You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1241 lines
41 KiB

/*
* Copyright (C) 2016 Open Broadcast Systems Ltd.
* Author 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/pixdesc.h"
#include "libavutil/opt.h"
#include "libavutil/version.h"
#include "codec_internal.h"
#include "dirac.h"
#include "encode.h"
#include "put_bits.h"
#include "version.h"
#include "vc2enc_dwt.h"
#include "diractab.h"
/* The limited size resolution of each slice forces us to do this */
#define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes)
/* Decides the cutoff point in # of slices to distribute the leftover bytes */
#define SLICE_REDIST_TOTAL 150
typedef struct VC2BaseVideoFormat {
enum AVPixelFormat pix_fmt;
AVRational time_base;
int width, height, interlaced, level;
const char *name;
} VC2BaseVideoFormat;
static const VC2BaseVideoFormat base_video_fmts[] = {
{ 0 }, /* Custom format, here just to make indexing equal to base_vf */
{ AV_PIX_FMT_YUV420P, { 1001, 15000 }, 176, 120, 0, 1, "QSIF525" },
{ AV_PIX_FMT_YUV420P, { 2, 25 }, 176, 144, 0, 1, "QCIF" },
{ AV_PIX_FMT_YUV420P, { 1001, 15000 }, 352, 240, 0, 1, "SIF525" },
{ AV_PIX_FMT_YUV420P, { 2, 25 }, 352, 288, 0, 1, "CIF" },
{ AV_PIX_FMT_YUV420P, { 1001, 15000 }, 704, 480, 0, 1, "4SIF525" },
{ AV_PIX_FMT_YUV420P, { 2, 25 }, 704, 576, 0, 1, "4CIF" },
{ AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 480, 1, 2, "SD480I-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 25 }, 720, 576, 1, 2, "SD576I-50" },
{ AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280, 720, 0, 3, "HD720P-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 50 }, 1280, 720, 0, 3, "HD720P-50" },
{ AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3, "HD1080I-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 25 }, 1920, 1080, 1, 3, "HD1080I-50" },
{ AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3, "HD1080P-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 50 }, 1920, 1080, 0, 3, "HD1080P-50" },
{ AV_PIX_FMT_YUV444P12, { 1, 24 }, 2048, 1080, 0, 4, "DC2K" },
{ AV_PIX_FMT_YUV444P12, { 1, 24 }, 4096, 2160, 0, 5, "DC4K" },
{ AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" },
{ AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" },
{ AV_PIX_FMT_YUV422P10, { 1, 50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" },
{ AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3, "HD1080P-24" },
{ AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 486, 1, 2, "SD Pro486" },
};
static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts);
enum VC2_QM {
VC2_QM_DEF = 0,
VC2_QM_COL,
VC2_QM_FLAT,
VC2_QM_NB
};
typedef struct SubBand {
dwtcoef *buf;
ptrdiff_t stride;
int width;
int height;
} SubBand;
typedef struct Plane {
SubBand band[MAX_DWT_LEVELS][4];
dwtcoef *coef_buf;
int width;
int height;
int dwt_width;
int dwt_height;
ptrdiff_t coef_stride;
} Plane;
typedef struct SliceArgs {
PutBitContext pb;
int cache[DIRAC_MAX_QUANT_INDEX];
void *ctx;
int x;
int y;
int quant_idx;
int bits_ceil;
int bits_floor;
int bytes;
} SliceArgs;
typedef struct TransformArgs {
void *ctx;
Plane *plane;
const void *idata;
ptrdiff_t istride;
int field;
VC2TransformContext t;
} TransformArgs;
typedef struct VC2EncContext {
AVClass *av_class;
PutBitContext pb;
Plane plane[3];
AVCodecContext *avctx;
DiracVersionInfo ver;
SliceArgs *slice_args;
TransformArgs transform_args[3];
/* For conversion from unsigned pixel values to signed */
int diff_offset;
