mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
703 lines
31 KiB
703 lines
31 KiB
/* |
|
* AAC encoder twoloop coder |
|
* Copyright (C) 2008-2009 Konstantin Shishkov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC encoder twoloop coder |
|
* @author Konstantin Shishkov, Claudio Freire |
|
*/ |
|
|
|
/** |
|
* This file contains a template for the twoloop coder function. |
|
* It needs to be provided, externally, as an already included declaration, |
|
* the following functions from aacenc_quantization/util.h. They're not included |
|
* explicitly here to make it possible to provide alternative implementations: |
|
* - quantize_band_cost |
|
* - abs_pow34_v |
|
* - find_max_val |
|
* - find_min_book |
|
* - find_form_factor |
|
*/ |
|
|
|
#ifndef AVCODEC_AACCODER_TWOLOOP_H |
|
#define AVCODEC_AACCODER_TWOLOOP_H |
|
|
|
#include <float.h> |
|
#include "libavutil/mathematics.h" |
|
#include "mathops.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "aac.h" |
|
#include "aacenc.h" |
|
#include "aactab.h" |
|
#include "aacenctab.h" |
|
#include "aac_tablegen_decl.h" |
|
|
|
/** Frequency in Hz for lower limit of noise substitution **/ |
|
#define NOISE_LOW_LIMIT 4000 |
|
|
|
#define sclip(x) av_clip(x,60,218) |
|
|
|
/* Reflects the cost to change codebooks */ |
|
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g) |
|
{ |
|
return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5; |
|
} |
|
|
|
/** |
|
* two-loop quantizers search taken from ISO 13818-7 Appendix C |
|
*/ |
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx, |
|
AACEncContext *s, |
|
SingleChannelElement *sce, |
|
const float lambda) |
|
{ |
|
int start = 0, i, w, w2, g, recomprd; |
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate |
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels) |
|
* (lambda / 120.f); |
|
int refbits = destbits; |
|
int toomanybits, toofewbits; |
|
char nzs[128]; |
|
int maxsf[128]; |
|
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128]; |
|
float maxvals[128], spread_thr_r[128]; |
|
float min_spread_thr_r, max_spread_thr_r; |
|
|
|
/** |
|
* rdlambda controls the maximum tolerated distortion. Twoloop |
|
* will keep iterating until it fails to lower it or it reaches |
|
* ulimit * rdlambda. Keeping it low increases quality on difficult |
|
* signals, but lower it too much, and bits will be taken from weak |
|
* signals, creating "holes". A balance is necesary. |
|
* rdmax and rdmin specify the relative deviation from rdlambda |
|
* allowed for tonality compensation |
|
*/ |
|
float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f); |
|
const float nzslope = 1.5f; |
|
float rdmin = 0.03125f; |
|
float rdmax = 1.0f; |
|
|
|
/** |
|
* sfoffs controls an offset of optmium allocation that will be |
|
* applied based on lambda. Keep it real and modest, the loop |
|
* will take care of the rest, this just accelerates convergence |
|
*/ |
|
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10); |
|
|
|
int fflag, minscaler, maxscaler, nminscaler, minrdsf; |
|
int its = 0; |
|
int maxits = 30; |
|
int allz = 0; |
|
int tbits; |
|
int cutoff = 1024; |
|
int pns_start_pos; |
|
int prev; |
|
|
|
/** |
|
* zeroscale controls a multiplier of the threshold, if band energy |
|
* is below this, a zero is forced. Keep it lower than 1, unless |
|
* low lambda is used, because energy < threshold doesn't mean there's |
|
* no audible signal outright, it's just energy. Also make it rise |
|
* slower than rdlambda, as rdscale has due compensation with |
|
* noisy band depriorization below, whereas zeroing logic is rather dumb |
|
*/ |
|
float zeroscale; |
|
if (lambda > 120.f) { |
|
zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f); |
|
} else { |
|
zeroscale = 1.f; |
|
} |
|
|
|
if (s->psy.bitres.alloc >= 0) { |
|
/** |
|
