mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1839 lines
60 KiB
1839 lines
60 KiB
/* |
|
* Copyright (c) 2012 Andrew D'Addesio |
|
* Copyright (c) 2013-2014 Mozilla Corporation |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Opus CELT decoder |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/float_dsp.h" |
|
#include "libavutil/libm.h" |
|
|
|
#include "imdct15.h" |
|
#include "opus.h" |
|
#include "opustab.h" |
|
|
|
enum CeltSpread { |
|
CELT_SPREAD_NONE, |
|
CELT_SPREAD_LIGHT, |
|
CELT_SPREAD_NORMAL, |
|
CELT_SPREAD_AGGRESSIVE |
|
}; |
|
|
|
typedef struct CeltFrame { |
|
float energy[CELT_MAX_BANDS]; |
|
float prev_energy[2][CELT_MAX_BANDS]; |
|
|
|
uint8_t collapse_masks[CELT_MAX_BANDS]; |
|
|
|
/* buffer for mdct output + postfilter */ |
|
DECLARE_ALIGNED(32, float, buf)[2048]; |
|
|
|
/* postfilter parameters */ |
|
int pf_period_new; |
|
float pf_gains_new[3]; |
|
int pf_period; |
|
float pf_gains[3]; |
|
int pf_period_old; |
|
float pf_gains_old[3]; |
|
|
|
float deemph_coeff; |
|
} CeltFrame; |
|
|
|
struct CeltContext { |
|
// constant values that do not change during context lifetime |
|
AVCodecContext *avctx; |
|
IMDCT15Context *imdct[4]; |
|
AVFloatDSPContext *dsp; |
|
int output_channels; |
|
|
|
// values that have inter-frame effect and must be reset on flush |
|
CeltFrame frame[2]; |
|
uint32_t seed; |
|
int flushed; |
|
|
|
// values that only affect a single frame |
|
int coded_channels; |
|
int framebits; |
|
int duration; |
|
|
|
/* number of iMDCT blocks in the frame */ |
|
int blocks; |
|
/* size of each block */ |
|
int blocksize; |
|
|
|
int startband; |
|
int endband; |
|
int codedbands; |
|
|
|
int anticollapse_bit; |
|
|
|
int intensitystereo; |
|
int dualstereo; |
|
enum CeltSpread spread; |
|
|
|
int remaining; |
|
int remaining2; |
|
int fine_bits [CELT_MAX_BANDS]; |
|
int fine_priority[CELT_MAX_BANDS]; |
|
int pulses [CELT_MAX_BANDS]; |
|
int tf_change [CELT_MAX_BANDS]; |
|
|
|
DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE]; |
|
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS |
|
}; |
|
|
|
static inline int16_t celt_cos(int16_t x) |
|
{ |
|
x = (MUL16(x, x) + 4096) >> 13; |
|
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); |
|
return 1+x; |
|
} |
|
|
|
static inline int celt_log2tan(int isin, int icos) |
|
{ |
|
int lc, ls; |
|
lc = opus_ilog(icos); |
|
ls = opus_ilog(isin); |
|
icos <<= 15 - lc; |
|
isin <<= 15 - ls; |
|
return (ls << 11) - (lc << 11) + |
|
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - |
|
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); |
|
} |
|
|
|
static inline uint32_t celt_rng(CeltContext *s) |
|
{ |
|
s->seed = 1664525 * s->seed + 1013904223; |
|
return s->seed; |
|
} |
|
|
|
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc) |
|
{ |
|
int i, j; |
|
float prev[2] = {0}; |
|
float alpha, beta; |
|
const uint8_t *model; |
|
|
|
/* use the 2D z-transform to apply prediction in both */ |
|
/* the time domain (alpha) and the frequency domain (beta) */ |
|
|
|
if (opus_rc_tell(rc)+3 <= s->framebits && ff_opus_rc_dec_log(rc, 3)) { |
|
/* intra frame */ |
|
alpha = 0; |
|
beta = 1.0f - 4915.0f/32768.0f; |
|
model = ff_celt_coarse_energy_dist[s->duration][1]; |
|
} else { |
|
alpha = ff_celt_alpha_coef[s->duration]; |
|
beta = 1.0f - ff_celt_beta_coef[s->duration]; |
|
model = ff_celt_coarse_energy_dist[s->duration][0]; |
|
} |
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) { |
|
for (j = 0; j < s->coded_channels; j++) { |
|
CeltFrame *frame = &s->frame[j]; |
|
float value; |
|
int available; |
|
|
|
if (i < s->startband || i >= s->endband) { |
|
frame->energy[i] = 0.0; |
|
continue; |
|
} |
|
|
|
available = s->framebits - opus_rc_tell(rc); |
|
if (available >= 15) { |
|
/* decode using a Laplace distribution */ |
|
int k = FFMIN(i, 20) << 1; |
|
value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); |
|
} else if (available >= 2) { |
|
int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); |
|
value = (x>>1) ^ -(x&1); |
|
} else if (available >= 1) { |
|
value = -(float)ff_opus_rc_dec_log(rc, 1); |
|
} else value = -1; |
|
|
|
frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value; |
|
prev[j] += beta * value; |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc) |
|
{ |
|
int i; |
|
for (i = s->startband; i < s->endband; i++) { |
|
int j; |
|
if (!s->fine_bits[i]) |
|
continue; |
|
|
|
for (j = 0; j < s->coded_channels; j++) { |
|
CeltFrame *frame = &s->frame[j]; |
|
int q2; |
|
float offset; |
|
q2 = ff_opus_rc_get_raw(rc, s->fine_bits[i]); |
|
offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f; |
|
frame->energy[i] += offset; |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc, |
|
int bits_left) |
|
{ |
|
int priority, i, j; |
|
|
|
for (priority = 0; priority < 2; priority++) { |
|
for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) { |
|
if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS) |
|
continue; |
|
|
|
for (j = 0; j < s->coded_channels; j++) { |
|
int q2; |
|
float offset; |
|
q2 = ff_opus_rc_get_raw(rc, 1); |
|
offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f; |
|
s->frame[j].energy[i] += offset; |
|
bits_left--; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc, |
|
int transient) |
|
{ |
|
int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; |
|
int consumed, bits = transient ? 2 : 4; |
|
|
|
consumed = opus_rc_tell(rc); |
|
tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits); |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
if (consumed+bits+tf_select_bit <= s->framebits) { |
|
diff ^= ff_opus_rc_dec_log(rc, bits); |
|
consumed = opus_rc_tell(rc); |
|
tf_changed |= diff; |
|
} |
|
s->tf_change[i] = diff; |
|
bits = transient ? 4 : 5; |
|
} |
|
|
|
if (tf_select_bit && ff_celt_tf_select[s->duration][transient][0][tf_changed] != |
|
ff_celt_tf_select[s->duration][transient][1][tf_changed]) |
|
tf_select = ff_opus_rc_dec_log(rc, 1); |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
s->tf_change[i] = ff_celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]]; |
|
} |
|
} |
|
|
|
static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc) |
|
{ |
|
// approx. maximum bit allocation for each band before boost/trim |
|
int cap[CELT_MAX_BANDS]; |
|
int boost[CELT_MAX_BANDS]; |
|
int threshold[CELT_MAX_BANDS]; |
