
|
AdaptiveModel filt_bits; |
|
} RKAContext; |
|
|
|
static int adaptive_model_init(AdaptiveModel *am, int buf_size) |
|
{ |
|
am->buf_size = buf_size; |
|
am->sum = 2000; |
|
am->aprob0 = 0; |
|
am->aprob1 = 0; |
|
am->total = 0; |
|
|
|
if (!am->prob[0]) |
|
am->prob[0] = av_malloc_array(buf_size + 5, sizeof(*am->prob[0])); |
|
if (!am->prob[1]) |
|
am->prob[1] = av_malloc_array(buf_size + 5, sizeof(*am->prob[1])); |
|
|
|
if (!am->prob[0] || !am->prob[1]) |
|
return AVERROR(ENOMEM); |
|
memset(am->prob[0], 0, (buf_size + 5) * sizeof(*am->prob[0])); |
|
memset(am->prob[1], 0, (buf_size + 5) * sizeof(*am->prob[1])); |
|
return 0; |
|
} |
|
|
|
static void adaptive_model_free(AdaptiveModel *am) |
|
{ |
|
av_freep(&am->prob[0]); |
|
av_freep(&am->prob[1]); |
|
} |
|
|
|
static av_cold int rka_decode_init(AVCodecContext *avctx) |
|
{ |
|
RKAContext *s = avctx->priv_data; |
|
int cmode; |
|
|
|
if (avctx->extradata_size < 16) |
|
return AVERROR_INVALIDDATA; |
|
|
|
s->bps = avctx->bits_per_raw_sample = avctx->extradata[13]; |
|
|
|
switch (s->bps) { |
|
case 8: |
|
avctx->sample_fmt = AV_SAMPLE_FMT_U8P; |
|
break; |
|
case 16: |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16P; |
|
break; |
|
default: |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
av_channel_layout_uninit(&avctx->ch_layout); |
|
s->channels = avctx->ch_layout.nb_channels = avctx->extradata[12]; |
|
if (s->channels < 1 || s->channels > 2) |
|
return AVERROR_INVALIDDATA; |
|
|
|
s->align = (s->channels * (avctx->bits_per_raw_sample >> 3)); |
|
s->samples_left = s->total_nb_samples = (AV_RL32(avctx->extradata + 4)) / s->align; |
|
s->frame_samples = 131072 / s->align; |
|
s->last_nb_samples = s->total_nb_samples % s->frame_samples; |
|
s->correlated = avctx->extradata[15] & 1; |
|
|
|
cmode = avctx->extradata[14] & 0xf; |
|
if ((avctx->extradata[15] & 4) != 0) |
|
cmode = -cmode; |
|
|
|
s->ch[0].cmode = s->ch[1].cmode = cmode < 0 ? 2 : cmode; |
|
s->ch[0].cmode2 = cmode < 0 ? FFABS(cmode) : 0; |
|
s->ch[1].cmode2 = cmode < 0 ? FFABS(cmode) : 0; |
|
av_log(avctx, AV_LOG_DEBUG, "cmode: %d\n", cmode); |
|
|
|
return 0; |
|
} |
|
|
|
static void model64_init(Model64 *m, unsigned bits) |
|
{ |
|
unsigned x; |
|
|
|
m->bits = bits; |
|
m->size = 64; |
|
m->zero[0] = 1; |
|
|
|
x = (1 << (bits >> 1)) + 3; |
|
x = FFMIN(x, 20); |
|
|
|
m->zero[1] = x; |
|
m->sign[0] = 1; |
|
m->sign[1] = 1; |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(m->val4); i++) { |
|
m->val4[i] = 4; |
|
m->val1[i] = 1; |
|
} |
|
} |
|
|
|
static int chctx_init(RKAContext *s, ChContext *c, |
|
int sample_rate, int bps) |
|
{ |
|
int ret; |
|
|
|
memset(c->buf0, 0, sizeof(c->buf0)); |
|
memset(c->buf1, 0, sizeof(c->buf1)); |
|
|
|
c->filt_size = &s->filt_size; |
|
c->filt_bits = &s->filt_bits; |
|
|
|
c->bprob[0] = s->bprob[0]; |
|
c->bprob[1] = s->bprob[1]; |
|
|
|
c->srate_pad = ((int64_t)sample_rate << 13) / 44100 & 0xFFFFFFFCU; |
|
c->pos_idx = 1; |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->bprob[0]); i++) |
|