* Psy granted us extra bits to use, from the reservoire |
|
* adjust for lambda except what psy already did |
|
*/ |
|
destbits = s->psy.bitres.alloc |
|
* (lambda / (avctx->global_quality ? avctx->global_quality : 120)); |
|
} |
|
|
|
if (avctx->flags & CODEC_FLAG_QSCALE) { |
|
/** |
|
* Constant Q-scale doesn't compensate MS coding on its own |
|
* No need to be overly precise, this only controls RD |
|
* adjustment CB limits when going overboard |
|
*/ |
|
if (s->options.mid_side && s->cur_type == TYPE_CPE) |
|
destbits *= 2; |
|
|
|
/** |
|
* When using a constant Q-scale, don't adjust bits, just use RD |
|
* Don't let it go overboard, though... 8x psy target is enough |
|
*/ |
|
toomanybits = 5800; |
|
toofewbits = destbits / 16; |
|
|
|
/** Don't offset scalers, just RD */ |
|
sfoffs = sce->ics.num_windows - 1; |
|
rdlambda = sqrtf(rdlambda); |
|
|
|
/** search further */ |
|
maxits *= 2; |
|
} else { |
|
/** When using ABR, be strict */ |
|
toomanybits = destbits + destbits/16; |
|
toofewbits = destbits - destbits/4; |
|
|
|
sfoffs = 0; |
|
rdlambda = sqrtf(rdlambda); |
|
} |
|
|
|
/** and zero out above cutoff frequency */ |
|
{ |
|
int wlen = 1024 / sce->ics.num_windows; |
|
int bandwidth; |
|
|
|
/** |
|
* Scale, psy gives us constant quality, this LP only scales |
|
* bitrate by lambda, so we save bits on subjectively unimportant HF |
|
* rather than increase quantization noise. Adjust nominal bitrate |
|
* to effective bitrate according to encoding parameters, |
|
* AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate. |
|
*/ |
|
float rate_bandwidth_multiplier = 1.5f; |
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE) |
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) |
|
: (avctx->bit_rate / avctx->channels); |
|
|
|
/** Compensate for extensions that increase efficiency */ |
|
if (s->options.pns || s->options.intensity_stereo) |
|
frame_bit_rate *= 1.15f; |
|
|
|
if (avctx->cutoff > 0) { |
|
bandwidth = avctx->cutoff; |
|
} else { |
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); |
|
} |
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; |
|
pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate; |
|
} |
|
|
|
/** |
|
* for values above this the decoder might end up in an endless loop |
|
* due to always having more bits than what can be encoded. |
|
*/ |
|
destbits = FFMIN(destbits, 5800); |
|
toomanybits = FFMIN(toomanybits, 5800); |
|
toofewbits = FFMIN(toofewbits, 5800); |
|
/** |
|
* XXX: some heuristic to determine initial quantizers will reduce search time |
|
* determine zero bands and upper distortion limits |
|
*/ |
|
min_spread_thr_r = -1; |
|
max_spread_thr_r = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
int nz = 0; |
|
float uplim = 0.0f, energy = 0.0f, spread = 0.0f; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) { |
|
sce->zeroes[(w+w2)*16+g] = 1; |
|
continue; |
|
} |
|
nz = 1; |
|
} |
|
if (!nz) { |
|
uplim = 0.0f; |
|
} else { |
|
nz = 0; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) |
|
continue; |
|
uplim += band->threshold; |
|
energy += band->energy; |
|
spread += band->spread; |
|
nz++; |
|
} |
|
} |
|
uplims[w*16+g] = uplim; |
|
energies[w*16+g] = energy; |
|
nzs[w*16+g] = nz; |
|
sce->zeroes[w*16+g] = !nz; |
|
allz |= nz; |
|
if (nz) { |
|
spread_thr_r[w*16+g] = energy * nz / (uplim * spread); |
|
if (min_spread_thr_r < 0) { |
|
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g]; |
|
} else { |
|
min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]); |
|
max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** Compute initial scalers */ |
|
minscaler = 65535; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (sce->zeroes[w*16+g]) { |
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS; |
|
continue; |
|
} |
|
/** |
|
* log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2). |
|