|
int bits1[CELT_MAX_BANDS]; |
|
int bits2[CELT_MAX_BANDS]; |
|
int trim_offset[CELT_MAX_BANDS]; |
|
|
|
int skip_startband = s->startband; |
|
int dynalloc = 6; |
|
int alloctrim = 5; |
|
int extrabits = 0; |
|
|
|
int skip_bit = 0; |
|
int intensitystereo_bit = 0; |
|
int dualstereo_bit = 0; |
|
|
|
int remaining, bandbits; |
|
int low, high, total, done; |
|
int totalbits; |
|
int consumed; |
|
int i, j; |
|
|
|
consumed = opus_rc_tell(rc); |
|
|
|
/* obtain spread flag */ |
|
s->spread = CELT_SPREAD_NORMAL; |
|
if (consumed + 4 <= s->framebits) |
|
s->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); |
|
|
|
/* generate static allocation caps */ |
|
for (i = 0; i < CELT_MAX_BANDS; i++) { |
|
cap[i] = (ff_celt_static_caps[s->duration][s->coded_channels - 1][i] + 64) |
|
* ff_celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2; |
|
} |
|
|
|
/* obtain band boost */ |
|
totalbits = s->framebits << 3; // convert to 1/8 bits |
|
consumed = opus_rc_tell_frac(rc); |
|
for (i = s->startband; i < s->endband; i++) { |
|
int quanta, band_dynalloc; |
|
|
|
boost[i] = 0; |
|
|
|
quanta = ff_celt_freq_range[i] << (s->coded_channels - 1) << s->duration; |
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); |
|
band_dynalloc = dynalloc; |
|
while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) { |
|
int add = ff_opus_rc_dec_log(rc, band_dynalloc); |
|
consumed = opus_rc_tell_frac(rc); |
|
if (!add) |
|
break; |
|
|
|
boost[i] += quanta; |
|
totalbits -= quanta; |
|
band_dynalloc = 1; |
|
} |
|
/* dynalloc is more likely to occur if it's already been used for earlier bands */ |
|
if (boost[i]) |
|
dynalloc = FFMAX(2, dynalloc - 1); |
|
} |
|
|
|
/* obtain allocation trim */ |
|
if (consumed + (6 << 3) <= totalbits) |
|
alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); |
|
|
|
/* anti-collapse bit reservation */ |
|
totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1; |
|
s->anticollapse_bit = 0; |
|
if (s->blocks > 1 && s->duration >= 2 && |
|
totalbits >= ((s->duration + 2) << 3)) |
|
s->anticollapse_bit = 1 << 3; |
|
totalbits -= s->anticollapse_bit; |
|
|
|
/* band skip bit reservation */ |
|
if (totalbits >= 1 << 3) |
|
skip_bit = 1 << 3; |
|
totalbits -= skip_bit; |
|
|
|
/* intensity/dual stereo bit reservation */ |
|
if (s->coded_channels == 2) { |
|
intensitystereo_bit = ff_celt_log2_frac[s->endband - s->startband]; |
|
if (intensitystereo_bit <= totalbits) { |
|
totalbits -= intensitystereo_bit; |
|
if (totalbits >= 1 << 3) { |
|
dualstereo_bit = 1 << 3; |
|
totalbits -= 1 << 3; |
|
} |
|
} else |
|
intensitystereo_bit = 0; |
|
} |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
int trim = alloctrim - 5 - s->duration; |
|
int band = ff_celt_freq_range[i] * (s->endband - i - 1); |
|
int duration = s->duration + 3; |
|
int scale = duration + s->coded_channels - 1; |
|
|
|
/* PVQ minimum allocation threshold, below this value the band is |
|
* skipped */ |
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, |
|
s->coded_channels << 3); |
|
|
|
trim_offset[i] = trim * (band << scale) >> 6; |
|
|
|
if (ff_celt_freq_range[i] << s->duration == 1) |
|
trim_offset[i] -= s->coded_channels << 3; |
|
} |
|
|
|
/* bisection */ |
|
low = 1; |
|
high = CELT_VECTORS - 1; |
|
while (low <= high) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (i = s->endband - 1; i >= s->startband; i--) { |
|
bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i] |
|
<< (s->coded_channels - 1) << s->duration >> 2; |
|
|
|
if (bandbits) |
|
bandbits = FFMAX(0, bandbits + trim_offset[i]); |
|
bandbits += boost[i]; |
|
|
|
if (bandbits >= threshold[i] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, cap[i]); |
|
} else if (bandbits >= s->coded_channels << 3) |
|
total += s->coded_channels << 3; |
|
} |
|
|
|
if (total > totalbits) |
|
high = center - 1; |
|
else |
|
low = center + 1; |
|
} |
|
high = low--; |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i] |
|
<< (s->coded_channels - 1) << s->duration >> 2; |
|
bits2[i] = high >= CELT_VECTORS ? cap[i] : |
|
ff_celt_freq_range[i] * ff_celt_static_alloc[high][i] |
|
<< (s->coded_channels - 1) << s->duration >> 2; |
|
|
|
if (bits1[i]) |
|
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]); |
|
if (bits2[i]) |
|
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]); |
|
if (low) |
|
bits1[i] += boost[i]; |
|
bits2[i] += boost[i]; |
|
|
|
if (boost[i]) |
|
skip_startband = i; |
|
bits2[i] = FFMAX(0, bits2[i] - bits1[i]); |
|
} |
|
|
|
/* bisection */ |
|
low = 0; |
|
high = 1 << CELT_ALLOC_STEPS; |
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (j = s->endband - 1; j >= s->startband; j--) { |
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[j] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, cap[j]); |
|
} else if (bandbits >= s->coded_channels << 3) |
|
total += s->coded_channels << 3; |
|
} |
|
if (total > totalbits) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
done = total = 0; |
|
for (i = s->endband - 1; i >= s->startband; i--) { |
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[i] || done) |
|
done = 1; |
|
else |
|
bandbits = (bandbits >= s->coded_channels << 3) ? |
|
s->coded_channels << 3 : 0; |
|
|
|
bandbits = FFMIN(bandbits, cap[i]); |
|
s->pulses[i] = bandbits; |
|
total += bandbits; |
|
} |
|
|
|
/* band skipping */ |
|
for (s->codedbands = s->endband; ; s->codedbands--) { |
|
int allocation; |
|
j = s->codedbands - 1; |
|
|
|
if (j == skip_startband) { |
|
/* all remaining bands are not skipped */ |
|
totalbits += skip_bit; |
|
break; |
|
} |
|
|
|
/* determine the number of bits available for coding "do not skip" markers */ |
|
remaining = totalbits - total; |
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[s->startband]); |
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[s->startband]); |
|
allocation = s->pulses[j] + bandbits * ff_celt_freq_range[j] |
|
+ FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[s->startband])); |
|
|
|
/* a "do not skip" marker is only coded if the allocation is |
|
above the chosen threshold */ |
|
if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) { |
|
if (ff_opus_rc_dec_log(rc, 1)) |
|
break; |
|
|
|
total += 1 << 3; |
|
allocation -= 1 << 3; |
|
} |
|
|
|
/* the band is skipped, so reclaim its bits */ |
|
total -= s->pulses[j]; |
|
