mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1037 lines
38 KiB
1037 lines
38 KiB
/* |
|
* MPEG-4 Parametric Stereo decoding functions |
|
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdint.h> |
|
#include "libavutil/common.h" |
|
#include "libavutil/mathematics.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "ps.h" |
|
#include "ps_tablegen.h" |
|
#include "psdata.c" |
|
|
|
#define PS_BASELINE 0 //< Operate in Baseline PS mode |
|
//< Baseline implies 10 or 20 stereo bands, |
|
//< mixing mode A, and no ipd/opd |
|
|
|
#define numQMFSlots 32 //numTimeSlots * RATE |
|
|
|
static const int8_t num_env_tab[2][4] = { |
|
{ 0, 1, 2, 4, }, |
|
{ 1, 2, 3, 4, }, |
|
}; |
|
|
|
static const int8_t nr_iidicc_par_tab[] = { |
|
10, 20, 34, 10, 20, 34, |
|
}; |
|
|
|
static const int8_t nr_iidopd_par_tab[] = { |
|
5, 11, 17, 5, 11, 17, |
|
}; |
|
|
|
enum { |
|
huff_iid_df1, |
|
huff_iid_dt1, |
|
huff_iid_df0, |
|
huff_iid_dt0, |
|
huff_icc_df, |
|
huff_icc_dt, |
|
huff_ipd_df, |
|
huff_ipd_dt, |
|
huff_opd_df, |
|
huff_opd_dt, |
|
}; |
|
|
|
static const int huff_iid[] = { |
|
huff_iid_df0, |
|
huff_iid_df1, |
|
huff_iid_dt0, |
|
huff_iid_dt1, |
|
}; |
|
|
|
static VLC vlc_ps[10]; |
|
|
|
/** |
|
* Read Inter-channel Intensity Difference/Inter-Channel Coherence/ |
|
* Inter-channel Phase Difference/Overall Phase Difference parameters from the |
|
* bitstream. |
|
* |
|
* @param avctx contains the current codec context |
|
* @param gb pointer to the input bitstream |
|
* @param ps pointer to the Parametric Stereo context |
|
* @param par pointer to the parameter to be read |
|
* @param e envelope to decode |
|
* @param dt 1: time delta-coded, 0: frequency delta-coded |
|
*/ |
|
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \ |
|
static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \ |
|
int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \ |
|
{ \ |
|
int b, num = ps->nr_ ## PAR ## _par; \ |
|
VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \ |
|
if (dt) { \ |
|
int e_prev = e ? e - 1 : ps->num_env_old - 1; \ |
|
e_prev = FFMAX(e_prev, 0); \ |
|
for (b = 0; b < num; b++) { \ |
|
int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ |
|
if (MASK) val &= MASK; \ |
|
PAR[e][b] = val; \ |
|
if (ERR_CONDITION) \ |
|
goto err; \ |
|
} \ |
|
} else { \ |
|
int val = 0; \ |
|
for (b = 0; b < num; b++) { \ |
|
val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ |
|
if (MASK) val &= MASK; \ |
|
PAR[e][b] = val; \ |
|
if (ERR_CONDITION) \ |
|
goto err; \ |
|
} \ |
|
} \ |
|
return 0; \ |
|
err: \ |
|
av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \ |
|
return -1; \ |
|
} |
|
|
|
READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant) |
|
READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U) |
|
READ_PAR_DATA(ipdopd, 0, 0x07, 0) |
|
|
|
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id) |
|
{ |
|
int e; |
|
int count = get_bits_count(gb); |
|
|
|
if (ps_extension_id) |
|
return 0; |
|
|
|
ps->enable_ipdopd = get_bits1(gb); |
|
if (ps->enable_ipdopd) { |
|
for (e = 0; e < ps->num_env; e++) { |
|
int dt = get_bits1(gb); |
|
read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt); |
|
dt = get_bits1(gb); |
|
read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt); |
|
} |
|
} |
|
skip_bits1(gb); //reserved_ps |
|
return get_bits_count(gb) - count; |
|
} |
|
|
|
static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist) |
|
{ |
|
int i; |
|
for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { |
|
opd_hist[i] = 0; |
|
ipd_hist[i] = 0; |
|
} |
|
} |
|
|
|
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left) |
|
{ |
|
int e; |
|
int bit_count_start = get_bits_count(gb_host); |
|
int header; |
|
int bits_consumed; |
|
GetBitContext gbc = *gb_host, *gb = &gbc; |
|
|
|
header = get_bits1(gb); |
|
if (header) { //enable_ps_header |
|
ps->enable_iid = get_bits1(gb); |
|
if (ps->enable_iid) { |
|
int iid_mode = get_bits(gb, 3); |
|
if (iid_mode > 5) { |
|
av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n", |
|
iid_mode); |
|
goto err; |