int bpp;
int bpp_idx;
/* Picture number */
uint32_t picture_number;
/* Base video format */
int base_vf;
int level;
int profile;
/* Quantization matrix */
uint8_t quant[MAX_DWT_LEVELS][4];
int custom_quant_matrix;
/* Division LUT */
uint32_t qmagic_lut[116][2];
int num_x; /* #slices horizontally */
int num_y; /* #slices vertically */
int prefix_bytes;
int size_scaler;
int chroma_x_shift;
int chroma_y_shift;
/* Rate control stuff */
int frame_max_bytes;
int slice_max_bytes;
int slice_min_bytes;
int q_ceil;
int q_avg;
/* Options */
double tolerance;
int wavelet_idx;
int wavelet_depth;
int strict_compliance;
int slice_height;
int slice_width;
int interlaced;
enum VC2_QM quant_matrix;
/* Parse code state */
uint32_t next_parse_offset;
enum DiracParseCodes last_parse_code;
} VC2EncContext;
static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
{
int i;
int pbits = 0, bits = 0, topbit = 1, maxval = 1;
if (!val++) {
put_bits(pb, 1, 1);
return;
}
while (val > maxval) {
topbit <<= 1;
maxval <<= 1;
maxval |= 1;
}
bits = ff_log2(topbit);
for (i = 0; i < bits; i++) {
topbit >>= 1;
pbits <<= 2;
if (val & topbit)
pbits |= 0x1;
}
put_bits(pb, bits*2 + 1, (pbits << 1) | 1);
}
static av_always_inline int count_vc2_ue_uint(uint32_t val)
{
int topbit = 1, maxval = 1;
if (!val++)
return 1;
while (val > maxval) {
topbit <<= 1;
maxval <<= 1;
maxval |= 1;
}
return ff_log2(topbit)*2 + 1;
}
/* VC-2 10.4 - parse_info() */
static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
{
uint32_t cur_pos, dist;
align_put_bits(&s->pb);
cur_pos = put_bits_count(&s->pb) >> 3;
/* Magic string */
ff_put_string(&s->pb, "BBCD", 0);
/* Parse code */
put_bits(&s->pb, 8, pcode);
/* Next parse offset */
dist = cur_pos - s->next_parse_offset;
AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
s->next_parse_offset = cur_pos;
put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
/* Last parse offset */
put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
s->last_parse_code = pcode;
}
/* VC-2 11.1 - parse_parameters()
* The level dictates what the decoder should expect in terms of resolution
* and allows it to quickly reject whatever it can't support. Remember,
* this codec kinda targets cheapo FPGAs without much memory. Unfortunately
* it also limits us greatly in our choice of formats, hence the flag to disable
* strict_compliance */
static void encode_parse_params(VC2EncContext *s)
{
put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0 */
put_vc2_ue_uint(&s->pb, s->profile); /* 3 to signal HQ profile */
put_vc2_ue_uint(&s->pb, s->level); /* 3 - 1080/720, 6 - 4K */
}
/* VC-2 11.3 - frame_size() */
static void encode_frame_size(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance) {
AVCodecContext *avctx = s->avctx;
put_vc2_ue_uint(&s->pb, avctx->width);
put_vc2_ue_uint(&s->pb, avctx->height);
}
}
/* VC-2 11.3.3 - color_diff_sampling_format() */
static void encode_sample_fmt(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance) {
int idx;
if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
idx = 1; /* 422 */
else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
idx = 2; /* 420 */
else
idx = 0; /* 444 */
put_vc2_ue_uint(&s->pb, idx);
}
}
/* VC-2 11.3.4 - scan_format() */
static void encode_scan_format(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance)
put_vc2_ue_uint(&s->pb, s->interlaced);
}
/* VC-2 11.3.5 - frame_rate() */
static void encode_frame_rate(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance) {
