mirror of https://github.com/FFmpeg/FFmpeg.git
700 lines
22 KiB
700 lines
22 KiB
/* |
|
* MagicYUV encoder |
|
* Copyright (c) 2017 Paul B Mahol |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include "libavutil/cpu.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/pixdesc.h" |
|
#include "libavutil/qsort.h" |
|
|
|
#include "avcodec.h" |
|
#include "bytestream.h" |
|
#include "codec_internal.h" |
|
#include "encode.h" |
|
#include "put_bits.h" |
|
#include "lossless_videoencdsp.h" |
|
|
|
#define MAGICYUV_EXTRADATA_SIZE 32 |
|
|
|
typedef enum Prediction { |
|
LEFT = 1, |
|
GRADIENT, |
|
MEDIAN, |
|
} Prediction; |
|
|
|
typedef struct HuffEntry { |
|
uint8_t len; |
|
uint32_t code; |
|
} HuffEntry; |
|
|
|
typedef struct PTable { |
|
int value; ///< input value |
|
int64_t prob; ///< number of occurences of this value in input |
|
} PTable; |
|
|
|
typedef struct Slice { |
|
unsigned pos; |
|
unsigned size; |
|
uint8_t *slice; |
|
uint8_t *bitslice; |
|
PTable counts[256]; |
|
} Slice; |
|
|
|
typedef struct MagicYUVContext { |
|
const AVClass *class; |
|
int frame_pred; |
|
int planes; |
|
uint8_t format; |
|
int slice_height; |
|
int nb_slices; |
|
int correlate; |
|
int hshift[4]; |
|
int vshift[4]; |
|
unsigned bitslice_size; |
|
uint8_t *decorrelate_buf[2]; |
|
Slice *slices; |
|
HuffEntry he[4][256]; |
|
LLVidEncDSPContext llvidencdsp; |
|
void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst, |
|
ptrdiff_t stride, int width, int height); |
|
} MagicYUVContext; |
|
|
|
static void left_predict(MagicYUVContext *s, |
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
|
int width, int height) |
|
{ |
|
uint8_t prev = 0; |
|
int i, j; |
|
|
|
for (i = 0; i < width; i++) { |
|
dst[i] = src[i] - prev; |
|
prev = src[i]; |
|
} |
|
dst += width; |
|
src += stride; |
|
for (j = 1; j < height; j++) { |
|
prev = src[-stride]; |
|
for (i = 0; i < width; i++) { |
|
dst[i] = src[i] - prev; |
|
prev = src[i]; |
|
} |
|
dst += width; |
|
src += stride; |
|
} |
|
} |
|
|
|
static void gradient_predict(MagicYUVContext *s, |
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
|
int width, int height) |
|
{ |
|
int left = 0, top, lefttop; |
|
int i, j; |
|
|
|
for (i = 0; i < width; i++) { |
|
dst[i] = src[i] - left; |
|
left = src[i]; |
|
} |
|
dst += width; |
|
src += stride; |
|
for (j = 1; j < height; j++) { |
|
top = src[-stride]; |
|
left = src[0] - top; |
|
dst[0] = left; |
|
for (i = 1; i < width; i++) { |
|
top = src[i - stride]; |
|
lefttop = src[i - (stride + 1)]; |
|
left = src[i-1]; |
|
dst[i] = (src[i] - top) - left + lefttop; |
|
} |
|
dst += width; |
|
src += stride; |
|
} |
|
} |
|
|
|
static void median_predict(MagicYUVContext *s, |
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride, |
|
int width, int height) |
|
{ |
|
int left = 0, lefttop; |
|
int i, j; |
|
|
|
for (i = 0; i < width; i++) { |
|
dst[i] = src[i] - left; |
|
left = src[i]; |
|
} |
|
dst += width; |
|
src += stride; |
|
for (j = 1; j < height; j++) { |
|
left = lefttop = src[-stride]; |
|
s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop); |
|
dst += width; |
|
src += stride; |
|
} |
|
} |
|
|
|
static av_cold int magy_encode_init(AVCodecContext *avctx) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
PutByteContext pb; |
|
|
|
switch (avctx->pix_fmt) { |
|
case AV_PIX_FMT_GBRP: |
|
avctx->codec_tag = MKTAG('M', '8', 'R', 'G'); |
|
s->correlate = 1; |
|
s->format = 0x65; |
|
break; |
|
case AV_PIX_FMT_GBRAP: |
|
avctx->codec_tag = MKTAG('M', '8', 'R', 'A'); |
|
s->correlate = 1; |
|
s->format = 0x66; |
|
break; |
|
case AV_PIX_FMT_YUV420P: |
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '0'); |
|
s->hshift[1] = |
|
s->vshift[1] = |
|
s->hshift[2] = |
|
s->vshift[2] = 1; |
|
s->format = 0x69; |
|
break; |
|
case AV_PIX_FMT_YUV422P: |