|
} |
|
ps->nr_iid_par = nr_iidicc_par_tab[iid_mode]; |
|
ps->iid_quant = iid_mode > 2; |
|
ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode]; |
|
} |
|
ps->enable_icc = get_bits1(gb); |
|
if (ps->enable_icc) { |
|
ps->icc_mode = get_bits(gb, 3); |
|
if (ps->icc_mode > 5) { |
|
av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n", |
|
ps->icc_mode); |
|
goto err; |
|
} |
|
ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode]; |
|
} |
|
ps->enable_ext = get_bits1(gb); |
|
} |
|
|
|
ps->frame_class = get_bits1(gb); |
|
ps->num_env_old = ps->num_env; |
|
ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)]; |
|
|
|
ps->border_position[0] = -1; |
|
if (ps->frame_class) { |
|
for (e = 1; e <= ps->num_env; e++) |
|
ps->border_position[e] = get_bits(gb, 5); |
|
} else |
|
for (e = 1; e <= ps->num_env; e++) |
|
ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1; |
|
|
|
if (ps->enable_iid) { |
|
for (e = 0; e < ps->num_env; e++) { |
|
int dt = get_bits1(gb); |
|
if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt)) |
|
goto err; |
|
} |
|
} else |
|
memset(ps->iid_par, 0, sizeof(ps->iid_par)); |
|
|
|
if (ps->enable_icc) |
|
for (e = 0; e < ps->num_env; e++) { |
|
int dt = get_bits1(gb); |
|
if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt)) |
|
goto err; |
|
} |
|
else |
|
memset(ps->icc_par, 0, sizeof(ps->icc_par)); |
|
|
|
if (ps->enable_ext) { |
|
int cnt = get_bits(gb, 4); |
|
if (cnt == 15) { |
|
cnt += get_bits(gb, 8); |
|
} |
|
cnt *= 8; |
|
while (cnt > 7) { |
|
int ps_extension_id = get_bits(gb, 2); |
|
cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id); |
|
} |
|
if (cnt < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt); |
|
goto err; |
|
} |
|
skip_bits(gb, cnt); |
|
} |
|
|
|
ps->enable_ipdopd &= !PS_BASELINE; |
|
|
|
//Fix up envelopes |
|
if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) { |
|
//Create a fake envelope |
|
int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1; |
|
if (source >= 0 && source != ps->num_env) { |
|
if (ps->enable_iid) { |
|
memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0])); |
|
} |
|
if (ps->enable_icc) { |
|
memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0])); |
|
} |
|
if (ps->enable_ipdopd) { |
|
memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0])); |
|
memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0])); |
|
} |
|
} |
|
ps->num_env++; |
|
ps->border_position[ps->num_env] = numQMFSlots - 1; |
|
} |
|
|
|
|
|
ps->is34bands_old = ps->is34bands; |
|
if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc)) |
|
ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) || |
|
(ps->enable_icc && ps->nr_icc_par == 34); |
|
|
|
//Baseline |
|
if (!ps->enable_ipdopd) { |
|
memset(ps->ipd_par, 0, sizeof(ps->ipd_par)); |
|
memset(ps->opd_par, 0, sizeof(ps->opd_par)); |
|
} |
|
|
|
if (header) |
|
ps->start = 1; |
|
|
|
bits_consumed = get_bits_count(gb) - bit_count_start; |
|
if (bits_consumed <= bits_left) { |
|
skip_bits_long(gb_host, bits_consumed); |
|
return bits_consumed; |
|
} |
|
av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed); |
|
err: |
|
ps->start = 0; |
|
skip_bits_long(gb_host, bits_left); |
|
return bits_left; |
|
} |
|
|
|
/** Split one subband into 2 subsubbands with a symmetric real filter. |
|
* The filter must have its non-center even coefficients equal to zero. */ |
|
static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse) |
|
{ |
|
int i, j; |
|
for (i = 0; i < len; i++, in++) { |
|
float re_in = filter[6] * in[6][0]; //real inphase |
|
float re_op = 0.0f; //real out of phase |
|
float im_in = filter[6] * in[6][1]; //imag inphase |
|
float im_op = 0.0f; //imag out of phase |
|
for (j = 0; j < 6; j += 2) { |
|
re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]); |
|
im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]); |
|
} |
|
out[ reverse][i][0] = re_in + re_op; |
|
out[ reverse][i][1] = im_in + im_op; |
|
out[!reverse][i][0] = re_in - re_op; |
|
out[!reverse][i][1] = im_in - im_op; |
|
} |
|
} |
|
|
|