if (intensitystereo_bit) { |
|
total -= intensitystereo_bit; |
|
intensitystereo_bit = ff_celt_log2_frac[j - s->startband]; |
|
total += intensitystereo_bit; |
|
} |
|
|
|
total += s->pulses[j] = (allocation >= s->coded_channels << 3) ? |
|
s->coded_channels << 3 : 0; |
|
} |
|
|
|
/* obtain stereo flags */ |
|
s->intensitystereo = 0; |
|
s->dualstereo = 0; |
|
if (intensitystereo_bit) |
|
s->intensitystereo = s->startband + |
|
ff_opus_rc_dec_uint(rc, s->codedbands + 1 - s->startband); |
|
if (s->intensitystereo <= s->startband) |
|
totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */ |
|
else if (dualstereo_bit) |
|
s->dualstereo = ff_opus_rc_dec_log(rc, 1); |
|
|
|
/* supply the remaining bits in this frame to lower bands */ |
|
remaining = totalbits - total; |
|
bandbits = remaining / (ff_celt_freq_bands[s->codedbands] - ff_celt_freq_bands[s->startband]); |
|
remaining -= bandbits * (ff_celt_freq_bands[s->codedbands] - ff_celt_freq_bands[s->startband]); |
|
for (i = s->startband; i < s->codedbands; i++) { |
|
int bits = FFMIN(remaining, ff_celt_freq_range[i]); |
|
|
|
s->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; |
|
remaining -= bits; |
|
} |
|
|
|
for (i = s->startband; i < s->codedbands; i++) { |
|
int N = ff_celt_freq_range[i] << s->duration; |
|
int prev_extra = extrabits; |
|
s->pulses[i] += extrabits; |
|
|
|
if (N > 1) { |
|
int dof; // degrees of freedom |
|
int temp; // dof * channels * log(dof) |
|
int offset; // fine energy quantization offset, i.e. |
|
// extra bits assigned over the standard |
|
// totalbits/dof |
|
int fine_bits, max_bits; |
|
|
|
extrabits = FFMAX(0, s->pulses[i] - cap[i]); |
|
s->pulses[i] -= extrabits; |
|
|
|
/* intensity stereo makes use of an extra degree of freedom */ |
|
dof = N * s->coded_channels |
|
+ (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo); |
|
temp = dof * (ff_celt_log_freq_range[i] + (s->duration<<3)); |
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET; |
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */ |
|
offset += dof<<1; |
|
|
|
/* grant an additional bias for the first and second pulses */ |
|
if (s->pulses[i] + offset < 2 * (dof << 3)) |
|
offset += temp >> 2; |
|
else if (s->pulses[i] + offset < 3 * (dof << 3)) |
|
offset += temp >> 3; |
|
|
|
fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3); |
|
max_bits = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1), |
|
CELT_MAX_FINE_BITS); |
|
|
|
max_bits = FFMAX(max_bits, 0); |
|
|
|
s->fine_bits[i] = av_clip(fine_bits, 0, max_bits); |
|
|
|
/* if fine_bits was rounded down or capped, |
|
give priority for the final fine energy pass */ |
|
s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset); |
|
|
|
/* the remaining bits are assigned to PVQ */ |
|
s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3; |
|
} else { |
|
/* all bits go to fine energy except for the sign bit */ |
|
extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3)); |
|
s->pulses[i] -= extrabits; |
|
s->fine_bits[i] = 0; |
|
s->fine_priority[i] = 1; |
|
} |
|
|
|
/* hand back a limited number of extra fine energy bits to this band */ |
|
if (extrabits > 0) { |
|
int fineextra = FFMIN(extrabits >> (s->coded_channels + 2), |
|
CELT_MAX_FINE_BITS - s->fine_bits[i]); |
|
s->fine_bits[i] += fineextra; |
|
|
|
fineextra <<= s->coded_channels + 2; |
|
s->fine_priority[i] = (fineextra >= extrabits - prev_extra); |
|
extrabits -= fineextra; |
|
} |
|
} |
|
s->remaining = extrabits; |
|
|
|
/* skipped bands dedicate all of their bits for fine energy */ |
|
for (; i < s->endband; i++) { |
|
s->fine_bits[i] = s->pulses[i] >> (s->coded_channels - 1) >> 3; |
|
s->pulses[i] = 0; |
|
s->fine_priority[i] = s->fine_bits[i] < 1; |
|
} |
|
} |
|
|
|
static inline int celt_bits2pulses(const uint8_t *cache, int bits) |
|
{ |
|
// TODO: Find the size of cache and make it into an array in the parameters list |
|
int i, low = 0, high; |
|
|
|
high = cache[0]; |
|
bits--; |
|
|
|
for (i = 0; i < 6; i++) { |
|
int center = (low + high + 1) >> 1; |
|
if (cache[center] >= bits) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; |
|
} |
|
|
|
static inline int celt_pulses2bits(const uint8_t *cache, int pulses) |
|
{ |
|
// TODO: Find the size of cache and make it into an array in the parameters list |
|
return (pulses == 0) ? 0 : cache[pulses] + 1; |
|
} |
|
|
|
static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X, |
|
int N, float g) |
|
{ |
|
int i; |
|
for (i = 0; i < N; i++) |
|
X[i] = g * iy[i]; |
|
} |
|
|
|
static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride, |
|
float c, float s) |
|
{ |
|
float *Xptr; |
|
int i; |
|
|
|
Xptr = X; |
|
for (i = 0; i < len - stride; i++) { |
|
float x1, x2; |
|
x1 = Xptr[0]; |
|
x2 = Xptr[stride]; |
|
Xptr[stride] = c * x2 + s * x1; |
|
*Xptr++ = c * x1 - s * x2; |
|
} |
|
|
|
Xptr = &X[len - 2 * stride - 1]; |
|
for (i = len - 2 * stride - 1; i >= 0; i--) { |
|
float x1, x2; |
|
x1 = Xptr[0]; |
|
x2 = Xptr[stride]; |
|
Xptr[stride] = c * x2 + s * x1; |
|
*Xptr-- = c * x1 - s * x2; |
|
} |
|
} |
|
|
|
static inline void celt_exp_rotation(float *X, unsigned int len, |
|
unsigned int stride, unsigned int K, |
|
enum CeltSpread spread) |
|
{ |
|
unsigned int stride2 = 0; |
|
float c, s; |
|
float gain, theta; |
|
int i; |
|
|
|
if (2*K >= len || spread == CELT_SPREAD_NONE) |
|
return; |
|
|
|
gain = (float)len / (len + (20 - 5*spread) * K); |
|
theta = M_PI * gain * gain / 4; |
|
|
|
c = cos(theta); |
|
s = sin(theta); |
|
|
|
if (len >= stride << 3) { |
|
stride2 = 1; |
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. |
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ |
|
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) |
|
stride2++; |
|
} |
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for |
|
extract_collapse_mask().*/ |
|
len /= stride; |
|
for (i = 0; i < stride; i++) { |
|
if (stride2) |
|
celt_exp_rotation1(X + i * len, len, stride2, s, c); |
|
celt_exp_rotation1(X + i * len, len, 1, c, s); |
|
} |
|
} |
|
|
|
static inline unsigned int celt_extract_collapse_mask(const int *iy, |
|
unsigned int N, |
|
unsigned int B) |
|
{ |
|
unsigned int collapse_mask; |
|
int N0; |
|
int i, j; |
|
|
|
if (B <= 1) |
|
return 1; |
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for |
|
exp_rotation().*/ |
|
N0 = N/B; |
|
collapse_mask = 0; |