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '2'); |
|
s->hshift[1] = |
|
s->hshift[2] = 1; |
|
s->format = 0x68; |
|
break; |
|
case AV_PIX_FMT_YUV444P: |
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '4'); |
|
s->format = 0x67; |
|
break; |
|
case AV_PIX_FMT_YUVA444P: |
|
avctx->codec_tag = MKTAG('M', '8', 'Y', 'A'); |
|
s->format = 0x6a; |
|
break; |
|
case AV_PIX_FMT_GRAY8: |
|
avctx->codec_tag = MKTAG('M', '8', 'G', '0'); |
|
s->format = 0x6b; |
|
break; |
|
} |
|
|
|
ff_llvidencdsp_init(&s->llvidencdsp); |
|
|
|
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt); |
|
|
|
s->nb_slices = (avctx->slices <= 0) ? av_cpu_count() : avctx->slices; |
|
s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]); |
|
s->nb_slices = FFMAX(1, s->nb_slices); |
|
s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]); |
|
s->nb_slices = (avctx->height + s->slice_height - 1) / s->slice_height; |
|
s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices)); |
|
if (!s->slices) |
|
return AVERROR(ENOMEM); |
|
|
|
if (s->correlate) { |
|
size_t max_align = av_cpu_max_align(); |
|
size_t aligned_width = FFALIGN(avctx->width, max_align); |
|
s->decorrelate_buf[0] = av_calloc(2U * (s->nb_slices * s->slice_height), |
|
aligned_width); |
|
if (!s->decorrelate_buf[0]) |
|
return AVERROR(ENOMEM); |
|
s->decorrelate_buf[1] = s->decorrelate_buf[0] + (s->nb_slices * s->slice_height) * aligned_width; |
|
} |
|
|
|
s->bitslice_size = avctx->width * s->slice_height + 2; |
|
for (int n = 0; n < s->nb_slices; n++) { |
|
for (int i = 0; i < s->planes; i++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
sl->bitslice = av_malloc(s->bitslice_size + AV_INPUT_BUFFER_PADDING_SIZE); |
|
sl->slice = av_malloc(avctx->width * (s->slice_height + 2) + |
|
AV_INPUT_BUFFER_PADDING_SIZE); |
|
if (!sl->slice || !sl->bitslice) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
} |
|
|
|
switch (s->frame_pred) { |
|
case LEFT: s->predict = left_predict; break; |
|
case GRADIENT: s->predict = gradient_predict; break; |
|
case MEDIAN: s->predict = median_predict; break; |
|
} |
|
|
|
avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE; |
|
|
|
avctx->extradata = av_mallocz(avctx->extradata_size + |
|
AV_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
if (!avctx->extradata) { |
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE); |
|
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); |
|
bytestream2_put_le32(&pb, 32); |
|
bytestream2_put_byte(&pb, 7); |
|
bytestream2_put_byte(&pb, s->format); |
|
bytestream2_put_byte(&pb, 12); |
|
bytestream2_put_byte(&pb, 0); |
|
|
|
bytestream2_put_byte(&pb, 0); |
|
bytestream2_put_byte(&pb, 0); |
|
bytestream2_put_byte(&pb, 32); |
|
bytestream2_put_byte(&pb, 0); |
|
|
|
bytestream2_put_le32(&pb, avctx->width); |
|
bytestream2_put_le32(&pb, avctx->height); |
|
bytestream2_put_le32(&pb, avctx->width); |
|
bytestream2_put_le32(&pb, avctx->height); |
|
|
|
return 0; |
|
} |
|
|
|
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33]) |
|
{ |
|
for (unsigned i = 32, nb_codes = 0; i > 0; i--) { |
|
uint16_t curr = codes_count[i]; // # of leafs of length i |
|
codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i |
|
nb_codes = codes_count[i] + curr; // # of nodes on level i |
|
} |
|
|
|
for (unsigned i = 0; i < 256; i++) { |
|
he[i].code = codes_count[he[i].len]; |
|
codes_count[he[i].len]++; |
|
} |
|
} |
|
|
|
static void count_usage(const uint8_t *src, int width, |
|
int height, PTable *counts) |
|
{ |
|
for (int j = 0; j < height; j++) { |
|
for (int i = 0; i < width; i++) |
|
counts[src[i]].prob++; |
|
src += width; |
|
} |
|
} |
|
|
|
typedef struct PackageMergerList { |
|
int nitems; ///< number of items in the list and probability ex. 4 |
|
int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13 |
|
int probability[514]; ///< probability of each item 3, 8, 18, 46 |