c->bprob[0][i] = c->bprob[1][i] = 1; |
|
|
|
for (int i = 0; i < 11; i++) { |
|
ret = adaptive_model_init(&c->coeff_bits[i], 32); |
|
if (ret < 0) |
|
return ret; |
|
|
|
model64_init(&c->mdl64[0][i], i); |
|
model64_init(&c->mdl64[1][i], i); |
|
model64_init(&c->mdl64[2][i], i+1); |
|
model64_init(&c->mdl64[3][i], i+1); |
|
} |
|
|
|
ret = adaptive_model_init(c->filt_size, 256); |
|
if (ret < 0) |
|
return ret; |
|
ret = adaptive_model_init(c->filt_bits, 16); |
|
if (ret < 0) |
|
return ret; |
|
ret = adaptive_model_init(&c->position, 16); |
|
if (ret < 0) |
|
return ret; |
|
ret = adaptive_model_init(&c->nb_segments, 8); |
|
if (ret < 0) |
|
return ret; |
|
return adaptive_model_init(&c->fshift, 32); |
|
} |
|
|
|
static void init_acoder(ACoder *ac) |
|
{ |
|
ac->low = 0x0; |
|
ac->high = 0xffffffff; |
|
ac->value = bytestream2_get_be32(&ac->gb); |
|
} |
|
|
|
static int ac_decode_bool(ACoder *ac, int freq1, int freq2) |
|
{ |
|
unsigned help, add, high, value; |
|
int low; |
|
|
|
low = ac->low; |
|
help = ac->high / (unsigned)(freq2 + freq1); |
|
value = ac->value; |
|
add = freq1 * help; |
|
ac->high = help; |
|
|
|
if (value - low >= add) { |
|
ac->low = low = add + low; |
|
ac->high = high = freq2 * help; |
|
while (1) { |
|
if ((low ^ (high + low)) > 0xFFFFFF) { |
|
if (high > 0xFFFF) |
|
return 1; |
|
ac->high = (uint16_t)-(int16_t)low; |
|
} |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
break; |
|
ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8); |
|
ac->high = high = ac->high << 8; |
|
low = ac->low = ac->low << 8; |
|
} |
|
return -1; |
|
} |
|
|
|
ac->high = add; |
|
while (1) { |
|
if ((low ^ (add + low)) > 0xFFFFFF) { |
|
if (add > 0xFFFF) |
|
return 0; |
|
ac->high = (uint16_t)-(int16_t)low; |
|
} |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
break; |
|
ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8); |
|
ac->high = add = ac->high << 8; |
|
low = ac->low = ac->low << 8; |
|
} |
|
return -1; |
|
} |
|
|
|
static int decode_bool(ACoder *ac, ChContext *c, int idx) |
|
{ |
|
uint32_t x; |
|
int b; |
|
|
|
x = c->bprob[0][idx]; |
|
if (x + c->bprob[1][idx] > 4096) { |
|
c->bprob[0][idx] = (x >> 1) + 1; |
|
c->bprob[1][idx] = (c->bprob[1][idx] >> 1) + 1; |
|
} |
|
|
|
b = ac_decode_bool(ac, c->bprob[0][idx], c->bprob[1][idx]); |
|
if (b < 0) |
|
return b; |
|
|
|
c->bprob[b][idx]++; |
|
|
|
return b; |
|
} |
|
|
|
static int ac_get_freq(ACoder *ac, unsigned freq, int *result) |
|
{ |
|
uint32_t new_high; |
|
|
|
if (freq == 0) |
|
return -1; |
|
|
|
new_high = ac->high / freq; |
|
ac->high = new_high; |
|
|
|
if (new_high == 0) |
|
return -1; |
|
|
|
*result = (ac->value - ac->low) / new_high; |
|
|
|
return 0; |
|
} |
|
|
|
static int ac_update(ACoder *ac, int freq, int mul) |
|
{ |
|
uint32_t low, high; |
|
|
|
low = ac->low = ac->high * freq + ac->low; |
|
high = ac->high = ac->high * mul; |
|
|
|
while (1) { |
|
if (((high + low) ^ low) > 0xffffff) { |
|
if (high > 0xffff) |
|
return 0; |
|
ac->high = (uint16_t)-(int16_t)low; |
|