|
for (i = 0; i < B; i++) |
|
for (j = 0; j < N0; j++) |
|
collapse_mask |= (iy[i*N0+j]!=0)<<i; |
|
return collapse_mask; |
|
} |
|
|
|
static inline void celt_renormalize_vector(float *X, int N, float gain) |
|
{ |
|
int i; |
|
float g = 1e-15f; |
|
for (i = 0; i < N; i++) |
|
g += X[i] * X[i]; |
|
g = gain / sqrtf(g); |
|
|
|
for (i = 0; i < N; i++) |
|
X[i] *= g; |
|
} |
|
|
|
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) |
|
{ |
|
int i; |
|
float xp = 0, side = 0; |
|
float E[2]; |
|
float mid2; |
|
float t, gain[2]; |
|
|
|
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
|
for (i = 0; i < N; i++) { |
|
xp += X[i] * Y[i]; |
|
side += Y[i] * Y[i]; |
|
} |
|
|
|
/* Compensating for the mid normalization */ |
|
xp *= mid; |
|
mid2 = mid; |
|
E[0] = mid2 * mid2 + side - 2 * xp; |
|
E[1] = mid2 * mid2 + side + 2 * xp; |
|
if (E[0] < 6e-4f || E[1] < 6e-4f) { |
|
for (i = 0; i < N; i++) |
|
Y[i] = X[i]; |
|
return; |
|
} |
|
|
|
t = E[0]; |
|
gain[0] = 1.0f / sqrtf(t); |
|
t = E[1]; |
|
gain[1] = 1.0f / sqrtf(t); |
|
|
|
for (i = 0; i < N; i++) { |
|
float value[2]; |
|
/* Apply mid scaling (side is already scaled) */ |
|
value[0] = mid * X[i]; |
|
value[1] = Y[i]; |
|
X[i] = gain[0] * (value[0] - value[1]); |
|
Y[i] = gain[1] * (value[0] + value[1]); |
|
} |
|
} |
|
|
|
static void celt_interleave_hadamard(float *tmp, float *X, int N0, |
|
int stride, int hadamard) |
|
{ |
|
int i, j; |
|
int N = N0*stride; |
|
|
|
if (hadamard) { |
|
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; |
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[j*stride+i] = X[ordery[i]*N0+j]; |
|
} else { |
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[j*stride+i] = X[i*N0+j]; |
|
} |
|
|
|
for (i = 0; i < N; i++) |
|
X[i] = tmp[i]; |
|
} |
|
|
|
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, |
|
int stride, int hadamard) |
|
{ |
|
int i, j; |
|
int N = N0*stride; |
|
|
|
if (hadamard) { |
|
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2; |
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[ordery[i]*N0+j] = X[j*stride+i]; |
|
} else { |
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[i*N0+j] = X[j*stride+i]; |
|
} |
|
|
|
for (i = 0; i < N; i++) |
|
X[i] = tmp[i]; |
|
} |
|
|
|
static void celt_haar1(float *X, int N0, int stride) |
|
{ |
|
int i, j; |
|
N0 >>= 1; |
|
for (i = 0; i < stride; i++) { |
|
for (j = 0; j < N0; j++) { |
|
float x0 = X[stride * (2 * j + 0) + i]; |
|
float x1 = X[stride * (2 * j + 1) + i]; |
|
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; |
|
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; |
|
} |
|
} |
|
} |
|
|
|
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, |
|
int dualstereo) |
|
{ |
|
int qn, qb; |
|
int N2 = 2 * N - 1; |
|
if (dualstereo && N == 2) |
|
N2--; |
|
|
|
/* The upper limit ensures that in a stereo split with itheta==16384, we'll |
|
* always have enough bits left over to code at least one pulse in the |
|
* side; otherwise it would collapse, since it doesn't get folded. */ |
|
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); |
|
qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; |
|
return qn; |
|
} |
|
|
|
// this code was adapted from libopus |
|
static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y) |
|
{ |
|
uint64_t norm = 0; |
|
uint32_t p; |
|
int s, val; |
|
int k0; |
|
|
|
while (N > 2) { |
|
uint32_t q; |
|
|
|
/*Lots of pulses case:*/ |
|
if (K >= N) { |
|
const uint32_t *row = ff_celt_pvq_u_row[N]; |
|
|
|
/* Are the pulses in this dimension negative? */ |
|
p = row[K + 1]; |
|
s = -(i >= p); |
|
i -= p & s; |
|
|
|
/*Count how many pulses were placed in this dimension.*/ |
|
k0 = K; |
|
q = row[N]; |
|
if (q > i) { |
|
K = N; |
|
do { |
|
p = ff_celt_pvq_u_row[--K][N]; |
|
} while (p > i); |
|
} else |
|
for (p = row[K]; p > i; p = row[K]) |
|
K--; |
|
|
|
i -= p; |
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
} else { /*Lots of dimensions case:*/ |
|
/*Are there any pulses in this dimension at all?*/ |
|
p = ff_celt_pvq_u_row[K ][N]; |
|
q = ff_celt_pvq_u_row[K + 1][N]; |
|
|
|
if (p <= i && i < q) { |
|
i -= p; |
|
*y++ = 0; |
|
} else { |
|
/*Are the pulses in this dimension negative?*/ |
|
s = -(i >= q); |
|
i -= q & s; |
|
|
|
/*Count how many pulses were placed in this dimension.*/ |
|
k0 = K; |
|
do p = ff_celt_pvq_u_row[--K][N]; |
|
while (p > i); |
|
|
|
i -= p; |
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
} |
|
} |
|
N--; |
|
} |
|
|
|
/* N == 2 */ |
|
p = 2 * K + 1; |
|
s = -(i >= p); |
|
i -= p & s; |
|
k0 = K; |
|
K = (i + 1) / 2; |
|
|
|
if (K) |
|
i -= 2 * K - 1; |
|
|
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
|
|
/* N==1 */ |
|
s = -i; |
|
val = (K + s) ^ s; |
|
norm += val * val; |
|
*y = val; |
|
|
|
return norm; |
|
} |
|
|
|
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K) |
|
{ |
|
unsigned int idx; |
|
#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) |
|
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) |
|
idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); |
|
return celt_cwrsi(N, K, idx, y); |
|
} |
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce |
|
the final normalised signal in the current band. */ |
|
static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X, |
|
unsigned int N, unsigned int K, |
|
enum CeltSpread spread, |
|
unsigned int blocks, float gain) |
|
{ |
|
int y[176]; |
|
|
|
gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); |
|
celt_normalize_residual(y, X, N, gain); |
|
celt_exp_rotation(X, N, blocks, K, spread); |
|
return celt_extract_collapse_mask(y, N, blocks); |
|
} |
|
|
|
static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc, |
|
const int band, float *X, float *Y, |
|
int N, int b, unsigned int blocks, |
|
float *lowband, int duration, |
|
float *lowband_out, int level, |
|
float gain, float *lowband_scratch, |
|
int fill) |
|
{ |
|
const uint8_t *cache; |
|
int dualstereo, split; |
|
int imid = 0, iside = 0; |
|
unsigned int N0 = N; |
|
int N_B; |
|
int N_B0; |
|
int B0 = blocks; |
|
int time_divide = 0; |
|
int recombine = 0; |
|
int inv = 0; |
|
float mid = 0, side = 0; |
|
int longblocks = (B0 == 1); |
|
unsigned int cm = 0; |
|
|
|
N_B0 = N_B = N / blocks; |
|
split = dualstereo = (Y != NULL); |
|
|
|
if (N == 1) { |
|
/* special case for one sample */ |