/** Split one subband into 6 subsubbands with a complex filter */ |
|
static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len) |
|
{ |
|
int i, j, ssb; |
|
int N = 8; |
|
float temp[8][2]; |
|
|
|
for (i = 0; i < len; i++, in++) { |
|
for (ssb = 0; ssb < N; ssb++) { |
|
float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1]; |
|
for (j = 0; j < 6; j++) { |
|
float in0_re = in[j][0]; |
|
float in0_im = in[j][1]; |
|
float in1_re = in[12-j][0]; |
|
float in1_im = in[12-j][1]; |
|
sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im); |
|
sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re); |
|
} |
|
temp[ssb][0] = sum_re; |
|
temp[ssb][1] = sum_im; |
|
} |
|
out[0][i][0] = temp[6][0]; |
|
out[0][i][1] = temp[6][1]; |
|
out[1][i][0] = temp[7][0]; |
|
out[1][i][1] = temp[7][1]; |
|
out[2][i][0] = temp[0][0]; |
|
out[2][i][1] = temp[0][1]; |
|
out[3][i][0] = temp[1][0]; |
|
out[3][i][1] = temp[1][1]; |
|
out[4][i][0] = temp[2][0] + temp[5][0]; |
|
out[4][i][1] = temp[2][1] + temp[5][1]; |
|
out[5][i][0] = temp[3][0] + temp[4][0]; |
|
out[5][i][1] = temp[3][1] + temp[4][1]; |
|
} |
|
} |
|
|
|
static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len) |
|
{ |
|
int i, j, ssb; |
|
|
|
for (i = 0; i < len; i++, in++) { |
|
for (ssb = 0; ssb < N; ssb++) { |
|
float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1]; |
|
for (j = 0; j < 6; j++) { |
|
float in0_re = in[j][0]; |
|
float in0_im = in[j][1]; |
|
float in1_re = in[12-j][0]; |
|
float in1_im = in[12-j][1]; |
|
sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im); |
|
sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re); |
|
} |
|
out[ssb][i][0] = sum_re; |
|
out[ssb][i][1] = sum_im; |
|
} |
|
} |
|
} |
|
|
|
static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len) |
|
{ |
|
int i, j; |
|
for (i = 0; i < 5; i++) { |
|
for (j = 0; j < 38; j++) { |
|
in[i][j+6][0] = L[0][j][i]; |
|
in[i][j+6][1] = L[1][j][i]; |
|
} |
|
} |
|
if(is34) { |
|
hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len); |
|
hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len); |
|
hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len); |
|
hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len); |
|
hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len); |
|
for (i = 0; i < 59; i++) { |
|
for (j = 0; j < len; j++) { |
|
out[i+32][j][0] = L[0][j][i+5]; |
|
out[i+32][j][1] = L[1][j][i+5]; |
|
} |
|
} |
|
} else { |
|
hybrid6_cx(in[0], out, f20_0_8, len); |
|
hybrid2_re(in[1], out+6, g1_Q2, len, 1); |
|
hybrid2_re(in[2], out+8, g1_Q2, len, 0); |
|
for (i = 0; i < 61; i++) { |
|
for (j = 0; j < len; j++) { |
|
out[i+10][j][0] = L[0][j][i+3]; |
|
out[i+10][j][1] = L[1][j][i+3]; |
|
} |
|
} |
|
} |
|
//update in_buf |
|
for (i = 0; i < 5; i++) { |
|
memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); |
|
} |
|
} |
|
|
|
static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len) |
|
{ |
|
int i, n; |
|
if(is34) { |
|
for (n = 0; n < len; n++) { |
|
memset(out[0][n], 0, 5*sizeof(out[0][n][0])); |
|
memset(out[1][n], 0, 5*sizeof(out[1][n][0])); |
|
for(i = 0; i < 12; i++) { |
|
out[0][n][0] += in[ i][n][0]; |
|
out[1][n][0] += in[ i][n][1]; |
|
} |
|
for(i = 0; i < 8; i++) { |
|
out[0][n][1] += in[12+i][n][0]; |
|
out[1][n][1] += in[12+i][n][1]; |
|
} |
|
for(i = 0; i < 4; i++) { |
|
out[0][n][2] += in[20+i][n][0]; |
|
out[1][n][2] += in[20+i][n][1]; |
|
out[0][n][3] += in[24+i][n][0]; |
|
out[1][n][3] += in[24+i][n][1]; |
|
out[0][n][4] += in[28+i][n][0]; |
|
out[1][n][4] += in[28+i][n][1]; |
|
} |
|
} |
|
for (i = 0; i < 59; i++) { |
|
for (n = 0; n < len; n++) { |
|
out[0][n][i+5] = in[i+32][n][0]; |
|
out[1][n][i+5] = in[i+32][n][1]; |
|
} |
|
} |
|
} else { |
|
for (n = 0; n < len; n++) { |
|
out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] + |
|
in[3][n][0] + in[4][n][0] + in[5][n][0]; |
|
out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] + |
|
in[3][n][1] + in[4][n][1] + in[5][n][1]; |
|
out[0][n][1] = in[6][n][0] + in[7][n][0]; |
|
out[1][n][1] = in[6][n][1] + in[7][n][1]; |
|
out[0][n][2] = in[8][n][0] + in[9][n][0]; |