AVCodecContext *avctx = s->avctx;
put_vc2_ue_uint(&s->pb, 0);
put_vc2_ue_uint(&s->pb, avctx->time_base.den);
put_vc2_ue_uint(&s->pb, avctx->time_base.num);
}
}
/* VC-2 11.3.6 - aspect_ratio() */
static void encode_aspect_ratio(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance) {
AVCodecContext *avctx = s->avctx;
put_vc2_ue_uint(&s->pb, 0);
put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
}
}
/* VC-2 11.3.7 - clean_area() */
static void encode_clean_area(VC2EncContext *s)
{
put_bits(&s->pb, 1, 0);
}
/* VC-2 11.3.8 - signal_range() */
static void encode_signal_range(VC2EncContext *s)
{
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance)
put_vc2_ue_uint(&s->pb, s->bpp_idx);
}
/* VC-2 11.3.9 - color_spec() */
static void encode_color_spec(VC2EncContext *s)
{
AVCodecContext *avctx = s->avctx;
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance) {
int val;
put_vc2_ue_uint(&s->pb, 0);
/* primaries */
put_bits(&s->pb, 1, 1);
if (avctx->color_primaries == AVCOL_PRI_BT470BG)
val = 2;
else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
val = 1;
else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
val = 1;
else
val = 0;
put_vc2_ue_uint(&s->pb, val);
/* color matrix */
put_bits(&s->pb, 1, 1);
if (avctx->colorspace == AVCOL_SPC_RGB)
val = 3;
else if (avctx->colorspace == AVCOL_SPC_YCOCG)
val = 2;
else if (avctx->colorspace == AVCOL_SPC_BT470BG)
val = 1;
else
val = 0;
put_vc2_ue_uint(&s->pb, val);
/* transfer function */
put_bits(&s->pb, 1, 1);
if (avctx->color_trc == AVCOL_TRC_LINEAR)
val = 2;
else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
val = 1;
else
val = 0;
put_vc2_ue_uint(&s->pb, val);
}
}
/* VC-2 11.3 - source_parameters() */
static void encode_source_params(VC2EncContext *s)
{
encode_frame_size(s);
encode_sample_fmt(s);
encode_scan_format(s);
encode_frame_rate(s);
encode_aspect_ratio(s);
encode_clean_area(s);
encode_signal_range(s);
encode_color_spec(s);
}
/* VC-2 11 - sequence_header() */
static void encode_seq_header(VC2EncContext *s)
{
align_put_bits(&s->pb);
encode_parse_params(s);
put_vc2_ue_uint(&s->pb, s->base_vf);
encode_source_params(s);
put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
}
/* VC-2 12.1 - picture_header() */
static void encode_picture_header(VC2EncContext *s)
{
align_put_bits(&s->pb);
put_bits32(&s->pb, s->picture_number++);
}
/* VC-2 12.3.4.1 - slice_parameters() */
static void encode_slice_params(VC2EncContext *s)
{
put_vc2_ue_uint(&s->pb, s->num_x);
put_vc2_ue_uint(&s->pb, s->num_y);
put_vc2_ue_uint(&s->pb, s->prefix_bytes);
put_vc2_ue_uint(&s->pb, s->size_scaler);
}
/* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
static const uint8_t vc2_qm_col_tab[][4] = {
{20, 9, 15, 4},
{ 0, 6, 6, 4},
{ 0, 3, 3, 5},
{ 0, 3, 5, 1},
{ 0, 11, 10, 11}
};
static const uint8_t vc2_qm_flat_tab[][4] = {
{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0}
};
static void init_quant_matrix(VC2EncContext *s)
{
int level, orientation;
if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) {
s->custom_quant_matrix = 0;
for (level = 0; level < s->wavelet_depth; level++) {
s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
}
return;
}
s->custom_quant_matrix = 1;
if (s->quant_matrix == VC2_QM_DEF) {
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = 0; orientation < 4; orientation++) {
if (level <= 3)
s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
else