|
int i; |
|
float *x = X; |
|
for (i = 0; i <= dualstereo; i++) { |
|
int sign = 0; |
|
if (s->remaining2 >= 1<<3) { |
|
sign = ff_opus_rc_get_raw(rc, 1); |
|
s->remaining2 -= 1 << 3; |
|
b -= 1 << 3; |
|
} |
|
x[0] = sign ? -1.0f : 1.0f; |
|
x = Y; |
|
} |
|
if (lowband_out) |
|
lowband_out[0] = X[0]; |
|
return 1; |
|
} |
|
|
|
if (!dualstereo && level == 0) { |
|
int tf_change = s->tf_change[band]; |
|
int k; |
|
if (tf_change > 0) |
|
recombine = tf_change; |
|
/* Band recombining to increase frequency resolution */ |
|
|
|
if (lowband && |
|
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { |
|
int j; |
|
for (j = 0; j < N; j++) |
|
lowband_scratch[j] = lowband[j]; |
|
lowband = lowband_scratch; |
|
} |
|
|
|
for (k = 0; k < recombine; k++) { |
|
if (lowband) |
|
celt_haar1(lowband, N >> k, 1 << k); |
|
fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; |
|
} |
|
blocks >>= recombine; |
|
N_B <<= recombine; |
|
|
|
/* Increasing the time resolution */ |
|
while ((N_B & 1) == 0 && tf_change < 0) { |
|
if (lowband) |
|
celt_haar1(lowband, N_B, blocks); |
|
fill |= fill << blocks; |
|
blocks <<= 1; |
|
N_B >>= 1; |
|
time_divide++; |
|
tf_change++; |
|
} |
|
B0 = blocks; |
|
N_B0 = N_B; |
|
|
|
/* Reorganize the samples in time order instead of frequency order */ |
|
if (B0 > 1 && lowband) |
|
celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine, |
|
B0 << recombine, longblocks); |
|
} |
|
|
|
/* If we need 1.5 more bit than we can produce, split the band in two. */ |
|
cache = ff_celt_cache_bits + |
|
ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; |
|
if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { |
|
N >>= 1; |
|
Y = X + N; |
|
split = 1; |
|
duration -= 1; |
|
if (blocks == 1) |
|
fill = (fill & 1) | (fill << 1); |
|
blocks = (blocks + 1) >> 1; |
|
} |
|
|
|
if (split) { |
|
int qn; |
|
int itheta = 0; |
|
int mbits, sbits, delta; |
|
int qalloc; |
|
int pulse_cap; |
|
int offset; |
|
int orig_fill; |
|
int tell; |
|
|
|
/* Decide on the resolution to give to the split parameter theta */ |
|
pulse_cap = ff_celt_log_freq_range[band] + duration * 8; |
|
offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : |
|
CELT_QTHETA_OFFSET); |
|
qn = (dualstereo && band >= s->intensitystereo) ? 1 : |
|
celt_compute_qn(N, b, offset, pulse_cap, dualstereo); |
|
tell = opus_rc_tell_frac(rc); |
|
if (qn != 1) { |
|
/* Entropy coding of the angle. We use a uniform pdf for the |
|
time split, a step for stereo, and a triangular one for the rest. */ |
|
if (dualstereo && N > 2) |
|
itheta = ff_opus_rc_dec_uint_step(rc, qn/2); |
|
else if (dualstereo || B0 > 1) |
|
itheta = ff_opus_rc_dec_uint(rc, qn+1); |
|
else |
|
itheta = ff_opus_rc_dec_uint_tri(rc, qn); |
|
itheta = itheta * 16384 / qn; |
|
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
|
Let's do that at higher complexity */ |
|
} else if (dualstereo) { |
|
inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; |
|
itheta = 0; |
|
} |
|
qalloc = opus_rc_tell_frac(rc) - tell; |
|
b -= qalloc; |
|
|
|
orig_fill = fill; |
|
if (itheta == 0) { |
|
imid = 32767; |
|
iside = 0; |
|
fill = av_mod_uintp2(fill, blocks); |
|
delta = -16384; |
|
} else if (itheta == 16384) { |
|
imid = 0; |
|
iside = 32767; |
|
fill &= ((1 << blocks) - 1) << blocks; |
|
delta = 16384; |
|
} else { |
|
imid = celt_cos(itheta); |
|
iside = celt_cos(16384-itheta); |
|
/* This is the mid vs side allocation that minimizes squared error |
|
in that band. */ |
|
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); |
|
} |
|
|
|
mid = imid / 32768.0f; |
|
side = iside / 32768.0f; |
|
|
|
/* This is a special case for N=2 that only works for stereo and takes |
|
advantage of the fact that mid and side are orthogonal to encode |
|
the side with just one bit. */ |
|
if (N == 2 && dualstereo) { |
|
int c; |
|
int sign = 0; |
|
float tmp; |
|
float *x2, *y2; |
|
mbits = b; |
|
/* Only need one bit for the side */ |
|
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; |
|
mbits -= sbits; |
|
c = (itheta > 8192); |
|
s->remaining2 -= qalloc+sbits; |
|
|
|
x2 = c ? Y : X; |
|
y2 = c ? X : Y; |
|
if (sbits) |
|
sign = ff_opus_rc_get_raw(rc, 1); |
|
sign = 1 - 2 * sign; |
|
/* We use orig_fill here because we want to fold the side, but if |
|
itheta==16384, we'll have cleared the low bits of fill. */ |
|
cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks, |
|
lowband, duration, lowband_out, level, gain, |
|
lowband_scratch, orig_fill); |
|
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
|
and there's no need to worry about mixing with the other channel. */ |
|
y2[0] = -sign * x2[1]; |
|
y2[1] = sign * x2[0]; |
|
X[0] *= mid; |
|
X[1] *= mid; |
|
Y[0] *= side; |
|
Y[1] *= side; |
|
tmp = X[0]; |
|
X[0] = tmp - Y[0]; |
|
Y[0] = tmp + Y[0]; |
|
tmp = X[1]; |
|
X[1] = tmp - Y[1]; |
|
Y[1] = tmp + Y[1]; |
|
} else { |
|
/* "Normal" split code */ |
|
float *next_lowband2 = NULL; |
|
float *next_lowband_out1 = NULL; |
|
int next_level = 0; |
|
int rebalance; |
|
|
|
/* Give more bits to low-energy MDCTs than they would |
|
* otherwise deserve */ |
|
if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { |
|
if (itheta > 8192) |
|
/* Rough approximation for pre-echo masking */ |
|
delta -= delta >> (4 - duration); |
|
else |
|
/* Corresponds to a forward-masking slope of |
|
* 1.5 dB per 10 ms */ |
|
delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); |
|
} |
|
mbits = av_clip((b - delta) / 2, 0, b); |
|
sbits = b - mbits; |
|
s->remaining2 -= qalloc; |
|
|
|
if (lowband && !dualstereo) |
|
next_lowband2 = lowband + N; /* >32-bit split case */ |
|
|
|
/* Only stereo needs to pass on lowband_out. |
|
* Otherwise, it's handled at the end */ |
|
if (dualstereo) |
|
next_lowband_out1 = lowband_out; |
|
else |
|
next_level = level + 1; |
|
|
|
rebalance = s->remaining2; |
|
if (mbits >= sbits) { |
|
/* In stereo mode, we do not apply a scaling to the mid |
|
* because we need the normalized mid for folding later */ |
|
cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, |
|
lowband, duration, next_lowband_out1, |
|
next_level, dualstereo ? 1.0f : (gain * mid), |
|
lowband_scratch, fill); |
|
|
|
rebalance = mbits - (rebalance - s->remaining2); |
|
if (rebalance > 3 << 3 && itheta != 0) |
|
sbits += rebalance - (3 << 3); |
|
|
|