|
out[1][n][2] = in[8][n][1] + in[9][n][1]; |
|
} |
|
for (i = 0; i < 61; i++) { |
|
for (n = 0; n < len; n++) { |
|
out[0][n][i+3] = in[i+10][n][0]; |
|
out[1][n][i+3] = in[i+10][n][1]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// All-pass filter decay slope |
|
#define DECAY_SLOPE 0.05f |
|
/// Number of frequency bands that can be addressed by the parameter index, b(k) |
|
static const int NR_PAR_BANDS[] = { 20, 34 }; |
|
/// Number of frequency bands that can be addressed by the sub subband index, k |
|
static const int NR_BANDS[] = { 71, 91 }; |
|
/// Start frequency band for the all-pass filter decay slope |
|
static const int DECAY_CUTOFF[] = { 10, 32 }; |
|
/// Number of all-pass filer bands |
|
static const int NR_ALLPASS_BANDS[] = { 30, 50 }; |
|
/// First stereo band using the short one sample delay |
|
static const int SHORT_DELAY_BAND[] = { 42, 62 }; |
|
|
|
/** Table 8.46 */ |
|
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) |
|
{ |
|
int b; |
|
if (full) |
|
b = 9; |
|
else { |
|
b = 4; |
|
par_mapped[10] = 0; |
|
} |
|
for (; b >= 0; b--) { |
|
par_mapped[2*b+1] = par_mapped[2*b] = par[b]; |
|
} |
|
} |
|
|
|
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) |
|
{ |
|
par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; |
|
par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; |
|
par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; |
|
par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; |
|
par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; |
|
par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; |
|
par_mapped[ 6] = par[10]; |
|
par_mapped[ 7] = par[11]; |
|
par_mapped[ 8] = ( par[12] + par[13]) / 2; |
|
par_mapped[ 9] = ( par[14] + par[15]) / 2; |
|
par_mapped[10] = par[16]; |
|
if (full) { |
|
par_mapped[11] = par[17]; |
|
par_mapped[12] = par[18]; |
|
par_mapped[13] = par[19]; |
|
par_mapped[14] = ( par[20] + par[21]) / 2; |
|
par_mapped[15] = ( par[22] + par[23]) / 2; |
|
par_mapped[16] = ( par[24] + par[25]) / 2; |
|
par_mapped[17] = ( par[26] + par[27]) / 2; |
|
par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; |
|
par_mapped[19] = ( par[32] + par[33]) / 2; |
|
} |
|
} |
|
|
|
static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC]) |
|
{ |
|
par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; |
|
par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; |
|
par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; |
|
par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; |
|
par[ 4] = ( par[ 6] + par[ 7]) * 0.5f; |
|
par[ 5] = ( par[ 8] + par[ 9]) * 0.5f; |
|
par[ 6] = par[10]; |
|
par[ 7] = par[11]; |
|
par[ 8] = ( par[12] + par[13]) * 0.5f; |
|
par[ 9] = ( par[14] + par[15]) * 0.5f; |
|
par[10] = par[16]; |
|
par[11] = par[17]; |
|
par[12] = par[18]; |
|
par[13] = par[19]; |
|
par[14] = ( par[20] + par[21]) * 0.5f; |
|
par[15] = ( par[22] + par[23]) * 0.5f; |
|
par[16] = ( par[24] + par[25]) * 0.5f; |
|
par[17] = ( par[26] + par[27]) * 0.5f; |
|
par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; |
|
par[19] = ( par[32] + par[33]) * 0.5f; |
|
} |
|
|
|
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) |
|
{ |
|
if (full) { |
|
par_mapped[33] = par[9]; |
|
par_mapped[32] = par[9]; |
|
par_mapped[31] = par[9]; |
|
par_mapped[30] = par[9]; |
|
par_mapped[29] = par[9]; |
|
par_mapped[28] = par[9]; |
|
par_mapped[27] = par[8]; |
|
par_mapped[26] = par[8]; |
|
par_mapped[25] = par[8]; |
|
par_mapped[24] = par[8]; |
|
par_mapped[23] = par[7]; |
|
par_mapped[22] = par[7]; |
|
par_mapped[21] = par[7]; |
|
par_mapped[20] = par[7]; |
|
par_mapped[19] = par[6]; |
|
par_mapped[18] = par[6]; |
|
par_mapped[17] = par[5]; |
|
par_mapped[16] = par[5]; |
|
} else { |
|
par_mapped[16] = 0; |
|
} |
|
par_mapped[15] = par[4]; |
|
par_mapped[14] = par[4]; |
|
par_mapped[13] = par[4]; |
|
par_mapped[12] = par[4]; |
|
par_mapped[11] = par[3]; |
|
par_mapped[10] = par[3]; |
|
par_mapped[ 9] = par[2]; |
|
par_mapped[ 8] = par[2]; |
|
par_mapped[ 7] = par[2]; |
|
par_mapped[ 6] = par[2]; |
|
