mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
497 lines
13 KiB
497 lines
13 KiB
/* |
|
* (c) 2002 Fabrice Bellard |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* FFT and MDCT tests. |
|
*/ |
|
|
|
#include "libavutil/cpu.h" |
|
#include "libavutil/mathematics.h" |
|
#include "libavutil/lfg.h" |
|
#include "libavutil/log.h" |
|
#include "libavutil/time.h" |
|
#include "fft.h" |
|
#if CONFIG_FFT_FLOAT |
|
#include "dct.h" |
|
#include "rdft.h" |
|
#endif |
|
#include <math.h> |
|
#if HAVE_UNISTD_H |
|
#include <unistd.h> |
|
#endif |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
/* reference fft */ |
|
|
|
#define MUL16(a,b) ((a) * (b)) |
|
|
|
#define CMAC(pre, pim, are, aim, bre, bim) \ |
|
{\ |
|
pre += (MUL16(are, bre) - MUL16(aim, bim));\ |
|
pim += (MUL16(are, bim) + MUL16(bre, aim));\ |
|
} |
|
|
|
#if CONFIG_FFT_FLOAT |
|
# define RANGE 1.0 |
|
# define REF_SCALE(x, bits) (x) |
|
# define FMT "%10.6f" |
|
#else |
|
# define RANGE 16384 |
|
# define REF_SCALE(x, bits) ((x) / (1<<(bits))) |
|
# define FMT "%6d" |
|
#endif |
|
|
|
struct { |
|
float re, im; |
|
} *exptab; |
|
|
|
static void fft_ref_init(int nbits, int inverse) |
|
{ |
|
int n, i; |
|
double c1, s1, alpha; |
|
|
|
n = 1 << nbits; |
|
exptab = av_malloc((n / 2) * sizeof(*exptab)); |
|
|
|
for (i = 0; i < (n/2); i++) { |
|
alpha = 2 * M_PI * (float)i / (float)n; |
|
c1 = cos(alpha); |
|
s1 = sin(alpha); |
|
if (!inverse) |
|
s1 = -s1; |
|
exptab[i].re = c1; |
|
exptab[i].im = s1; |
|
} |
|
} |
|
|
|
static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits) |
|
{ |
|
int n, i, j, k, n2; |
|
double tmp_re, tmp_im, s, c; |
|
FFTComplex *q; |
|
|
|
n = 1 << nbits; |
|
n2 = n >> 1; |
|
for (i = 0; i < n; i++) { |
|
tmp_re = 0; |
|
tmp_im = 0; |
|
q = tab; |
|
for (j = 0; j < n; j++) { |
|
k = (i * j) & (n - 1); |
|
if (k >= n2) { |
|
c = -exptab[k - n2].re; |
|
s = -exptab[k - n2].im; |
|
} else { |
|
c = exptab[k].re; |
|
s = exptab[k].im; |
|
} |
|
CMAC(tmp_re, tmp_im, c, s, q->re, q->im); |
|
q++; |
|
} |
|
tabr[i].re = REF_SCALE(tmp_re, nbits); |
|
tabr[i].im = REF_SCALE(tmp_im, nbits); |
|
} |
|
} |
|
|
|
static void imdct_ref(FFTSample *out, FFTSample *in, int nbits) |
|
{ |
|
int n = 1<<nbits; |
|
int k, i, a; |
|
double sum, f; |
|
|
|
for (i = 0; i < n; i++) { |
|
sum = 0; |
|
for (k = 0; k < n/2; k++) { |
|
a = (2 * i + 1 + (n / 2)) * (2 * k + 1); |
|
f = cos(M_PI * a / (double)(2 * n)); |
|
sum += f * in[k]; |
|
} |
|
out[i] = REF_SCALE(-sum, nbits - 2); |
|
} |
|
} |
|
|
|
/* NOTE: no normalisation by 1 / N is done */ |
|
static void mdct_ref(FFTSample *output, FFTSample *input, int nbits) |
|
{ |
|
int n = 1<<nbits; |
|
int k, i; |
|
double a, s; |
|
|
|
/* do it by hand */ |
|
for (k = 0; k < n/2; k++) { |
|
s = 0; |
|
for (i = 0; i < n; i++) { |
|