|
int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E |
|
} PackageMergerList; |
|
|
|
static int compare_by_prob(const void *a, const void *b) |
|
{ |
|
const PTable *a2 = a; |
|
const PTable *b2 = b; |
|
return a2->prob - b2->prob; |
|
} |
|
|
|
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts, |
|
uint16_t codes_counts[33], |
|
int size, int max_length) |
|
{ |
|
PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp; |
|
int times, i, j, k; |
|
int nbits[257] = {0}; |
|
int min; |
|
|
|
av_assert0(max_length > 0); |
|
|
|
to->nitems = 0; |
|
from->nitems = 0; |
|
to->item_idx[0] = 0; |
|
from->item_idx[0] = 0; |
|
AV_QSORT(prob_table, size, PTable, compare_by_prob); |
|
|
|
for (times = 0; times <= max_length; times++) { |
|
to->nitems = 0; |
|
to->item_idx[0] = 0; |
|
|
|
j = 0; |
|
k = 0; |
|
|
|
if (times < max_length) { |
|
i = 0; |
|
} |
|
while (i < size || j + 1 < from->nitems) { |
|
to->nitems++; |
|
to->item_idx[to->nitems] = to->item_idx[to->nitems - 1]; |
|
if (i < size && |
|
(j + 1 >= from->nitems || |
|
prob_table[i].prob < |
|
from->probability[j] + from->probability[j + 1])) { |
|
to->items[to->item_idx[to->nitems]++] = prob_table[i].value; |
|
to->probability[to->nitems - 1] = prob_table[i].prob; |
|
i++; |
|
} else { |
|
for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) { |
|
to->items[to->item_idx[to->nitems]++] = from->items[k]; |
|
} |
|
to->probability[to->nitems - 1] = |
|
from->probability[j] + from->probability[j + 1]; |
|
j += 2; |
|
} |
|
} |
|
temp = to; |
|
to = from; |
|
from = temp; |
|
} |
|
|
|
min = (size - 1 < from->nitems) ? size - 1 : from->nitems; |
|
for (i = 0; i < from->item_idx[min]; i++) { |
|
nbits[from->items[i]]++; |
|
} |
|
|
|
for (i = 0; i < size; i++) { |
|
distincts[i].len = nbits[i]; |
|
codes_counts[nbits[i]]++; |
|
} |
|
} |
|
|
|
static int count_plane_slice(AVCodecContext *avctx, int n, int plane) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
Slice *sl = &s->slices[n * s->planes + plane]; |
|
const uint8_t *dst = sl->slice; |
|
PTable *counts = sl->counts; |
|
const int slice_height = s->slice_height; |
|
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height); |
|
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height; |
|
|
|
memset(counts, 0, sizeof(sl->counts)); |
|
|
|
count_usage(dst, AV_CEIL_RSHIFT(avctx->width, s->hshift[plane]), |
|
AV_CEIL_RSHIFT(height, s->vshift[plane]), counts); |
|
|
|
return 0; |
|
} |
|
|
|
static int encode_table(AVCodecContext *avctx, |
|
PutBitContext *pb, HuffEntry *he, int plane) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
PTable counts[256] = { {0} }; |
|
uint16_t codes_counts[33] = { 0 }; |
|
|
|
for (int n = 0; n < s->nb_slices; n++) { |
|
Slice *sl = &s->slices[n * s->planes + plane]; |
|
PTable *slice_counts = sl->counts; |
|
|
|
for (int i = 0; i < 256; i++) |
|
counts[i].prob = slice_counts[i].prob; |
|
} |
|
|
|
for (int i = 0; i < 256; i++) { |
|
counts[i].prob++; |
|
counts[i].value = i; |
|
} |
|
|
|
magy_huffman_compute_bits(counts, he, codes_counts, 256, 12); |
|
|
|
calculate_codes(he, codes_counts); |
|
|
|
for (int i = 0; i < 256; i++) { |
|
put_bits(pb, 1, 0); |
|
put_bits(pb, 7, he[i].len); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size, |
|
int width, int height, int prediction) |
|
{ |
|
unsigned count = width * height; |
|
|
|
dst[0] = 1; |
|
dst[1] = prediction; |
|
|
|
memcpy(dst + 2, src, count); |
|
count += 2; |
|
AV_WN32(dst + count, 0); |
|
if (count & 3) |
|
count += 4 - (count & 3); |
|
|
|
return count; |
|
} |
|
|
|
static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size, |
|
int width, int height, HuffEntry *he, int prediction) |
|
{ |
|
const uint8_t *osrc = src; |
|
PutBitContext pb; |
|
int count; |
|
|
|
init_put_bits(&pb, dst, dst_size); |
|
|
|
put_bits(&pb, 8, 0); |