* But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion, |
|
* so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus |
|
* more robust. |
|
*/ |
|
sce->sf_idx[w*16+g] = av_clip( |
|
SCALE_ONE_POS |
|
+ 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g]) |
|
+ sfoffs, |
|
60, SCALE_MAX_POS); |
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); |
|
} |
|
} |
|
|
|
/** Clip */ |
|
minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) |
|
for (g = 0; g < sce->ics.num_swb; g++) |
|
if (!sce->zeroes[w*16+g]) |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1); |
|
|
|
if (!allz) |
|
return; |
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024); |
|
ff_quantize_band_cost_cache_init(s); |
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *scaled = s->scoefs + start; |
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
/** |
|
* Scale uplims to match rate distortion to quality |
|
* bu applying noisy band depriorization and tonal band priorization. |
|
* Maxval-energy ratio gives us an idea of how noisy/tonal the band is. |
|
* If maxval^2 ~ energy, then that band is mostly noise, and we can relax |
|
* rate distortion requirements. |
|
*/ |
|
memcpy(euplims, uplims, sizeof(euplims)); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
/** psy already priorizes transients to some extent */ |
|
float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f; |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (nzs[g] > 0) { |
|
float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f)); |
|
float energy2uplim = find_form_factor( |
|
sce->ics.group_len[w], sce->ics.swb_sizes[g], |
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), |
|
sce->coeffs + start, |
|
nzslope * cleanup_factor); |
|
energy2uplim *= de_psy_factor; |
|
if (!(avctx->flags & CODEC_FLAG_QSCALE)) { |
|
/** In ABR, we need to priorize less and let rate control do its thing */ |
|
energy2uplim = sqrtf(energy2uplim); |
|
} |
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); |
|
uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax) |
|
* sce->ics.group_len[w]; |
|
|
|
energy2uplim = find_form_factor( |
|
sce->ics.group_len[w], sce->ics.swb_sizes[g], |
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), |
|
sce->coeffs + start, |
|
2.0f); |
|
energy2uplim *= de_psy_factor; |
|
if (!(avctx->flags & CODEC_FLAG_QSCALE)) { |
|
/** In ABR, we need to priorize less and let rate control do its thing */ |
|
energy2uplim = sqrtf(energy2uplim); |
|
} |
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); |
|
euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w], |
|
0.5f, 1.0f); |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i) |
|
maxsf[i] = SCALE_MAX_POS; |
|
|
|
//perform two-loop search |
|
//outer loop - improve quality |
|
do { |
|
//inner loop - quantize spectrum to fit into given number of bits |
|
int overdist; |
|
int qstep = its ? 1 : 32; |
|
do { |
|
int changed = 0; |
|
prev = -1; |
|
recomprd = 0; |
|
tbits = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = &sce->coeffs[start]; |
|
const float *scaled = &s->scoefs[start]; |
|
int bits = 0; |
|
int cb; |
|
float dist = 0.0f; |
|
float qenergy = 0.0f; |
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { |
|
start += sce->ics.swb_sizes[g]; |
|
if (sce->can_pns[w*16+g]) { |
|
/** PNS isn't free */ |
|
tbits += ff_pns_bits(sce, w, g); |
|
} |
|
continue; |
|
} |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g], |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (prev != -1) { |
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); |
|
bits += ff_aac_scalefactor_bits[sfdiff]; |
|
} |
|
tbits += bits; |
|
start += sce->ics.swb_sizes[g]; |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
if (tbits > toomanybits) { |
|
recomprd = 1; |
|
for (i = 0; i < 128; i++) { |
|