a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n)); |
|
s += input[i] * cos(a); |
|
} |
|
output[k] = REF_SCALE(s, nbits - 1); |
|
} |
|
} |
|
|
|
#if CONFIG_FFT_FLOAT |
|
static void idct_ref(float *output, float *input, int nbits) |
|
{ |
|
int n = 1<<nbits; |
|
int k, i; |
|
double a, s; |
|
|
|
/* do it by hand */ |
|
for (i = 0; i < n; i++) { |
|
s = 0.5 * input[0]; |
|
for (k = 1; k < n; k++) { |
|
a = M_PI*k*(i+0.5) / n; |
|
s += input[k] * cos(a); |
|
} |
|
output[i] = 2 * s / n; |
|
} |
|
} |
|
static void dct_ref(float *output, float *input, int nbits) |
|
{ |
|
int n = 1<<nbits; |
|
int k, i; |
|
double a, s; |
|
|
|
/* do it by hand */ |
|
for (k = 0; k < n; k++) { |
|
s = 0; |
|
for (i = 0; i < n; i++) { |
|
a = M_PI*k*(i+0.5) / n; |
|
s += input[i] * cos(a); |
|
} |
|
output[k] = s; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
static FFTSample frandom(AVLFG *prng) |
|
{ |
|
return (int16_t)av_lfg_get(prng) / 32768.0 * RANGE; |
|
} |
|
|
|
static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale) |
|
{ |
|
int i; |
|
double max= 0; |
|
double error= 0; |
|
int err = 0; |
|
|
|
for (i = 0; i < n; i++) { |
|
double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE; |
|
if (e >= 1e-3) { |
|
av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n", |
|
i, tab1[i], tab2[i]); |
|
err = 1; |
|
} |
|
error+= e*e; |
|
if(e>max) max= e; |
|
} |
|
av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n); |
|
return err; |
|
} |
|
|
|
|
|
static void help(void) |
|
{ |
|
av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n" |
|
"-h print this help\n" |
|
"-s speed test\n" |
|
"-m (I)MDCT test\n" |
|
"-d (I)DCT test\n" |
|
"-r (I)RDFT test\n" |
|
"-i inverse transform test\n" |
|
"-n b set the transform size to 2^b\n" |
|
"-f x set scale factor for output data of (I)MDCT to x\n" |
|
); |
|
} |
|
|
|
enum tf_transform { |
|
TRANSFORM_FFT, |
|
TRANSFORM_MDCT, |
|
TRANSFORM_RDFT, |
|
TRANSFORM_DCT, |
|
}; |
|
|
|
#if !HAVE_GETOPT |
|
#include "compat/getopt.c" |
|
#endif |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
FFTComplex *tab, *tab1, *tab_ref; |
|
FFTSample *tab2; |
|
int it, i, c; |
|
int cpuflags; |
|
int do_speed = 0; |
|
int err = 1; |
|
enum tf_transform transform = TRANSFORM_FFT; |
|
int do_inverse = 0; |
|
FFTContext s1, *s = &s1; |
|
FFTContext m1, *m = &m1; |
|
#if CONFIG_FFT_FLOAT |
|
RDFTContext r1, *r = &r1; |
|
DCTContext d1, *d = &d1; |
|
int fft_size_2; |
|
#endif |
|
int fft_nbits, fft_size; |
|
double scale = 1.0; |
|
AVLFG prng; |
|
av_lfg_init(&prng, 1); |
|
|
|
fft_nbits = 9; |
|
for(;;) { |
|
c = getopt(argc, argv, "hsimrdn:f:c:"); |
|
if (c == -1) |
|
break; |
|
switch(c) { |
|
case 'h': |
|
help(); |
|
return 1; |
|
case 's': |
|
do_speed = 1; |
|
break; |
|
case 'i': |
|
do_inverse = 1; |
|
break; |
|
case 'm': |
|
transform = TRANSFORM_MDCT; |