} |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
break; |
|
|
|
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); |
|
low = ac->low = ac->low << 8; |
|
high = ac->high = ac->high << 8; |
|
} |
|
|
|
return -1; |
|
} |
|
|
|
static void amdl_update_prob(AdaptiveModel *am, int val, int diff) |
|
{ |
|
am->aprob0 += diff; |
|
if (val <= 0) { |
|
am->prob[0][0] += diff; |
|
} else { |
|
do { |
|
am->prob[0][val] += diff; |
|
val += (val & -val); |
|
} while (val < am->buf_size); |
|
} |
|
} |
|
|
|
static void update_ch_subobj(AdaptiveModel *am) |
|
{ |
|
int idx2, idx = am->buf_size - 1; |
|
|
|
if (idx >= 0) { |
|
do { |
|
uint16_t *prob = am->prob[0]; |
|
int diff, prob_idx = prob[idx]; |
|
|
|
idx2 = idx - 1; |
|
if (idx > 0) { |
|
int idx3 = idx - 1; |
|
|
|
if ((idx2 & idx) != idx2) { |
|
do { |
|
prob_idx -= prob[idx3]; |
|
idx3 &= idx3 - 1; |
|
} while ((idx2 & idx) != idx3); |
|
} |
|
} |
|
|
|
diff = ((prob_idx > 0) - prob_idx) >> 1; |
|
amdl_update_prob(am, idx, diff); |
|
idx--; |
|
} while (idx2 >= 0); |
|
} |
|
|
|
if (am->sum < 8000) |
|
am->sum += 200; |
|
|
|
am->aprob1 = (am->aprob1 + 1) >> 1; |
|
} |
|
|
|
static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size) |
|
{ |
|
unsigned freq, size2, val, mul; |
|
int j; |
|
|
|
size = FFMIN(size, am->buf_size - 1); |
|
|
|
if (am->aprob0 >= am->sum) |
|
update_ch_subobj(am); |
|
|
|
if (am->aprob1 && (am->total == am->buf_size || |
|
ac_decode_bool(ac, am->aprob0, am->aprob1) == 0)) { |
|
if (am->total <= 1) { |
|
dst[0] = am->last; |
|
amdl_update_prob(am, dst[0], 1); |
|
return 0; |
|
} |
|
if (size == am->buf_size - 1) { |
|
freq = am->aprob0; |
|
} else { |
|
freq = am->prob[0][0]; |
|
for (int j = size; j > 0; j &= (j - 1) ) |
|
freq += am->prob[0][j]; |
|
} |
|
ac_get_freq(ac, freq, &freq); |
|
size2 = am->buf_size >> 1; |
|
val = am->prob[0][0]; |
|
if (freq >= val) { |
|
int sum = 0; |
|
for (j = freq - val; size2; size2 >>= 1) { |
|
unsigned v = am->prob[0][size2 + sum]; |
|
if (j >= v) { |
|
sum += size2; |
|
j -= v; |
|
} |
|
} |
|
freq -= j; |
|
val = sum + 1; |
|
} else { |
|
freq = 0; |
|
val = 0; |
|
} |
|
dst[0] = val; |
|
mul = am->prob[0][val]; |
|
if (val > 0) { |
|
for (int k = val - 1; (val & (val - 1)) != k; k &= k - 1) |
|
mul -= am->prob[0][k]; |
|
} |
|
ac_update(ac, freq, mul); |
|
amdl_update_prob(am, dst[0], 1); |
|
return 0; |
|
} |
|
am->aprob1++; |
|
if (size == am->buf_size - 1) { |
|
ac_get_freq(ac, am->buf_size - am->total, &val); |
|
} else { |
|
freq = 1; |
|
for (dst[0] = 0; dst[0] < size; dst[0]++) { |
|
if (!am->prob[1][dst[0]]) |
|
freq++; |
|
} |
|
ac_get_freq(ac, freq, &val); |
|
} |
|
freq = 0; |
|
dst[0] = 0; |
|
if (val > 0 && am->buf_size > 0) { |
|
for (dst[0] = 0; dst[0] < size & freq < val; dst[0]++) { |
|
if (!am->prob[1][dst[0]]) |
|
freq++; |
|
} |
|
} |
|
if (am->prob[1][dst[0]]) { |
|
do { |
|
val = dst[0]++; |
|
} while (val + 1 < am->buf_size && am->prob[1][val + 1]); |
|
} |
|
ac_update(ac, freq, 1); |
|
am->prob[1][dst[0]]++; |
|
am->total++; |