/* For a stereo split, the high bits of fill are always zero, |
|
* so no folding will be done to the side. */ |
|
cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, |
|
next_lowband2, duration, NULL, |
|
next_level, gain * side, NULL, |
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); |
|
} else { |
|
/* For a stereo split, the high bits of fill are always zero, |
|
* so no folding will be done to the side. */ |
|
cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks, |
|
next_lowband2, duration, NULL, |
|
next_level, gain * side, NULL, |
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); |
|
|
|
rebalance = sbits - (rebalance - s->remaining2); |
|
if (rebalance > 3 << 3 && itheta != 16384) |
|
mbits += rebalance - (3 << 3); |
|
|
|
/* In stereo mode, we do not apply a scaling to the mid because |
|
* we need the normalized mid for folding later */ |
|
cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks, |
|
lowband, duration, next_lowband_out1, |
|
next_level, dualstereo ? 1.0f : (gain * mid), |
|
lowband_scratch, fill); |
|
} |
|
} |
|
} else { |
|
/* This is the basic no-split case */ |
|
unsigned int q = celt_bits2pulses(cache, b); |
|
unsigned int curr_bits = celt_pulses2bits(cache, q); |
|
s->remaining2 -= curr_bits; |
|
|
|
/* Ensures we can never bust the budget */ |
|
while (s->remaining2 < 0 && q > 0) { |
|
s->remaining2 += curr_bits; |
|
curr_bits = celt_pulses2bits(cache, --q); |
|
s->remaining2 -= curr_bits; |
|
} |
|
|
|
if (q != 0) { |
|
/* Finally do the actual quantization */ |
|
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
|
s->spread, blocks, gain); |
|
} else { |
|
/* If there's no pulse, fill the band anyway */ |
|
int j; |
|
unsigned int cm_mask = (1 << blocks) - 1; |
|
fill &= cm_mask; |
|
if (!fill) { |
|
for (j = 0; j < N; j++) |
|
X[j] = 0.0f; |
|
} else { |
|
if (!lowband) { |
|
/* Noise */ |
|
for (j = 0; j < N; j++) |
|
X[j] = (((int32_t)celt_rng(s)) >> 20); |
|
cm = cm_mask; |
|
} else { |
|
/* Folded spectrum */ |
|
for (j = 0; j < N; j++) { |
|
/* About 48 dB below the "normal" folding level */ |
|
X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); |
|
} |
|
cm = fill; |
|
} |
|
celt_renormalize_vector(X, N, gain); |
|
} |
|
} |
|
} |
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */ |
|
if (dualstereo) { |
|
int j; |
|
if (N != 2) |
|
celt_stereo_merge(X, Y, mid, N); |
|
if (inv) { |
|
for (j = 0; j < N; j++) |
|
Y[j] *= -1; |
|
} |
|
} else if (level == 0) { |
|
int k; |
|
|
|
/* Undo the sample reorganization going from time order to frequency order */ |
|
if (B0 > 1) |
|
celt_interleave_hadamard(s->scratch, X, N_B>>recombine, |
|
B0<<recombine, longblocks); |
|
|
|
/* Undo time-freq changes that we did earlier */ |
|
N_B = N_B0; |
|
blocks = B0; |
|
for (k = 0; k < time_divide; k++) { |
|
blocks >>= 1; |
|
N_B <<= 1; |
|
cm |= cm >> blocks; |
|
celt_haar1(X, N_B, blocks); |
|
} |
|
|
|
for (k = 0; k < recombine; k++) { |
|
cm = ff_celt_bit_deinterleave[cm]; |
|
celt_haar1(X, N0>>k, 1<<k); |
|
} |
|
blocks <<= recombine; |
|
|
|
/* Scale output for later folding */ |
|
if (lowband_out) { |
|
int j; |
|
float n = sqrtf(N0); |
|
for (j = 0; j < N0; j++) |
|
lowband_out[j] = n * X[j]; |
|
} |
|
cm = av_mod_uintp2(cm, blocks); |
|
} |
|
return cm; |
|
} |
|
|
|
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data) |
|
{ |
|
int i, j; |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
float *dst = data + (ff_celt_freq_bands[i] << s->duration); |
|
float norm = exp2(frame->energy[i] + ff_celt_mean_energy[i]); |
|
|
|
for (j = 0; j < ff_celt_freq_range[i] << s->duration; j++) |
|
dst[j] *= norm; |
|
} |
|
} |
|
|
|
static void celt_postfilter_apply_transition(CeltFrame *frame, float *data) |
|
{ |
|
const int T0 = frame->pf_period_old; |
|
const int T1 = frame->pf_period; |
|
|
|
float g00, g01, g02; |
|
float g10, g11, g12; |
|
|
|
float x0, x1, x2, x3, x4; |
|
|
|
int i; |
|
|
|
if (frame->pf_gains[0] == 0.0 && |
|
frame->pf_gains_old[0] == 0.0) |
|
return; |
|
|
|
g00 = frame->pf_gains_old[0]; |
|
g01 = frame->pf_gains_old[1]; |
|
g02 = frame->pf_gains_old[2]; |
|
g10 = frame->pf_gains[0]; |
|
g11 = frame->pf_gains[1]; |
|
g12 = frame->pf_gains[2]; |
|
|
|
x1 = data[-T1 + 1]; |
|
x2 = data[-T1]; |
|
x3 = data[-T1 - 1]; |
|
x4 = data[-T1 - 2]; |
|
|
|
for (i = 0; i < CELT_OVERLAP; i++) { |
|
float w = ff_celt_window2[i]; |
|
x0 = data[i - T1 + 2]; |
|
|
|
data[i] += (1.0 - w) * g00 * data[i - T0] + |
|
(1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + |
|
(1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + |
|
w * g10 * x2 + |
|
w * g11 * (x1 + x3) + |
|
w * g12 * (x0 + x4); |
|
x4 = x3; |
|
x3 = x2; |
|
x2 = x1; |
|
x1 = x0; |
|
} |
|
} |
|
|
|
static void celt_postfilter_apply(CeltFrame *frame, |
|
float *data, int len) |
|
{ |
|
const int T = frame->pf_period; |
|
float g0, g1, g2; |
|
float x0, x1, x2, x3, x4; |
|
int i; |
|
|
|
if (frame->pf_gains[0] == 0.0 || len <= 0) |
|
return; |
|
|
|
g0 = frame->pf_gains[0]; |
|
g1 = frame->pf_gains[1]; |
|
g2 = frame->pf_gains[2]; |
|
|
|
x4 = data[-T - 2]; |
|
x3 = data[-T - 1]; |
|
x2 = data[-T]; |
|
x1 = data[-T + 1]; |
|
|
|
for (i = 0; i < len; i++) { |
|
x0 = data[i - T + 2]; |
|
data[i] += g0 * x2 + |
|
g1 * (x1 + x3) + |
|
g2 * (x0 + x4); |
|
x4 = x3; |
|
x3 = x2; |
|
x2 = x1; |
|
x1 = x0; |
|
} |
|
} |
|
|
|
static void celt_postfilter(CeltContext *s, CeltFrame *frame) |
|
{ |
|
int len = s->blocksize * s->blocks; |
|
|
|
celt_postfilter_apply_transition(frame, frame->buf + 1024); |
|
|
|
frame->pf_period_old = frame->pf_period; |
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains)); |
|
|
|
frame->pf_period = frame->pf_period_new; |
|
memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains)); |
|
|
|
if (len > CELT_OVERLAP) { |
|
celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP); |
|
celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP, |
|
len - 2 * CELT_OVERLAP); |
|
|
|
frame->pf_period_old = frame->pf_period; |
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains)); |
|
} |
|
|
|
memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); |
|
} |
|
|
|
static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed) |
|
{ |
|
static const float postfilter_taps[3][3] = { |
|
{ 0.3066406250f, 0.2170410156f, 0.1296386719f }, |
|
{ 0.4638671875f, 0.2680664062f, 0.0 }, |