par_mapped[ 5] = par[1]; |
|
par_mapped[ 4] = par[1]; |
|
par_mapped[ 3] = par[1]; |
|
par_mapped[ 2] = par[0]; |
|
par_mapped[ 1] = par[0]; |
|
par_mapped[ 0] = par[0]; |
|
} |
|
|
|
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) |
|
{ |
|
if (full) { |
|
par_mapped[33] = par[19]; |
|
par_mapped[32] = par[19]; |
|
par_mapped[31] = par[18]; |
|
par_mapped[30] = par[18]; |
|
par_mapped[29] = par[18]; |
|
par_mapped[28] = par[18]; |
|
par_mapped[27] = par[17]; |
|
par_mapped[26] = par[17]; |
|
par_mapped[25] = par[16]; |
|
par_mapped[24] = par[16]; |
|
par_mapped[23] = par[15]; |
|
par_mapped[22] = par[15]; |
|
par_mapped[21] = par[14]; |
|
par_mapped[20] = par[14]; |
|
par_mapped[19] = par[13]; |
|
par_mapped[18] = par[12]; |
|
par_mapped[17] = par[11]; |
|
} |
|
par_mapped[16] = par[10]; |
|
par_mapped[15] = par[ 9]; |
|
par_mapped[14] = par[ 9]; |
|
par_mapped[13] = par[ 8]; |
|
par_mapped[12] = par[ 8]; |
|
par_mapped[11] = par[ 7]; |
|
par_mapped[10] = par[ 6]; |
|
par_mapped[ 9] = par[ 5]; |
|
par_mapped[ 8] = par[ 5]; |
|
par_mapped[ 7] = par[ 4]; |
|
par_mapped[ 6] = par[ 4]; |
|
par_mapped[ 5] = par[ 3]; |
|
par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; |
|
par_mapped[ 3] = par[ 2]; |
|
par_mapped[ 2] = par[ 1]; |
|
par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; |
|
par_mapped[ 0] = par[ 0]; |
|
} |
|
|
|
static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC]) |
|
{ |
|
par[33] = par[19]; |
|
par[32] = par[19]; |
|
par[31] = par[18]; |
|
par[30] = par[18]; |
|
par[29] = par[18]; |
|
par[28] = par[18]; |
|
par[27] = par[17]; |
|
par[26] = par[17]; |
|
par[25] = par[16]; |
|
par[24] = par[16]; |
|
par[23] = par[15]; |
|
par[22] = par[15]; |
|
par[21] = par[14]; |
|
par[20] = par[14]; |
|
par[19] = par[13]; |
|
par[18] = par[12]; |
|
par[17] = par[11]; |
|
par[16] = par[10]; |
|
par[15] = par[ 9]; |
|
par[14] = par[ 9]; |
|
par[13] = par[ 8]; |
|
par[12] = par[ 8]; |
|
par[11] = par[ 7]; |
|
par[10] = par[ 6]; |
|
par[ 9] = par[ 5]; |
|
par[ 8] = par[ 5]; |
|
par[ 7] = par[ 4]; |
|
par[ 6] = par[ 4]; |
|
par[ 5] = par[ 3]; |
|
par[ 4] = (par[ 2] + par[ 3]) * 0.5f; |
|
par[ 3] = par[ 2]; |
|
par[ 2] = par[ 1]; |
|
par[ 1] = (par[ 0] + par[ 1]) * 0.5f; |
|
par[ 0] = par[ 0]; |
|
} |
|
|
|
static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34) |
|
{ |
|
float power[34][PS_QMF_TIME_SLOTS] = {{0}}; |
|
float transient_gain[34][PS_QMF_TIME_SLOTS]; |
|
float *peak_decay_nrg = ps->peak_decay_nrg; |
|
float *power_smooth = ps->power_smooth; |
|
float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; |
|
float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; |
|
float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; |
|
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; |
|
const float peak_decay_factor = 0.76592833836465f; |
|
const float transient_impact = 1.5f; |
|
const float a_smooth = 0.25f; //< Smoothing coefficient |
|
int i, k, m, n; |
|
int n0 = 0, nL = 32; |
|
static const int link_delay[] = { 3, 4, 5 }; |
|
static const float a[] = { 0.65143905753106f, |
|
0.56471812200776f, |
|
0.48954165955695f }; |
|
|
|
if (is34 != ps->is34bands_old) { |
|
memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); |
|
memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); |
|
memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); |
|
memset(ps->delay, 0, sizeof(ps->delay)); |
|
memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); |
|
} |
|
|
|
for (n = n0; n < nL; n++) { |
|
for (k = 0; k < NR_BANDS[is34]; k++) { |
|
int i = k_to_i[k]; |
|
power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1]; |
|
} |
|
} |
|
|
|
//Transient detection |
|
for (i = 0; i < NR_PAR_BANDS[is34]; i++) { |
|
for (n = n0; n < nL; n++) { |
|
float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; |
|
float denom; |
|
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); |
|
power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); |
|
peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); |
|
denom = transient_impact * peak_decay_diff_smooth[i]; |