if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) { |
|
int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i]; |
|
int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep); |
|
if (new_sf != sce->sf_idx[i]) { |
|
sce->sf_idx[i] = new_sf; |
|
changed = 1; |
|
} |
|
} |
|
} |
|
} else if (tbits < toofewbits) { |
|
recomprd = 1; |
|
for (i = 0; i < 128; i++) { |
|
if (sce->sf_idx[i] > SCALE_ONE_POS) { |
|
int new_sf = FFMAX(SCALE_ONE_POS, sce->sf_idx[i] - qstep); |
|
if (new_sf != sce->sf_idx[i]) { |
|
sce->sf_idx[i] = new_sf; |
|
changed = 1; |
|
} |
|
} |
|
} |
|
} |
|
qstep >>= 1; |
|
if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed) |
|
qstep = 1; |
|
} while (qstep); |
|
|
|
overdist = 1; |
|
for (i = 0; i < 2 && (overdist || recomprd); ++i) { |
|
if (recomprd) { |
|
/** Must recompute distortion */ |
|
prev = -1; |
|
tbits = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = sce->coeffs + start; |
|
const float *scaled = s->scoefs + start; |
|
int bits = 0; |
|
int cb; |
|
float dist = 0.0f; |
|
float qenergy = 0.0f; |
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { |
|
start += sce->ics.swb_sizes[g]; |
|
if (sce->can_pns[w*16+g]) { |
|
/** PNS isn't free */ |
|
tbits += ff_pns_bits(sce, w, g); |
|
} |
|
continue; |
|
} |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g], |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (prev != -1) { |
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); |
|
bits += ff_aac_scalefactor_bits[sfdiff]; |
|
} |
|
tbits += bits; |
|
start += sce->ics.swb_sizes[g]; |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
} |
|
if (!i && s->options.pns && its > maxits/2) { |
|
float maxoverdist = 0.0f; |
|
overdist = recomprd = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
float ovrfactor = 2.f+(maxits-its)*16.f/maxits; |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
if (!sce->zeroes[w*16+g] && dists[w*16+g] > uplims[w*16+g]*ovrfactor) { |
|
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]); |
|
maxoverdist = FFMAX(maxoverdist, ovrdist); |
|
overdist++; |
|
} |
|
} |
|
} |
|
if (overdist) { |
|
/* We have overdistorted bands, trade for zeroes (that can be noise) |
|
* Zero the bands in the lowest 1.25% spread-energy-threshold ranking |
|
*/ |
|
float minspread = max_spread_thr_r; |
|
float maxspread = min_spread_thr_r; |
|
float zspread; |
|
int zeroable = 0; |
|
int zeroed = 0; |
|
int maxzeroed; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) { |
|
minspread = FFMIN(minspread, spread_thr_r[w*16+g]); |
|
maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]); |
|
zeroable++; |
|
} |
|
} |
|
} |
|
zspread = (maxspread-minspread) * 0.0125f + minspread; |
|
zspread = FFMIN(maxoverdist, zspread); |
|
maxzeroed = zeroable * its / (2 * maxits); |
|
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) { |
|
if (sce->ics.swb_offset[g] < pns_start_pos) |
|
continue; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread) { |
|
sce->zeroes[w*16+g] = 1; |
|
sce->band_type[w*16+g] = 0; |
|
zeroed++; |
|
} |
|
} |
|
} |
|
if (zeroed) |
|
recomprd = 1; |
|
} else { |
|
overdist = 0; |
|
} |
|
} |
|
} |
|
|
|
minscaler = SCALE_MAX_POS; |
|
maxscaler = 0; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (!sce->zeroes[w*16+g]) { |
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); |
|
maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]); |
|
} |
|
} |
|
} |
|
|
|
fflag = 0; |
|
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); |
|
minrdsf = FFMAX3(60, minscaler - 1, maxscaler - SCALE_MAX_DIFF - 1); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
/** Start with big steps, end up fine-tunning */ |
|
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10; |
|
int edepth = depth+2; |
|
float uplmax = its / (maxits*0.25f) + 1.0f; |
|
uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f; |
|