|
break; |
|
case 'r': |
|
transform = TRANSFORM_RDFT; |
|
break; |
|
case 'd': |
|
transform = TRANSFORM_DCT; |
|
break; |
|
case 'n': |
|
fft_nbits = atoi(optarg); |
|
break; |
|
case 'f': |
|
scale = atof(optarg); |
|
break; |
|
case 'c': |
|
cpuflags = av_parse_cpu_flags(optarg); |
|
if (cpuflags < 0) |
|
return 1; |
|
av_set_cpu_flags_mask(cpuflags); |
|
break; |
|
} |
|
} |
|
|
|
fft_size = 1 << fft_nbits; |
|
tab = av_malloc(fft_size * sizeof(FFTComplex)); |
|
tab1 = av_malloc(fft_size * sizeof(FFTComplex)); |
|
tab_ref = av_malloc(fft_size * sizeof(FFTComplex)); |
|
tab2 = av_malloc(fft_size * sizeof(FFTSample)); |
|
|
|
switch (transform) { |
|
case TRANSFORM_MDCT: |
|
av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale); |
|
if (do_inverse) |
|
av_log(NULL, AV_LOG_INFO,"IMDCT"); |
|
else |
|
av_log(NULL, AV_LOG_INFO,"MDCT"); |
|
ff_mdct_init(m, fft_nbits, do_inverse, scale); |
|
break; |
|
case TRANSFORM_FFT: |
|
if (do_inverse) |
|
av_log(NULL, AV_LOG_INFO,"IFFT"); |
|
else |
|
av_log(NULL, AV_LOG_INFO,"FFT"); |
|
ff_fft_init(s, fft_nbits, do_inverse); |
|
fft_ref_init(fft_nbits, do_inverse); |
|
break; |
|
#if CONFIG_FFT_FLOAT |
|
case TRANSFORM_RDFT: |
|
if (do_inverse) |
|
av_log(NULL, AV_LOG_INFO,"IDFT_C2R"); |
|
else |
|
av_log(NULL, AV_LOG_INFO,"DFT_R2C"); |
|
ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C); |
|
fft_ref_init(fft_nbits, do_inverse); |
|
break; |
|
case TRANSFORM_DCT: |
|
if (do_inverse) |
|
av_log(NULL, AV_LOG_INFO,"DCT_III"); |
|
else |
|
av_log(NULL, AV_LOG_INFO,"DCT_II"); |
|
ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II); |
|
break; |
|
#endif |
|
default: |
|
av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n"); |
|
return 1; |
|
} |
|
av_log(NULL, AV_LOG_INFO," %d test\n", fft_size); |
|
|
|
/* generate random data */ |
|
|
|
for (i = 0; i < fft_size; i++) { |
|
tab1[i].re = frandom(&prng); |
|
tab1[i].im = frandom(&prng); |
|
} |
|
|
|
/* checking result */ |
|
av_log(NULL, AV_LOG_INFO,"Checking...\n"); |
|
|
|
switch (transform) { |
|
case TRANSFORM_MDCT: |
|
if (do_inverse) { |
|
imdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits); |
|
m->imdct_calc(m, tab2, (FFTSample *)tab1); |
|
err = check_diff((FFTSample *)tab_ref, tab2, fft_size, scale); |
|
} else { |
|
mdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits); |
|
|
|
m->mdct_calc(m, tab2, (FFTSample *)tab1); |
|
|
|
err = check_diff((FFTSample *)tab_ref, tab2, fft_size / 2, scale); |
|
} |
|
break; |
|
case TRANSFORM_FFT: |
|
memcpy(tab, tab1, fft_size * sizeof(FFTComplex)); |
|
s->fft_permute(s, tab); |
|
s->fft_calc(s, tab); |
|
|
|
fft_ref(tab_ref, tab1, fft_nbits); |
|
err = check_diff((FFTSample *)tab_ref, (FFTSample *)tab, fft_size * 2, 1.0); |
|
break; |
|
#if CONFIG_FFT_FLOAT |
|
case TRANSFORM_RDFT: |
|