s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
}
}
} else if (s->quant_matrix == VC2_QM_COL) {
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = 0; orientation < 4; orientation++) {
s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
}
}
} else {
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = 0; orientation < 4; orientation++) {
s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
}
}
}
}
/* VC-2 12.3.4.2 - quant_matrix() */
static void encode_quant_matrix(VC2EncContext *s)
{
int level;
put_bits(&s->pb, 1, s->custom_quant_matrix);
if (s->custom_quant_matrix) {
put_vc2_ue_uint(&s->pb, s->quant[0][0]);
for (level = 0; level < s->wavelet_depth; level++) {
put_vc2_ue_uint(&s->pb, s->quant[level][1]);
put_vc2_ue_uint(&s->pb, s->quant[level][2]);
put_vc2_ue_uint(&s->pb, s->quant[level][3]);
}
}
}
/* VC-2 12.3 - transform_parameters() */
static void encode_transform_params(VC2EncContext *s)
{
put_vc2_ue_uint(&s->pb, s->wavelet_idx);
put_vc2_ue_uint(&s->pb, s->wavelet_depth);
encode_slice_params(s);
encode_quant_matrix(s);
}
/* VC-2 12.2 - wavelet_transform() */
static void encode_wavelet_transform(VC2EncContext *s)
{
encode_transform_params(s);
align_put_bits(&s->pb);
}
/* VC-2 12 - picture_parse() */
static void encode_picture_start(VC2EncContext *s)
{
align_put_bits(&s->pb);
encode_picture_header(s);
align_put_bits(&s->pb);
encode_wavelet_transform(s);
}
#define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift))
/* VC-2 13.5.5.2 - slice_band() */
static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy,
SubBand *b, int quant)
{
int x, y;
const int left = b->width * (sx+0) / s->num_x;
const int right = b->width * (sx+1) / s->num_x;
const int top = b->height * (sy+0) / s->num_y;
const int bottom = b->height * (sy+1) / s->num_y;
dwtcoef *coeff = b->buf + top * b->stride;
const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2;
const uint64_t q_a = s->qmagic_lut[quant][1];
const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32;
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s);
put_vc2_ue_uint(pb, c_abs);
if (c_abs)
put_bits(pb, 1, coeff[x] < 0);
}
coeff += b->stride;
}
}
static int count_hq_slice(SliceArgs *slice, int quant_idx)
{
int x, y;
uint8_t quants[MAX_DWT_LEVELS][4];
int bits = 0, p, level, orientation;
VC2EncContext *s = slice->ctx;
if (slice->cache[quant_idx])
return slice->cache[quant_idx];
bits += 8*s->prefix_bytes;
bits += 8; /* quant_idx */
for (level = 0; level < s->wavelet_depth; level++)
for (orientation = !!level; orientation < 4; orientation++)
quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
for (p = 0; p < 3; p++) {
int bytes_start, bytes_len, pad_s, pad_c;
bytes_start = bits >> 3;
bits += 8;
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = !!level; orientation < 4; orientation++) {
SubBand *b = &s->plane[p].band[level][orientation];
const int q_idx = quants[level][orientation];
const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2;
const uint64_t q_a = s->qmagic_lut[q_idx][1];
const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32;
const int left = b->width * slice->x / s->num_x;
const int right = b->width *(slice->x+1) / s->num_x;
const int top = b->height * slice->y / s->num_y;
const int bottom = b->height *(slice->y+1) / s->num_y;
dwtcoef *buf = b->buf + top * b->stride;
for (y = top; y < bottom; y++) {
for (x = left; x < right; x++) {
uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s);