|
amdl_update_prob(am, dst[0], 1); |
|
am->last = dst[0]; |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst) |
|
{ |
|
unsigned val, bits; |
|
int idx = 0; |
|
|
|
if (amdl_decode_int(ctx->filt_size, ac, &dst->size, 256) < 0) |
|
return -1; |
|
|
|
if (dst->size == 0) |
|
return 0; |
|
|
|
if (amdl_decode_int(ctx->filt_bits, ac, &bits, 10) < 0) |
|
return -1; |
|
|
|
do { |
|
if (((idx == 8) || (idx == 20)) && (0 < bits)) |
|
bits--; |
|
|
|
if (bits > 10) |
|
return -1; |
|
|
|
if (amdl_decode_int(&ctx->coeff_bits[bits], ac, &val, 31) < 0) |
|
return -1; |
|
|
|
if (val == 31) { |
|
ac_get_freq(ac, 65536, &val); |
|
ac_update(ac, val, 1); |
|
} |
|
|
|
if (val == 0) { |
|
dst->coeffs[idx++] = 0; |
|
} else { |
|
unsigned freq = 0; |
|
int sign; |
|
|
|
if (bits > 0) { |
|
ac_get_freq(ac, 1 << bits, &freq); |
|
ac_update(ac, freq, 1); |
|
} |
|
dst->coeffs[idx] = freq + 1 + ((val - 1U) << bits); |
|
sign = decode_bool(ac, ctx, idx); |
|
if (sign < 0) |
|
return -1; |
|
if (sign == 1) |
|
dst->coeffs[idx] = -dst->coeffs[idx]; |
|
idx++; |
|
} |
|
} while (idx < dst->size); |
|
|
|
return 0; |
|
} |
|
|
|
static int ac_dec_bit(ACoder *ac) |
|
{ |
|
uint32_t high, low; |
|
|
|
low = ac->low; |
|
ac->high = high = ac->high >> 1; |
|
if (ac->value - low < high) { |
|
do { |
|
if (((high + low) ^ low) > 0xffffff) { |
|
if (high > 0xffff) |
|
return 0; |
|
ac->high = (uint16_t)-(int16_t)low; |
|
} |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
break; |
|
|
|
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); |
|
ac->high = high = ac->high << 8; |
|
ac->low = low = ac->low << 8; |
|
} while (1); |
|
|
|
return -1; |
|
} |
|
ac->low = low = low + high; |
|
do { |
|
if (((high + low) ^ low) > 0xffffff) { |
|
if (high > 0xffff) |
|
return 1; |
|
ac->high = (uint16_t)-(int16_t)low; |
|
} |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
break; |
|
|
|
ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); |
|
ac->high = high = ac->high << 8; |
|
ac->low = low = ac->low << 8; |
|
} while (1); |
|
|
|
return -1; |
|
} |
|
|
|
static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst) |
|
{ |
|
int sign, idx, bits; |
|
unsigned val = 0; |
|
|
|
if (ctx->zero[0] + ctx->zero[1] > 4000U) { |
|
ctx->zero[0] = (ctx->zero[0] >> 1) + 1; |
|
ctx->zero[1] = (ctx->zero[1] >> 1) + 1; |
|
} |
|
if (ctx->sign[0] + ctx->sign[1] > 4000U) { |
|
ctx->sign[0] = (ctx->sign[0] >> 1) + 1; |
|
ctx->sign[1] = (ctx->sign[1] >> 1) + 1; |
|
} |
|
sign = ac_decode_bool(ac, ctx->zero[0], ctx->zero[1]); |
|
if (sign == 0) { |
|
ctx->zero[0] += 2; |
|
dst[0] = 0; |
|
return 0; |
|
} else if (sign < 0) { |
|
return -1; |
|
} |
|
|
|
ctx->zero[1] += 2; |
|
sign = ac_decode_bool(ac, ctx->sign[0], ctx->sign[1]); |
|
if (sign < 0) |
|
return -1; |
|
ctx->sign[sign]++; |
|
bits = ctx->bits; |
|
if (bits > 0) { |
|
if (bits < 13) { |
|
ac_get_freq(ac, 1 << bits, &val); |
|
ac_update(ac, val, 1); |
|
} else { |
|
int hbits = bits / 2; |
|
ac_get_freq(ac, 1 << hbits, &val); |
|
ac_update(ac, val, 1); |