fft_size_2 = fft_size >> 1; |
|
if (do_inverse) { |
|
tab1[ 0].im = 0; |
|
tab1[fft_size_2].im = 0; |
|
for (i = 1; i < fft_size_2; i++) { |
|
tab1[fft_size_2+i].re = tab1[fft_size_2-i].re; |
|
tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im; |
|
} |
|
|
|
memcpy(tab2, tab1, fft_size * sizeof(FFTSample)); |
|
tab2[1] = tab1[fft_size_2].re; |
|
|
|
r->rdft_calc(r, tab2); |
|
fft_ref(tab_ref, tab1, fft_nbits); |
|
for (i = 0; i < fft_size; i++) { |
|
tab[i].re = tab2[i]; |
|
tab[i].im = 0; |
|
} |
|
err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5); |
|
} else { |
|
for (i = 0; i < fft_size; i++) { |
|
tab2[i] = tab1[i].re; |
|
tab1[i].im = 0; |
|
} |
|
r->rdft_calc(r, tab2); |
|
fft_ref(tab_ref, tab1, fft_nbits); |
|
tab_ref[0].im = tab_ref[fft_size_2].re; |
|
err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0); |
|
} |
|
break; |
|
case TRANSFORM_DCT: |
|
memcpy(tab, tab1, fft_size * sizeof(FFTComplex)); |
|
d->dct_calc(d, tab); |
|
if (do_inverse) { |
|
idct_ref(tab_ref, tab1, fft_nbits); |
|
} else { |
|
dct_ref(tab_ref, tab1, fft_nbits); |
|
} |
|
err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0); |
|
break; |
|
#endif |
|
} |
|
|
|
/* do a speed test */ |
|
|
|
if (do_speed) { |
|
int64_t time_start, duration; |
|
int nb_its; |
|
|
|
av_log(NULL, AV_LOG_INFO,"Speed test...\n"); |
|
/* we measure during about 1 seconds */ |
|
nb_its = 1; |
|
for(;;) { |
|
time_start = av_gettime(); |
|
for (it = 0; it < nb_its; it++) { |
|
switch (transform) { |
|
case TRANSFORM_MDCT: |
|
if (do_inverse) { |
|
m->imdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1); |
|
} else { |
|
m->mdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1); |
|
} |
|
break; |
|
case TRANSFORM_FFT: |
|
memcpy(tab, tab1, fft_size * sizeof(FFTComplex)); |
|
s->fft_calc(s, tab); |
|
break; |
|
#if CONFIG_FFT_FLOAT |
|
case TRANSFORM_RDFT: |
|
memcpy(tab2, tab1, fft_size * sizeof(FFTSample)); |
|
r->rdft_calc(r, tab2); |
|
break; |
|
case TRANSFORM_DCT: |
|
memcpy(tab2, tab1, fft_size * sizeof(FFTSample)); |
|
d->dct_calc(d, tab2); |
|
break; |
|
#endif |
|
} |
|
} |
|
duration = av_gettime() - time_start; |
|
if (duration >= 1000000) |
|
break; |
|
nb_its *= 2; |
|
} |
|
av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n", |
|
(double)duration / nb_its, |
|
(double)duration / 1000000.0, |
|
nb_its); |
|
} |
|
|
|
switch (transform) { |
|
case TRANSFORM_MDCT: |
|
ff_mdct_end(m); |
|
break; |
|
case TRANSFORM_FFT: |
|
ff_fft_end(s); |
|
break; |
|
#if CONFIG_FFT_FLOAT |
|
case TRANSFORM_RDFT: |
|
ff_rdft_end(r); |
|
break; |
|
case TRANSFORM_DCT: |
|
ff_dct_end(d); |
|
break; |
|
#endif |
|
} |
|
|
|
av_free(tab); |
|
av_free(tab1); |
|
av_free(tab2); |
|
av_free(tab_ref); |
|
av_free(exptab); |
|
|
|
if (err) |
|
printf("Error: %d.\n", err); |
|
|
|
return !!err; |
|
}
|
|
|