bits += count_vc2_ue_uint(c_abs);
bits += !!c_abs;
}
buf += b->stride;
}
}
}
bits += FFALIGN(bits, 8) - bits;
bytes_len = (bits >> 3) - bytes_start - 1;
pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
pad_c = (pad_s*s->size_scaler) - bytes_len;
bits += pad_c*8;
}
slice->cache[quant_idx] = bits;
return bits;
}
/* Approaches the best possible quantizer asymptotically, its kinda exaustive
* but we have a LUT to get the coefficient size in bits. Guaranteed to never
* overshoot, which is apparently very important when streaming */
static int rate_control(AVCodecContext *avctx, void *arg)
{
SliceArgs *slice_dat = arg;
VC2EncContext *s = slice_dat->ctx;
const int top = slice_dat->bits_ceil;
const int bottom = slice_dat->bits_floor;
int quant_buf[2] = {-1, -1};
int quant = slice_dat->quant_idx, step = 1;
int bits_last, bits = count_hq_slice(slice_dat, quant);
while ((bits > top) || (bits < bottom)) {
const int signed_step = bits > top ? +step : -step;
quant = av_clip(quant + signed_step, 0, s->q_ceil-1);
bits = count_hq_slice(slice_dat, quant);
if (quant_buf[1] == quant) {
quant = FFMAX(quant_buf[0], quant);
bits = quant == quant_buf[0] ? bits_last : bits;
break;
}
step = av_clip(step/2, 1, (s->q_ceil-1)/2);
quant_buf[1] = quant_buf[0];
quant_buf[0] = quant;
bits_last = bits;
}
slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1);
slice_dat->bytes = SSIZE_ROUND(bits >> 3);
return 0;
}
static int calc_slice_sizes(VC2EncContext *s)
{
int i, j, slice_x, slice_y, bytes_left = 0;
int bytes_top[SLICE_REDIST_TOTAL] = {0};
int64_t total_bytes_needed = 0;
int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y);
SliceArgs *enc_args = s->slice_args;
SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL};
init_quant_matrix(s);
for (slice_y = 0; slice_y < s->num_y; slice_y++) {
for (slice_x = 0; slice_x < s->num_x; slice_x++) {
SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
args->ctx = s;
args->x = slice_x;
args->y = slice_y;
args->bits_ceil = s->slice_max_bytes << 3;
args->bits_floor = s->slice_min_bytes << 3;
memset(args->cache, 0, s->q_ceil*sizeof(*args->cache));
}
}
/* First pass - determine baseline slice sizes w.r.t. max_slice_size */
s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
sizeof(SliceArgs));
for (i = 0; i < s->num_x*s->num_y; i++) {
SliceArgs *args = &enc_args[i];
bytes_left += args->bytes;
for (j = 0; j < slice_redist_range; j++) {
if (args->bytes > bytes_top[j]) {
bytes_top[j] = args->bytes;
top_loc[j] = args;
break;
}
}
}
bytes_left = s->frame_max_bytes - bytes_left;
/* Second pass - distribute leftover bytes */
while (bytes_left > 0) {
int distributed = 0;
for (i = 0; i < slice_redist_range; i++) {
SliceArgs *args;
int bits, bytes, diff, prev_bytes, new_idx;
if (bytes_left <= 0)
break;
if (!top_loc[i] || !top_loc[i]->quant_idx)
break;
args = top_loc[i];
prev_bytes = args->bytes;
new_idx = FFMAX(args->quant_idx - 1, 0);
bits = count_hq_slice(args, new_idx);
bytes = SSIZE_ROUND(bits >> 3);
diff = bytes - prev_bytes;
if ((bytes_left - diff) > 0) {
args->quant_idx = new_idx;
args->bytes = bytes;
bytes_left -= diff;
distributed++;
}
}
if (!distributed)
break;
}
for (i = 0; i < s->num_x*s->num_y; i++) {
SliceArgs *args = &enc_args[i];
total_bytes_needed += args->bytes;
s->q_avg = (s->q_avg + args->quant_idx)/2;
}
return total_bytes_needed;
}
/* VC-2 13.5.3 - hq_slice */
static int encode_hq_slice(AVCodecContext *avctx, void *arg)
{
SliceArgs *slice_dat = arg;