|
ac_get_freq(ac, 1 << (ctx->bits - (hbits)), &bits); |
|
ac_update(ac, val, 1); |
|
val += (bits << hbits); |
|
} |
|
} |
|
bits = ctx->size; |
|
idx = 0; |
|
if (bits >= 0) { |
|
do { |
|
uint16_t *val4 = ctx->val4; |
|
int b; |
|
|
|
if (val4[idx] + ctx->val1[idx] > 2000U) { |
|
val4[idx] = (val4[idx] >> 1) + 1; |
|
ctx->val1[idx] = (ctx->val1[idx] >> 1) + 1; |
|
} |
|
b = ac_decode_bool(ac, ctx->val4[idx], ctx->val1[idx]); |
|
if (b == 1) { |
|
ctx->val1[idx] += 4; |
|
break; |
|
} else if (b < 0) { |
|
return -1; |
|
} |
|
ctx->val4[idx] += 4; |
|
idx++; |
|
} while (idx <= ctx->size); |
|
bits = ctx->size; |
|
if (idx <= bits) { |
|
dst[0] = val + 1 + (idx << ctx->bits); |
|
if (sign) |
|
dst[0] = -dst[0]; |
|
return 0; |
|
} |
|
} |
|
bits++; |
|
while (ac_dec_bit(ac) == 0) |
|
bits += 64; |
|
ac_get_freq(ac, 64, &idx); |
|
ac_update(ac, idx, 1); |
|
idx += bits; |
|
dst[0] = val + 1 + (idx << ctx->bits); |
|
if (sign) |
|
dst[0] = -dst[0]; |
|
|
|
return 0; |
|
} |
|
|
|
static const uint8_t tab[16] = { |
|
0, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 |
|
}; |
|
|
|
static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size) |
|
{ |
|
FiltCoeffs filt; |
|
Model64 *mdl64; |
|
int m = 0, split, val, last_val = 0, ret; |
|
unsigned idx = 3, bits = 0; |
|
|
|
if (ctx->cmode == 0) { |
|
if (amdl_decode_int(&ctx->fshift, ac, &bits, 15) < 0) |
|
return -1; |
|
bits &= 31U; |
|
} |
|
|
|
ret = decode_filt_coeffs(s, ctx, ac, &filt); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (size < 512) |
|
split = size / 2; |
|
else |
|
split = size >> 4; |
|
|
|
if (size <= 1) |
|
return 0; |
|
|
|
for (int x = 0; x < size;) { |
|
if (amdl_decode_int(&ctx->position, ac, &idx, 10) < 0) |
|
return -1; |
|
|
|
idx = (ctx->pos_idx + idx) % 11; |
|
ctx->pos_idx = idx; |
|
|
|
for (int y = 0; y < FFMIN(split, size - x); y++, off++) { |
|
int midx, shift = idx, *src, sum = 16; |
|
|
|
if (off >= FF_ARRAY_ELEMS(ctx->buf0)) |
|
return -1; |
|
|
|
midx = FFABS(last_val) >> shift; |
|
if (midx >= 15) { |
|
mdl64 = &ctx->mdl64[3][idx]; |
|
} else if (midx >= 7) { |
|
mdl64 = &ctx->mdl64[2][idx]; |
|
} else if (midx >= 4) { |
|
mdl64 = &ctx->mdl64[1][idx]; |
|
} else { |
|
mdl64 = &ctx->mdl64[0][idx]; |
|
} |
|
ret = mdl64_decode(ac, mdl64, &val); |
|
if (ret < 0) |
|
return -1; |
|
last_val = val; |
|
src = &ctx->buf1[off + -1]; |
|
for (int i = 0; i < filt.size && i < 15; i++) |
|
sum += filt.coeffs[i] * (unsigned)src[-i]; |
|
sum = sum * 2U; |
|
for (int i = 15; i < filt.size; i++) |
|
sum += filt.coeffs[i] * (unsigned)src[-i]; |
|
sum = sum >> 6; |
|
if (ctx->cmode == 0) { |
|
if (bits == 0) { |
|
ctx->buf1[off] = sum + val; |
|
} else { |
|
ctx->buf1[off] = (val + (sum >> bits)) * (1U << bits) + |
|
(((1U << bits) - 1U) & ctx->buf1[off + -1]); |
|
} |
|
ctx->buf0[off] = ctx->buf1[off] + (unsigned)ctx->buf0[off + -1]; |
|
} else { |
|
val *= 1U << ctx->cmode; |
|
sum += ctx->buf0[off + -1] + (unsigned)val; |
|
switch (s->bps) { |
|
case 16: sum = av_clip_int16(sum); break; |
|