|
{ 0.7998046875f, 0.1000976562f, 0.0 } |
|
}; |
|
int i; |
|
|
|
memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new)); |
|
memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new)); |
|
|
|
if (s->startband == 0 && consumed + 16 <= s->framebits) { |
|
int has_postfilter = ff_opus_rc_dec_log(rc, 1); |
|
if (has_postfilter) { |
|
float gain; |
|
int tapset, octave, period; |
|
|
|
octave = ff_opus_rc_dec_uint(rc, 6); |
|
period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; |
|
gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); |
|
tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ? |
|
ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; |
|
|
|
for (i = 0; i < 2; i++) { |
|
CeltFrame *frame = &s->frame[i]; |
|
|
|
frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); |
|
frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0]; |
|
frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1]; |
|
frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2]; |
|
} |
|
} |
|
|
|
consumed = opus_rc_tell(rc); |
|
} |
|
|
|
return consumed; |
|
} |
|
|
|
static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X) |
|
{ |
|
int i, j, k; |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
int renormalize = 0; |
|
float *xptr; |
|
float prev[2]; |
|
float Ediff, r; |
|
float thresh, sqrt_1; |
|
int depth; |
|
|
|
/* depth in 1/8 bits */ |
|
depth = (1 + s->pulses[i]) / (ff_celt_freq_range[i] << s->duration); |
|
thresh = exp2f(-1.0 - 0.125f * depth); |
|
sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << s->duration); |
|
|
|
xptr = X + (ff_celt_freq_bands[i] << s->duration); |
|
|
|
prev[0] = frame->prev_energy[0][i]; |
|
prev[1] = frame->prev_energy[1][i]; |
|
if (s->coded_channels == 1) { |
|
CeltFrame *frame1 = &s->frame[1]; |
|
|
|
prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]); |
|
prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]); |
|
} |
|
Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]); |
|
Ediff = FFMAX(0, Ediff); |
|
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
|
short blocks don't have the same energy as long */ |
|
r = exp2(1 - Ediff); |
|
if (s->duration == 3) |
|
r *= M_SQRT2; |
|
r = FFMIN(thresh, r) * sqrt_1; |
|
for (k = 0; k < 1 << s->duration; k++) { |
|
/* Detect collapse */ |
|
if (!(frame->collapse_masks[i] & 1 << k)) { |
|
/* Fill with noise */ |
|
for (j = 0; j < ff_celt_freq_range[i]; j++) |
|
xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r; |
|
renormalize = 1; |
|
} |
|
} |
|
|
|
/* We just added some energy, so we need to renormalize */ |
|
if (renormalize) |
|
celt_renormalize_vector(xptr, ff_celt_freq_range[i] << s->duration, 1.0f); |
|
} |
|
} |
|
|
|
static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc) |
|
{ |
|
float lowband_scratch[8 * 22]; |
|
float norm[2 * 8 * 100]; |
|
|
|
int totalbits = (s->framebits << 3) - s->anticollapse_bit; |
|
|
|
int update_lowband = 1; |
|
int lowband_offset = 0; |
|
|
|
int i, j; |
|
|
|
memset(s->coeffs, 0, sizeof(s->coeffs)); |
|
|
|
for (i = s->startband; i < s->endband; i++) { |
|
int band_offset = ff_celt_freq_bands[i] << s->duration; |
|
int band_size = ff_celt_freq_range[i] << s->duration; |
|
float *X = s->coeffs[0] + band_offset; |
|
float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL; |
|
|
|
int consumed = opus_rc_tell_frac(rc); |
|
float *norm2 = norm + 8 * 100; |
|
int effective_lowband = -1; |
|
unsigned int cm[2]; |
|
int b; |
|
|
|
/* Compute how many bits we want to allocate to this band */ |
|
if (i != s->startband) |
|
s->remaining -= consumed; |
|
s->remaining2 = totalbits - consumed - 1; |
|
if (i <= s->codedbands - 1) { |
|
int curr_balance = s->remaining / FFMIN(3, s->codedbands-i); |
|
b = av_clip_uintp2(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 14); |
|
} else |
|
b = 0; |
|
|
|
if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[s->startband] && |
|
(update_lowband || lowband_offset == 0)) |
|
lowband_offset = i; |
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're |
|
going to be folding from. */ |
|
if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE || |
|
s->blocks > 1 || s->tf_change[i] < 0)) { |
|
int foldstart, foldend; |
|
|
|
/* This ensures we never repeat spectral content within one band */ |
|
effective_lowband = FFMAX(ff_celt_freq_bands[s->startband], |
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); |
|
foldstart = lowband_offset; |
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband); |
|
foldend = lowband_offset - 1; |
|
while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]); |
|
|
|
cm[0] = cm[1] = 0; |
|
for (j = foldstart; j < foldend; j++) { |
|
cm[0] |= s->frame[0].collapse_masks[j]; |
|
cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j]; |
|
} |
|
} else |
|
/* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
|
always) be non-zero.*/ |
|
cm[0] = cm[1] = (1 << s->blocks) - 1; |
|
|
|
if (s->dualstereo && i == s->intensitystereo) { |
|
/* Switch off dual stereo to do intensity */ |
|
s->dualstereo = 0; |
|
for (j = ff_celt_freq_bands[s->startband] << s->duration; j < band_offset; j++) |
|
norm[j] = (norm[j] + norm2[j]) / 2; |
|
} |
|
|
|
if (s->dualstereo) { |
|
cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks, |
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, |
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); |
|
|
|
cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks, |
|
effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration, |
|
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); |
|
} else { |
|
cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks, |
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration, |
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); |
|
|
|
cm[1] = cm[0]; |
|
} |
|
|
|
s->frame[0].collapse_masks[i] = (uint8_t)cm[0]; |
|
s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1]; |
|
s->remaining += s->pulses[i] + consumed; |
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */ |
|
update_lowband = (b > band_size << 3); |
|
} |
|
} |
|
|
|
int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc, |
|
float **output, int coded_channels, int frame_size, |
|
int startband, int endband) |
|
{ |
|
int i, j; |
|
|
|
int consumed; // bits of entropy consumed thus far for this frame |