|
transient_gain[i][n] = (denom > power_smooth[i]) ? |
|
power_smooth[i] / denom : 1.0f; |
|
} |
|
} |
|
|
|
//Decorrelation and transient reduction |
|
// PS_AP_LINKS - 1 |
|
// ----- |
|
// | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] |
|
//H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- |
|
// | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] |
|
// m = 0 |
|
//d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] |
|
for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { |
|
int b = k_to_i[k]; |
|
float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); |
|
float ag[PS_AP_LINKS]; |
|
g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); |
|
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
|
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
|
for (m = 0; m < PS_AP_LINKS; m++) { |
|
memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); |
|
ag[m] = a[m] * g_decay_slope; |
|
} |
|
for (n = n0; n < nL; n++) { |
|
float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] - |
|
delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1]; |
|
float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] + |
|
delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0]; |
|
for (m = 0; m < PS_AP_LINKS; m++) { |
|
float a_re = ag[m] * in_re; |
|
float a_im = ag[m] * in_im; |
|
float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0]; |
|
float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1]; |
|
float fractional_delay_re = Q_fract_allpass[is34][k][m][0]; |
|
float fractional_delay_im = Q_fract_allpass[is34][k][m][1]; |
|
ap_delay[k][m][n+5][0] = in_re; |
|
ap_delay[k][m][n+5][1] = in_im; |
|
in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re; |
|
in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im; |
|
ap_delay[k][m][n+5][0] += ag[m] * in_re; |
|
ap_delay[k][m][n+5][1] += ag[m] * in_im; |
|
} |
|
out[k][n][0] = transient_gain[b][n] * in_re; |
|
out[k][n][1] = transient_gain[b][n] * in_im; |
|
} |
|
} |
|
for (; k < SHORT_DELAY_BAND[is34]; k++) { |
|
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
|
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
|
for (n = n0; n < nL; n++) { |
|
//H = delay 14 |
|
out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0]; |
|
out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1]; |
|
} |
|
} |
|
for (; k < NR_BANDS[is34]; k++) { |
|
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
|
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
|
for (n = n0; n < nL; n++) { |
|
//H = delay 1 |
|
out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0]; |
|
out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1]; |
|
} |
|
} |
|
} |
|
|
|
static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], |
|
int8_t (*par)[PS_MAX_NR_IIDICC], |
|
int num_par, int num_env, int full) |
|
{ |
|
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; |
|
int e; |
|
if (num_par == 20 || num_par == 11) { |
|
for (e = 0; e < num_env; e++) { |
|
map_idx_20_to_34(par_mapped[e], par[e], full); |
|
} |
|
} else if (num_par == 10 || num_par == 5) { |
|
for (e = 0; e < num_env; e++) { |
|
map_idx_10_to_34(par_mapped[e], par[e], full); |
|
} |
|
} else { |
|
*p_par_mapped = par; |
|
} |
|
} |
|
|
|
static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], |
|
int8_t (*par)[PS_MAX_NR_IIDICC], |
|
int num_par, int num_env, int full) |
|
{ |
|
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; |
|
int e; |
|
if (num_par == 34 || num_par == 17) { |
|
for (e = 0; e < num_env; e++) { |
|
map_idx_34_to_20(par_mapped[e], par[e], full); |
|
} |
|
} else if (num_par == 10 || num_par == 5) { |
|
for (e = 0; e < num_env; e++) { |
|
map_idx_10_to_20(par_mapped[e], par[e], full); |
|
} |
|
} else { |
|
*p_par_mapped = par; |
|
} |
|
} |
|
|
|
static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34) |
|
{ |
|
int e, b, k, n; |
|
|
|
float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; |
|
float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; |
|
float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; |