|
put_bits(&pb, 8, prediction); |
|
|
|
for (int j = 0; j < height; j++) { |
|
for (int i = 0; i < width; i++) { |
|
const int idx = src[i]; |
|
const int len = he[idx].len; |
|
if (put_bits_left(&pb) < len + 32) |
|
return encode_plane_slice_raw(osrc, dst, dst_size, width, height, prediction); |
|
put_bits(&pb, len, he[idx].code); |
|
} |
|
|
|
src += width; |
|
} |
|
|
|
count = put_bits_count(&pb) & 0x1F; |
|
|
|
if (count) |
|
put_bits(&pb, 32 - count, 0); |
|
|
|
flush_put_bits(&pb); |
|
|
|
return put_bytes_output(&pb); |
|
} |
|
|
|
static int encode_slice(AVCodecContext *avctx, void *tdata, |
|
int n, int threadnr) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
const int slice_height = s->slice_height; |
|
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height); |
|
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height; |
|
|
|
for (int i = 0; i < s->planes; i++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
sl->size = |
|
encode_plane_slice(sl->slice, |
|
sl->bitslice, |
|
s->bitslice_size, |
|
AV_CEIL_RSHIFT(avctx->width, s->hshift[i]), |
|
AV_CEIL_RSHIFT(height, s->vshift[i]), |
|
s->he[i], s->frame_pred); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int predict_slice(AVCodecContext *avctx, void *tdata, |
|
int n, int threadnr) |
|
{ |
|
size_t max_align = av_cpu_max_align(); |
|
const int aligned_width = FFALIGN(avctx->width, max_align); |
|
MagicYUVContext *s = avctx->priv_data; |
|
const int slice_height = s->slice_height; |
|
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height); |
|
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height; |
|
const int width = avctx->width; |
|
AVFrame *frame = tdata; |
|
|
|
if (s->correlate) { |
|
uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width, |
|
s->decorrelate_buf[1] + n * slice_height * aligned_width }; |
|
const int decorrelate_linesize = aligned_width; |
|
const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0], |
|
decorrelated[1], s->planes == 4 ? frame->data[3] + n * slice_height * frame->linesize[3] : NULL }; |
|
const uint8_t *r, *g, *b; |
|
const int linesize[4] = { decorrelate_linesize, frame->linesize[0], |
|
decorrelate_linesize, frame->linesize[3] }; |
|
|
|
g = frame->data[0] + n * slice_height * frame->linesize[0]; |
|
b = frame->data[1] + n * slice_height * frame->linesize[1]; |
|
r = frame->data[2] + n * slice_height * frame->linesize[2]; |
|
|
|
for (int i = 0; i < height; i++) { |
|
s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width); |
|
s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width); |
|
g += frame->linesize[0]; |
|
b += frame->linesize[1]; |
|
r += frame->linesize[2]; |
|
decorrelated[0] += decorrelate_linesize; |
|
decorrelated[1] += decorrelate_linesize; |
|
} |
|
|
|
for (int i = 0; i < s->planes; i++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
s->predict(s, data[i], sl->slice, linesize[i], |
|
frame->width, height); |
|
} |
|
} else { |
|
for (int i = 0; i < s->planes; i++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i], |
|
sl->slice, |
|
frame->linesize[i], |
|
AV_CEIL_RSHIFT(frame->width, s->hshift[i]), |
|
AV_CEIL_RSHIFT(height, s->vshift[i])); |
|
} |
|
} |
|
|
|
for (int p = 0; p < s->planes; p++) |
|
count_plane_slice(avctx, n, p); |
|
|
|
return 0; |
|
} |
|
|
|
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *frame, int *got_packet) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
const int width = avctx->width, height = avctx->height; |
|
const int slice_height = s->slice_height; |
|
unsigned tables_size; |
|
PutBitContext pbit; |
|
PutByteContext pb; |
|
int pos, ret = 0; |
|
|
|
ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) * |
|
s->planes + 256); |
|
if (ret < 0) |
|
return ret; |
|
|
|
bytestream2_init_writer(&pb, pkt->data, pkt->size); |
|
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); |