case 8: sum = av_clip_int8(sum); break; |
|
} |
|
ctx->buf1[off] = sum - ctx->buf0[off + -1]; |
|
ctx->buf0[off] = sum; |
|
m += FFABS(ctx->buf1[off]); |
|
} |
|
} |
|
if (ctx->cmode2 != 0) { |
|
int sum = 0; |
|
for (int i = (signed)((unsigned)m << 6) / split; i > 0; i = i >> 1) |
|
sum++; |
|
sum = sum - (ctx->cmode2 + 7); |
|
ctx->cmode = FFMAX(sum, tab[ctx->cmode2]); |
|
} |
|
|
|
x += split; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset) |
|
{ |
|
RKAContext *s = avctx->priv_data; |
|
int segment_size, offset2, mode, ret; |
|
|
|
ret = amdl_decode_int(&ctx->nb_segments, ac, &mode, 5); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (mode == 5) { |
|
ret = ac_get_freq(ac, ctx->srate_pad >> 2, &segment_size); |
|
if (ret < 0) |
|
return ret; |
|
ac_update(ac, segment_size, 1); |
|
segment_size *= 4; |
|
ret = decode_filter(s, ctx, ac, offset, segment_size); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
segment_size = ctx->srate_pad; |
|
|
|
if (mode) { |
|
if (mode > 2) { |
|
ret = decode_filter(s, ctx, ac, offset, segment_size / 4); |
|
if (ret < 0) |
|
return ret; |
|
offset2 = segment_size / 4 + offset; |
|
ret = decode_filter(s, ctx, ac, offset2, segment_size / 4); |
|
if (ret < 0) |
|
return ret; |
|
offset2 = segment_size / 4 + offset2; |
|
} else { |
|
ret = decode_filter(s, ctx, ac, offset, segment_size / 2); |
|
if (ret < 0) |
|
return ret; |
|
offset2 = segment_size / 2 + offset; |
|
} |
|
if (mode & 1) { |
|
ret = decode_filter(s, ctx, ac, offset2, segment_size / 2); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
ret = decode_filter(s, ctx, ac, offset2, segment_size / 4); |
|
if (ret < 0) |
|
return ret; |
|
ret = decode_filter(s, ctx, ac, segment_size / 4 + offset2, segment_size / 4); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} else { |
|
ret = decode_filter(s, ctx, ac, offset, ctx->srate_pad); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
return segment_size; |
|
} |
|
|
|
static int decode_ch_samples(AVCodecContext *avctx, ChContext *c) |
|
{ |
|
RKAContext *s = avctx->priv_data; |
|
ACoder *ac = &s->ac; |
|
int nb_decoded = 0; |
|
|
|
if (bytestream2_get_bytes_left(&ac->gb) <= 0) |
|
return 0; |
|
|
|
memmove(c->buf0, &c->buf0[c->last_nb_decoded], 2560 * sizeof(*c->buf0)); |
|
memmove(c->buf1, &c->buf1[c->last_nb_decoded], 2560 * sizeof(*c->buf1)); |
|
|
|
nb_decoded = decode_samples(avctx, ac, c, 2560); |
|
if (nb_decoded < 0) |
|
return nb_decoded; |
|
c->last_nb_decoded = nb_decoded; |
|
|
|
return nb_decoded; |
|
} |
|
|
|
static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
RKAContext *s = avctx->priv_data; |
|
ACoder *ac = &s->ac; |
|
int ret; |
|
|
|
bytestream2_init(&ac->gb, avpkt->data, avpkt->size); |
|
init_acoder(ac); |
|
|
|
for (int ch = 0; ch < s->channels; ch++) { |
|
ret = chctx_init(s, &s->ch[ch], avctx->sample_rate, |
|
avctx->bits_per_raw_sample); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
frame->nb_samples = s->frame_samples; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
|