VC2EncContext *s = slice_dat->ctx;
PutBitContext *pb = &slice_dat->pb;
const int slice_x = slice_dat->x;
const int slice_y = slice_dat->y;
const int quant_idx = slice_dat->quant_idx;
const int slice_bytes_max = slice_dat->bytes;
uint8_t quants[MAX_DWT_LEVELS][4];
int p, level, orientation;
/* The reference decoder ignores it, and its typical length is 0 */
memset(put_bits_ptr(pb), 0, s->prefix_bytes);
skip_put_bytes(pb, s->prefix_bytes);
put_bits(pb, 8, quant_idx);
/* Slice quantization (slice_quantizers() in the specs) */
for (level = 0; level < s->wavelet_depth; level++)
for (orientation = !!level; orientation < 4; orientation++)
quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
/* Luma + 2 Chroma planes */
for (p = 0; p < 3; p++) {
int bytes_start, bytes_len, pad_s, pad_c;
bytes_start = put_bits_count(pb) >> 3;
put_bits(pb, 8, 0);
for (level = 0; level < s->wavelet_depth; level++) {
for (orientation = !!level; orientation < 4; orientation++) {
encode_subband(s, pb, slice_x, slice_y,
&s->plane[p].band[level][orientation],
quants[level][orientation]);
}
}
align_put_bits(pb);
bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1;
if (p == 2) {
int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3);
pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
pad_c = (pad_s*s->size_scaler) - bytes_len;
} else {
pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
pad_c = (pad_s*s->size_scaler) - bytes_len;
}
pb->buf[bytes_start] = pad_s;
flush_put_bits(pb);
/* vc2-reference uses that padding that decodes to '0' coeffs */
memset(put_bits_ptr(pb), 0xFF, pad_c);
skip_put_bytes(pb, pad_c);
}
return 0;
}
/* VC-2 13.5.1 - low_delay_transform_data() */
static int encode_slices(VC2EncContext *s)
{
uint8_t *buf;
int slice_x, slice_y, skip = 0;
SliceArgs *enc_args = s->slice_args;
flush_put_bits(&s->pb);
buf = put_bits_ptr(&s->pb);
for (slice_y = 0; slice_y < s->num_y; slice_y++) {
for (slice_x = 0; slice_x < s->num_x; slice_x++) {
SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes);
skip += args->bytes;
}
}
s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
sizeof(SliceArgs));
skip_put_bytes(&s->pb, skip);
return 0;
}
/*
* Transform basics for a 3 level transform
* |---------------------------------------------------------------------|
* | LL-0 | HL-0 | | |
* |--------|-------| HL-1 | |
* | LH-0 | HH-0 | | |
* |----------------|-----------------| HL-2 |
* | | | |
* | LH-1 | HH-1 | |
* | | | |
* |----------------------------------|----------------------------------|
* | | |
* | | |
* | | |
* | LH-2 | HH-2 |
* | | |
* | | |
* | | |
* |---------------------------------------------------------------------|
*
* DWT transforms are generally applied by splitting the image in two vertically
* and applying a low pass transform on the left part and a corresponding high
* pass transform on the right hand side. This is known as the horizontal filter
* stage.
* After that, the same operation is performed except the image is divided
* horizontally, with the high pass on the lower and the low pass on the higher
* side.
* Therefore, you're left with 4 subdivisions - known as low-low, low-high,
* high-low and high-high. They're referred to as orientations in the decoder
* and encoder.
*
* The LL (low-low) area contains the original image downsampled by the amount
* of levels. The rest of the areas can be thought as the details needed
* to restore the image perfectly to its original size.