|
float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; |
|
int8_t *opd_hist = ps->opd_hist; |
|
int8_t *ipd_hist = ps->ipd_hist; |
|
int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
|
int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
|
int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
|
int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
|
int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; |
|
int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; |
|
int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; |
|
int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; |
|
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; |
|
const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB; |
|
|
|
//Remapping |
|
memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0])); |
|
memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0])); |
|
memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0])); |
|
memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0])); |
|
memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0])); |
|
memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0])); |
|
memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0])); |
|
memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0])); |
|
if (is34) { |
|
remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); |
|
remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); |
|
if (ps->enable_ipdopd) { |
|
remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); |
|
remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); |
|
} |
|
if (!ps->is34bands_old) { |
|
map_val_20_to_34(H11[0][0]); |
|
map_val_20_to_34(H11[1][0]); |
|
map_val_20_to_34(H12[0][0]); |
|
map_val_20_to_34(H12[1][0]); |
|
map_val_20_to_34(H21[0][0]); |
|
map_val_20_to_34(H21[1][0]); |
|
map_val_20_to_34(H22[0][0]); |
|
map_val_20_to_34(H22[1][0]); |
|
ipdopd_reset(ipd_hist, opd_hist); |
|
} |
|
} else { |
|
remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); |
|
remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); |
|
if (ps->enable_ipdopd) { |
|
remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); |
|
remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); |
|
} |
|
if (ps->is34bands_old) { |
|
map_val_34_to_20(H11[0][0]); |
|
map_val_34_to_20(H11[1][0]); |
|
map_val_34_to_20(H12[0][0]); |
|
map_val_34_to_20(H12[1][0]); |
|
map_val_34_to_20(H21[0][0]); |
|
map_val_34_to_20(H21[1][0]); |
|
map_val_34_to_20(H22[0][0]); |
|
map_val_34_to_20(H22[1][0]); |
|
ipdopd_reset(ipd_hist, opd_hist); |
|
} |
|
} |
|
|
|
//Mixing |
|
for (e = 0; e < ps->num_env; e++) { |
|
for (b = 0; b < NR_PAR_BANDS[is34]; b++) { |
|
float h11, h12, h21, h22; |
|
h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0]; |
|
h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1]; |
|
h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2]; |
|
h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3]; |
|
if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) { |
|
//The spec say says to only run this smoother when enable_ipdopd |
|
//is set but the reference decoder appears to run it constantly |
|
float h11i, h12i, h21i, h22i; |
|
float ipd_adj_re, ipd_adj_im; |
|
int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; |
|
int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; |
|
float opd_re = pd_re_smooth[opd_idx]; |
|
float opd_im = pd_im_smooth[opd_idx]; |
|
float ipd_re = pd_re_smooth[ipd_idx]; |
|
float ipd_im = pd_im_smooth[ipd_idx]; |
|
opd_hist[b] = opd_idx & 0x3F; |
|
ipd_hist[b] = ipd_idx & 0x3F; |
|
|
|
ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im; |
|
ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im; |
|
h11i = h11 * opd_im; |
|
h11 = h11 * opd_re; |
|
h12i = h12 * ipd_adj_im; |
|
h12 = h12 * ipd_adj_re; |
|
h21i = h21 * opd_im; |
|
h21 = h21 * opd_re; |
|
h22i = h22 * ipd_adj_im; |
|
h22 = h22 * ipd_adj_re; |
|
H11[1][e+1][b] = h11i; |
|
H12[1][e+1][b] = h12i; |
|
H21[1][e+1][b] = h21i; |
|
H22[1][e+1][b] = h22i; |
|
} |
|
H11[0][e+1][b] = h11; |