|
if (s->channels == 2 && s->correlated) { |
|
int16_t *l16 = (int16_t *)frame->extended_data[0]; |
|
int16_t *r16 = (int16_t *)frame->extended_data[1]; |
|
uint8_t *l8 = frame->extended_data[0]; |
|
uint8_t *r8 = frame->extended_data[1]; |
|
|
|
for (int n = 0; n < frame->nb_samples;) { |
|
ret = decode_ch_samples(avctx, &s->ch[0]); |
|
if (ret == 0) { |
|
frame->nb_samples = n; |
|
break; |
|
} |
|
if (ret < 0 || n + ret > frame->nb_samples) |
|
return AVERROR_INVALIDDATA; |
|
|
|
ret = decode_ch_samples(avctx, &s->ch[1]); |
|
if (ret == 0) { |
|
frame->nb_samples = n; |
|
break; |
|
} |
|
if (ret < 0 || n + ret > frame->nb_samples) |
|
return AVERROR_INVALIDDATA; |
|
|
|
switch (avctx->sample_fmt) { |
|
case AV_SAMPLE_FMT_S16P: |
|
for (int i = 0; i < ret; i++) { |
|
int l = s->ch[0].buf0[2560 + i]; |
|
int r = s->ch[1].buf0[2560 + i]; |
|
|
|
l16[n + i] = (l * 2 + r + 1) >> 1; |
|
r16[n + i] = (l * 2 - r + 1) >> 1; |
|
} |
|
break; |
|
case AV_SAMPLE_FMT_U8P: |
|
for (int i = 0; i < ret; i++) { |
|
int l = s->ch[0].buf0[2560 + i]; |
|
int r = s->ch[1].buf0[2560 + i]; |
|
|
|
l8[n + i] = ((l * 2 + r + 1) >> 1) + 0x7f; |
|
r8[n + i] = ((l * 2 - r + 1) >> 1) + 0x7f; |
|
} |
|
break; |
|
default: |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
n += ret; |
|
} |
|
} else { |
|
for (int n = 0; n < frame->nb_samples;) { |
|
for (int ch = 0; ch < s->channels; ch++) { |
|
int16_t *m16 = (int16_t *)frame->data[ch]; |
|
uint8_t *m8 = frame->data[ch]; |
|
|
|
ret = decode_ch_samples(avctx, &s->ch[ch]); |
|
if (ret == 0) { |
|
frame->nb_samples = n; |
|
break; |
|
} |
|
|
|
if (ret < 0 || n + ret > frame->nb_samples) |
|
return AVERROR_INVALIDDATA; |
|
|
|
switch (avctx->sample_fmt) { |
|
case AV_SAMPLE_FMT_S16P: |
|
for (int i = 0; i < ret; i++) { |
|
int m = s->ch[ch].buf0[2560 + i]; |
|
|
|
m16[n + i] = m; |
|
} |
|
break; |
|
case AV_SAMPLE_FMT_U8P: |
|
for (int i = 0; i < ret; i++) { |
|
int m = s->ch[ch].buf0[2560 + i]; |
|
|
|
m8[n + i] = m + 0x7f; |
|
} |
|
break; |
|
default: |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
n += ret; |
|
} |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return avpkt->size; |
|
} |
|
|
|
static av_cold int rka_decode_close(AVCodecContext *avctx) |
|
{ |
|
RKAContext *s = avctx->priv_data; |
|
|
|
for (int ch = 0; ch < 2; ch++) { |
|
ChContext *c = &s->ch[ch]; |
|
|
|
for (int i = 0; i < 11; i++) |
|
adaptive_model_free(&c->coeff_bits[i]); |
|
|
|
adaptive_model_free(&c->position); |
|
adaptive_model_free(&c->nb_segments); |
|
adaptive_model_free(&c->fshift); |
|
} |
|
|
|
adaptive_model_free(&s->filt_size); |
|
adaptive_model_free(&s->filt_bits); |
|
|
|
return 0; |
|
} |
|
|
|
const FFCodec ff_rka_decoder = { |
|
.p.name = "rka", |
|
CODEC_LONG_NAME("RKA (RK Audio)"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_RKA, |
|
.priv_data_size = sizeof(RKAContext), |
|
.init = rka_decode_init, |
|
.close = rka_decode_close, |
|
FF_CODEC_DECODE_CB(rka_decode_frame), |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
};
|
|
|