|
int silence = 0; |
|
int transient = 0; |
|
int anticollapse = 0; |
|
IMDCT15Context *imdct; |
|
float imdct_scale = 1.0; |
|
|
|
if (coded_channels != 1 && coded_channels != 2) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", |
|
coded_channels); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", |
|
startband, endband); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->flushed = 0; |
|
s->coded_channels = coded_channels; |
|
s->startband = startband; |
|
s->endband = endband; |
|
s->framebits = rc->rb.bytes * 8; |
|
|
|
s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); |
|
if (s->duration > CELT_MAX_LOG_BLOCKS || |
|
frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", |
|
frame_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!s->output_channels) |
|
s->output_channels = coded_channels; |
|
|
|
memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks)); |
|
memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks)); |
|
|
|
consumed = opus_rc_tell(rc); |
|
|
|
/* obtain silence flag */ |
|
if (consumed >= s->framebits) |
|
silence = 1; |
|
else if (consumed == 1) |
|
silence = ff_opus_rc_dec_log(rc, 15); |
|
|
|
|
|
if (silence) { |
|
consumed = s->framebits; |
|
rc->total_bits += s->framebits - opus_rc_tell(rc); |
|
} |
|
|
|
/* obtain post-filter options */ |
|
consumed = parse_postfilter(s, rc, consumed); |
|
|
|
/* obtain transient flag */ |
|
if (s->duration != 0 && consumed+3 <= s->framebits) |
|
transient = ff_opus_rc_dec_log(rc, 3); |
|
|
|
s->blocks = transient ? 1 << s->duration : 1; |
|
s->blocksize = frame_size / s->blocks; |
|
|
|
imdct = s->imdct[transient ? 0 : s->duration]; |
|
|
|
if (coded_channels == 1) { |
|
for (i = 0; i < CELT_MAX_BANDS; i++) |
|
s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]); |
|
} |
|
|
|
celt_decode_coarse_energy(s, rc); |
|
celt_decode_tf_changes (s, rc, transient); |
|
celt_decode_allocation (s, rc); |
|
celt_decode_fine_energy (s, rc); |
|
celt_decode_bands (s, rc); |
|
|
|
if (s->anticollapse_bit) |
|
anticollapse = ff_opus_rc_get_raw(rc, 1); |
|
|
|
celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc)); |
|
|
|
/* apply anti-collapse processing and denormalization to |
|
* each coded channel */ |
|
for (i = 0; i < s->coded_channels; i++) { |
|
CeltFrame *frame = &s->frame[i]; |
|
|
|
if (anticollapse) |
|
process_anticollapse(s, frame, s->coeffs[i]); |
|
|
|
celt_denormalize(s, frame, s->coeffs[i]); |
|
} |
|
|
|
/* stereo -> mono downmix */ |
|
if (s->output_channels < s->coded_channels) { |
|
s->dsp->vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16)); |
|
imdct_scale = 0.5; |
|
} else if (s->output_channels > s->coded_channels) |
|
memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float)); |
|
|
|
if (silence) { |
|
for (i = 0; i < 2; i++) { |
|
CeltFrame *frame = &s->frame[i]; |
|
|
|
for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++) |
|
frame->energy[j] = CELT_ENERGY_SILENCE; |
|
} |
|
memset(s->coeffs, 0, sizeof(s->coeffs)); |
|
} |
|
|
|
/* transform and output for each output channel */ |
|
for (i = 0; i < s->output_channels; i++) { |
|
CeltFrame *frame = &s->frame[i]; |
|
float m = frame->deemph_coeff; |
|
|
|
/* iMDCT and overlap-add */ |
|
for (j = 0; j < s->blocks; j++) { |
|
float *dst = frame->buf + 1024 + j * s->blocksize; |
|
|
|
imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j, |
|
s->blocks, imdct_scale); |
|
s->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, |
|
ff_celt_window, CELT_OVERLAP / 2); |
|
} |
|
|
|
/* postfilter */ |
|
celt_postfilter(s, frame); |
|
|
|
/* deemphasis and output scaling */ |
|
for (j = 0; j < frame_size; j++) { |
|
float tmp = frame->buf[1024 - frame_size + j] + m; |
|
m = tmp * CELT_DEEMPH_COEFF; |
|
output[i][j] = tmp / 32768.; |
|
} |
|
frame->deemph_coeff = m; |
|
} |
|
|
|
if (coded_channels == 1) |
|
memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy)); |
|
|
|
for (i = 0; i < 2; i++ ) { |
|
CeltFrame *frame = &s->frame[i]; |
|
|
|
if (!transient) { |
|
memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0])); |
|
memcpy(frame->prev_energy[0], frame->energy, sizeof(frame->prev_energy[0])); |
|
} else { |
|
for (j = 0; j < CELT_MAX_BANDS; j++) |
|
frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]); |
|
} |
|
|
|
for (j = 0; j < s->startband; j++) { |
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE; |
|
frame->energy[j] = 0.0; |
|
} |
|
for (j = s->endband; j < CELT_MAX_BANDS; j++) { |
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE; |
|
frame->energy[j] = 0.0; |
|
} |
|
} |
|
|
|
s->seed = rc->range; |
|
|
|
return 0; |
|
} |
|
|
|
void ff_celt_flush(CeltContext *s) |
|
{ |
|
int i, j; |
|
|
|
if (s->flushed) |
|
return; |
|
|
|
for (i = 0; i < 2; i++) { |
|
CeltFrame *frame = &s->frame[i]; |
|
|
|
for (j = 0; j < CELT_MAX_BANDS; j++) |
|
frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE; |
|
|
|
memset(frame->energy, 0, sizeof(frame->energy)); |
|
memset(frame->buf, 0, sizeof(frame->buf)); |
|
|
|
memset(frame->pf_gains, 0, sizeof(frame->pf_gains)); |
|
memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old)); |
|
memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new)); |
|
|
|
frame->deemph_coeff = 0.0; |
|
} |
|
s->seed = 0; |
|
|
|
s->flushed = 1; |
|
} |
|
|
|
void ff_celt_free(CeltContext **ps) |
|
{ |
|
CeltContext *s = *ps; |
|
int i; |
|
|
|
if (!s) |
|
return; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) |
|
ff_imdct15_uninit(&s->imdct[i]); |
|
|
|
av_freep(&s->dsp); |
|
av_freep(ps); |
|
} |
|
|
|
int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels) |
|
{ |
|
CeltContext *s; |
|
int i, ret; |
|
|
|
if (output_channels != 1 && output_channels != 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", |
|
output_channels); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
s = av_mallocz(sizeof(*s)); |
|
if (!s) |
|
return AVERROR(ENOMEM); |
|
|
|
s->avctx = avctx; |
|
s->output_channels = output_channels; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) { |
|
ret = ff_imdct15_init(&s->imdct[i], i + 3); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
|
if (!s->dsp) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
|
|
ff_celt_flush(s); |
|
|
|
*ps = s; |
|
|
|
return 0; |
|
fail: |
|
ff_celt_free(&s); |
|
return ret; |
|
}
|
|
|