|
bytestream2_put_le32(&pb, 32); // header size |
|
bytestream2_put_byte(&pb, 7); // version |
|
bytestream2_put_byte(&pb, s->format); |
|
bytestream2_put_byte(&pb, 12); // max huffman length |
|
bytestream2_put_byte(&pb, 0); |
|
|
|
bytestream2_put_byte(&pb, 0); |
|
bytestream2_put_byte(&pb, 0); |
|
bytestream2_put_byte(&pb, 32); // coder type |
|
bytestream2_put_byte(&pb, 0); |
|
|
|
bytestream2_put_le32(&pb, avctx->width); |
|
bytestream2_put_le32(&pb, avctx->height); |
|
bytestream2_put_le32(&pb, avctx->width); |
|
bytestream2_put_le32(&pb, slice_height); |
|
bytestream2_put_le32(&pb, 0); |
|
|
|
for (int i = 0; i < s->planes; i++) { |
|
bytestream2_put_le32(&pb, 0); |
|
for (int j = 1; j < s->nb_slices; j++) |
|
bytestream2_put_le32(&pb, 0); |
|
} |
|
|
|
bytestream2_put_byte(&pb, s->planes); |
|
|
|
for (int i = 0; i < s->planes; i++) { |
|
for (int n = 0; n < s->nb_slices; n++) |
|
bytestream2_put_byte(&pb, n * s->planes + i); |
|
} |
|
|
|
avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices); |
|
|
|
init_put_bits(&pbit, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb)); |
|
|
|
for (int i = 0; i < s->planes; i++) |
|
encode_table(avctx, &pbit, s->he[i], i); |
|
|
|
tables_size = put_bytes_count(&pbit, 1); |
|
bytestream2_skip_p(&pb, tables_size); |
|
|
|
avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices); |
|
|
|
for (int n = 0; n < s->nb_slices; n++) { |
|
for (int i = 0; i < s->planes; i++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
sl->pos = bytestream2_tell_p(&pb); |
|
|
|
bytestream2_put_buffer(&pb, sl->bitslice, sl->size); |
|
} |
|
} |
|
|
|
pos = bytestream2_tell_p(&pb); |
|
bytestream2_seek_p(&pb, 32, SEEK_SET); |
|
bytestream2_put_le32(&pb, s->slices[0].pos - 32); |
|
for (int i = 0; i < s->planes; i++) { |
|
for (int n = 0; n < s->nb_slices; n++) { |
|
Slice *sl = &s->slices[n * s->planes + i]; |
|
|
|
bytestream2_put_le32(&pb, sl->pos - 32); |
|
} |
|
} |
|
bytestream2_seek_p(&pb, pos, SEEK_SET); |
|
|
|
pkt->size = bytestream2_tell_p(&pb); |
|
|
|
*got_packet = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int magy_encode_close(AVCodecContext *avctx) |
|
{ |
|
MagicYUVContext *s = avctx->priv_data; |
|
|
|
for (int i = 0; i < s->planes * s->nb_slices && s->slices; i++) { |
|
Slice *sl = &s->slices[i]; |
|
|
|
av_freep(&sl->slice); |
|
av_freep(&sl->bitslice); |
|
} |
|
av_freep(&s->slices); |
|
av_freep(&s->decorrelate_buf); |
|
|
|
return 0; |
|
} |
|
|
|
#define OFFSET(x) offsetof(MagicYUVContext, x) |
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
static const AVOption options[] = { |
|
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, .unit = "pred" }, |
|
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, .unit = "pred" }, |
|
{ "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, .unit = "pred" }, |
|
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, .unit = "pred" }, |
|
{ NULL}, |
|
}; |
|
|
|
static const AVClass magicyuv_class = { |
|
.class_name = "magicyuv", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
const FFCodec ff_magicyuv_encoder = { |
|
.p.name = "magicyuv", |
|
CODEC_LONG_NAME("MagicYUV video"), |
|
.p.type = AVMEDIA_TYPE_VIDEO, |
|
.p.id = AV_CODEC_ID_MAGICYUV, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | |
|
AV_CODEC_CAP_SLICE_THREADS | |
|
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, |
|
.priv_data_size = sizeof(MagicYUVContext), |
|
.p.priv_class = &magicyuv_class, |
|
.init = magy_encode_init, |
|
.close = magy_encode_close, |
|
FF_CODEC_ENCODE_CB(magy_encode_frame), |
|
.p.pix_fmts = (const enum AVPixelFormat[]) { |
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P, |
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8, |
|
AV_PIX_FMT_NONE |
|
}, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
};
|
|
|