start = w * 128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
int prevsc = sce->sf_idx[w*16+g]; |
|
int minrdsfboost = (sce->ics.num_windows > 1) ? av_clip(g-4, -2, 0) : av_clip(g-16, -4, 0); |
|
if (!sce->zeroes[w*16+g]) { |
|
const float *coefs = sce->coeffs + start; |
|
const float *scaled = s->scoefs + start; |
|
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > minrdsf) { |
|
/* Try to make sure there is some energy in every nonzero band |
|
* NOTE: This algorithm must be forcibly imbalanced, pushing harder |
|
* on holes or more distorted bands at first, otherwise there's |
|
* no net gain (since the next iteration will offset all bands |
|
* on the opposite direction to compensate for extra bits) |
|
*/ |
|
for (i = 0; i < edepth; ++i) { |
|
int cb, bits; |
|
float dist, qenergy; |
|
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1); |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
dist = qenergy = 0.f; |
|
bits = 0; |
|
if (!cb) { |
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]); |
|
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) { |
|
break; |
|
} |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g]-1, |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
sce->sf_idx[w*16+g]--; |
|
dists[w*16+g] = dist - bits; |
|
qenergies[w*16+g] = qenergy; |
|
if (mb && (sce->sf_idx[w*16+g] < (minrdsf+minrdsfboost) || ( |
|
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g])) |
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) |
|
) )) { |
|
break; |
|
} |
|
} |
|
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < maxscaler |
|
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g])) |
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) |
|
) { |
|
/** Um... over target. Save bits for more important stuff. */ |
|
for (i = 0; i < depth; ++i) { |
|
int cb, bits; |
|
float dist, qenergy; |
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1); |
|
if (cb > 0) { |
|
dist = qenergy = 0.f; |
|
bits = 0; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
float sqenergy; |
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[w*16+g]+1, |
|
cb, |
|
1.0f, |
|
INFINITY, |
|
&b, &sqenergy, |
|
0); |
|
bits += b; |
|
qenergy += sqenergy; |
|
} |
|
dist -= bits; |
|
if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) { |
|
sce->sf_idx[w*16+g]++; |
|
dists[w*16+g] = dist; |
|
qenergies[w*16+g] = qenergy; |
|
} else { |
|
break; |
|
} |
|
} else { |
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minrdsf, minscaler + SCALE_MAX_DIFF); |
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], SCALE_MAX_POS - SCALE_DIV_512); |
|
if (sce->sf_idx[w*16+g] != prevsc) |
|
fflag = 1; |
|
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]); |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
if (nminscaler < minscaler || sce->ics.num_windows > 1) { |
|
/** SF difference limit violation risk. Must re-clamp. */ |
|
minscaler = nminscaler; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
} |
|
} |
|
} |
|
its++; |
|
} while (fflag && its < maxits); |
|
|
|
prev = -1; |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
/** Make sure proper codebooks are set */ |
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { |
|
if (!sce->zeroes[w*16+g]) { |
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); |
|
if (sce->band_type[w*16+g] <= 0) { |
|
sce->zeroes[w*16+g] = 1; |
|
sce->band_type[w*16+g] = 0; |
|
} |
|
} else { |
|
sce->band_type[w*16+g] = 0; |
|
} |
|
/** Check that there's no SF delta range violations */ |
|
if (!sce->zeroes[w*16+g]) { |
|
if (prev != -1) { |
|
int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO; |
|
av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF); |
|
} |
|
prev = sce->sf_idx[w*16+g]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif /* AVCODEC_AACCODER_TWOLOOP_H */
|
|
|