|
H12[0][e+1][b] = h12; |
|
H21[0][e+1][b] = h21; |
|
H22[0][e+1][b] = h22; |
|
} |
|
for (k = 0; k < NR_BANDS[is34]; k++) { |
|
float h11r, h12r, h21r, h22r; |
|
float h11i, h12i, h21i, h22i; |
|
float h11r_step, h12r_step, h21r_step, h22r_step; |
|
float h11i_step, h12i_step, h21i_step, h22i_step; |
|
int start = ps->border_position[e]; |
|
int stop = ps->border_position[e+1]; |
|
float width = 1.f / (stop - start); |
|
b = k_to_i[k]; |
|
h11r = H11[0][e][b]; |
|
h12r = H12[0][e][b]; |
|
h21r = H21[0][e][b]; |
|
h22r = H22[0][e][b]; |
|
if (!PS_BASELINE && ps->enable_ipdopd) { |
|
//Is this necessary? ps_04_new seems unchanged |
|
if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { |
|
h11i = -H11[1][e][b]; |
|
h12i = -H12[1][e][b]; |
|
h21i = -H21[1][e][b]; |
|
h22i = -H22[1][e][b]; |
|
} else { |
|
h11i = H11[1][e][b]; |
|
h12i = H12[1][e][b]; |
|
h21i = H21[1][e][b]; |
|
h22i = H22[1][e][b]; |
|
} |
|
} |
|
//Interpolation |
|
h11r_step = (H11[0][e+1][b] - h11r) * width; |
|
h12r_step = (H12[0][e+1][b] - h12r) * width; |
|
h21r_step = (H21[0][e+1][b] - h21r) * width; |
|
h22r_step = (H22[0][e+1][b] - h22r) * width; |
|
if (!PS_BASELINE && ps->enable_ipdopd) { |
|
h11i_step = (H11[1][e+1][b] - h11i) * width; |
|
h12i_step = (H12[1][e+1][b] - h12i) * width; |
|
h21i_step = (H21[1][e+1][b] - h21i) * width; |
|
h22i_step = (H22[1][e+1][b] - h22i) * width; |
|
} |
|
for (n = start + 1; n <= stop; n++) { |
|
//l is s, r is d |
|
float l_re = l[k][n][0]; |
|
float l_im = l[k][n][1]; |
|
float r_re = r[k][n][0]; |
|
float r_im = r[k][n][1]; |
|
h11r += h11r_step; |
|
h12r += h12r_step; |
|
h21r += h21r_step; |
|
h22r += h22r_step; |
|
if (!PS_BASELINE && ps->enable_ipdopd) { |
|
h11i += h11i_step; |
|
h12i += h12i_step; |
|
h21i += h21i_step; |
|
h22i += h22i_step; |
|
|
|
l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im; |
|
l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re; |
|
r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im; |
|
r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re; |
|
} else { |
|
l[k][n][0] = h11r*l_re + h21r*r_re; |
|
l[k][n][1] = h11r*l_im + h21r*r_im; |
|
r[k][n][0] = h12r*l_re + h22r*r_re; |
|
r[k][n][1] = h12r*l_im + h22r*r_im; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top) |
|
{ |
|
float Lbuf[91][32][2]; |
|
float Rbuf[91][32][2]; |
|
const int len = 32; |
|
int is34 = ps->is34bands; |
|
|
|
top += NR_BANDS[is34] - 64; |
|
memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); |
|
if (top < NR_ALLPASS_BANDS[is34]) |
|
memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); |
|
|
|
hybrid_analysis(Lbuf, ps->in_buf, L, is34, len); |
|
decorrelation(ps, Rbuf, Lbuf, is34); |
|
stereo_processing(ps, Lbuf, Rbuf, is34); |
|
hybrid_synthesis(L, Lbuf, is34, len); |
|
hybrid_synthesis(R, Rbuf, is34, len); |
|
|
|
return 0; |
|
} |
|
|
|
#define PS_INIT_VLC_STATIC(num, size) \ |
|
INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \ |
|
ps_tmp[num].ps_bits, 1, 1, \ |
|
ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \ |
|
size); |
|
|
|
#define PS_VLC_ROW(name) \ |
|
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } |
|
|
|
av_cold void ff_ps_init(void) { |
|
// Syntax initialization |
|
static const struct { |
|
const void *ps_codes, *ps_bits; |
|
const unsigned int table_size, elem_size; |
|
} ps_tmp[] = { |
|
PS_VLC_ROW(huff_iid_df1), |
|
PS_VLC_ROW(huff_iid_dt1), |
|
PS_VLC_ROW(huff_iid_df0), |
|
PS_VLC_ROW(huff_iid_dt0), |
|
PS_VLC_ROW(huff_icc_df), |
|
PS_VLC_ROW(huff_icc_dt), |
|
PS_VLC_ROW(huff_ipd_df), |
|
PS_VLC_ROW(huff_ipd_dt), |
|
PS_VLC_ROW(huff_opd_df), |
|
PS_VLC_ROW(huff_opd_dt), |
|
}; |
|
|
|
PS_INIT_VLC_STATIC(0, 1544); |
|
PS_INIT_VLC_STATIC(1, 832); |
|
PS_INIT_VLC_STATIC(2, 1024); |
|
PS_INIT_VLC_STATIC(3, 1036); |
|
PS_INIT_VLC_STATIC(4, 544); |
|
PS_INIT_VLC_STATIC(5, 544); |
|
PS_INIT_VLC_STATIC(6, 512); |
|
PS_INIT_VLC_STATIC(7, 512); |
|
PS_INIT_VLC_STATIC(8, 512); |
|
PS_INIT_VLC_STATIC(9, 512); |
|
|
|
ps_tableinit(); |
|
} |
|
|
|
av_cold void ff_ps_ctx_init(PSContext *ps) |
|
{ |
|
}
|
|
|