*/
static int dwt_plane(AVCodecContext *avctx, void *arg)
{
TransformArgs *transform_dat = arg;
VC2EncContext *s = transform_dat->ctx;
const void *frame_data = transform_dat->idata;
const ptrdiff_t linesize = transform_dat->istride;
const int field = transform_dat->field;
const Plane *p = transform_dat->plane;
VC2TransformContext *t = &transform_dat->t;
dwtcoef *buf = p->coef_buf;
const int idx = s->wavelet_idx;
const int skip = 1 + s->interlaced;
int x, y, level, offset;
ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
if (field == 1) {
offset = 0;
pix_stride <<= 1;
} else if (field == 2) {
offset = pix_stride;
pix_stride <<= 1;
} else {
offset = 0;
}
if (s->bpp == 1) {
const uint8_t *pix = (const uint8_t *)frame_data + offset;
for (y = 0; y < p->height*skip; y+=skip) {
for (x = 0; x < p->width; x++) {
buf[x] = pix[x] - s->diff_offset;
}
memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
buf += p->coef_stride;
pix += pix_stride;
}
} else {
const uint16_t *pix = (const uint16_t *)frame_data + offset;
for (y = 0; y < p->height*skip; y+=skip) {
for (x = 0; x < p->width; x++) {
buf[x] = pix[x] - s->diff_offset;
}
memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
buf += p->coef_stride;
pix += pix_stride;
}
}
memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef));
for (level = s->wavelet_depth-1; level >= 0; level--) {
const SubBand *b = &p->band[level][0];
t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
b->width, b->height);
}
return 0;
}
static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame,
const char *aux_data, const int header_size, int field)
{
int i, ret;
int64_t max_frame_bytes;
/* Threaded DWT transform */
for (i = 0; i < 3; i++) {
s->transform_args[i].ctx = s;
s->transform_args[i].field = field;
s->transform_args[i].plane = &s->plane[i];
s->transform_args[i].idata = frame->data[i];
s->transform_args[i].istride = frame->linesize[i];
}
s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
sizeof(TransformArgs));
/* Calculate per-slice quantizers and sizes */
max_frame_bytes = header_size + calc_slice_sizes(s);
if (field < 2) {
ret = ff_get_encode_buffer(s->avctx, avpkt,
max_frame_bytes << s->interlaced, 0);
if (ret) {
av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n");
return ret;
}
init_put_bits(&s->pb, avpkt->data, avpkt->size);
}
/* Sequence header */
encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
encode_seq_header(s);
/* Encoder version */
if (aux_data) {
encode_parse_info(s, DIRAC_PCODE_AUX);
ff_put_string(&s->pb, aux_data, 1);
}
/* Picture header */
encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
encode_picture_start(s);
/* Encode slices */
encode_slices(s);
/* End sequence */
encode_parse_info(s, DIRAC_PCODE_END_SEQ);
return 0;
}
static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet)
{
int ret = 0;
int slice_ceil, sig_size = 256;
VC2EncContext *s = avctx->priv_data;
const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT);
const int header_size = 100 + aux_data_size;
int64_t r_bitrate = avctx->bit_rate >> (s->interlaced);
s->avctx = avctx;
s->size_scaler = 2;
s->prefix_bytes = 0;
s->last_parse_code = 0;
s->next_parse_offset = 0;
/* Rate control */
s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
s->avctx->time_base.den) >> 3) - header_size;
s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y);
/* Find an appropriate size scaler */
while (sig_size > 255) {
int r_size = SSIZE_ROUND(s->slice_max_bytes);
if (r_size > slice_ceil) {
s->slice_max_bytes -= r_size - slice_ceil;
r_size = SSIZE_ROUND(s->slice_max_bytes);
}
sig_size = r_size/s->size_scaler; /* Signalled slize size */
s->size_scaler <<= 1;
}
s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f);
if (s->slice_min_bytes < 0)
return AVERROR(EINVAL);
ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced);
if (ret)
return ret;
if (s->interlaced) {
ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2);
if (ret)
return ret;
}
flush_put_bits(&s->pb);
av_shrink_packet(avpkt, put_bytes_output(&s->pb));
*got_packet = 1;
return 0;
}
static av_cold int vc2_encode_end(AVCodecContext *avctx)
{
int i;
VC2EncContext *s = avctx->priv_data;
av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg);
for (i = 0; i < 3; i++) {
ff_vc2enc_free_transforms(&s->transform_args[i].t);
av_freep(&s->plane[i].coef_buf);
}
av_freep(&s->slice_args);
return 0;
}
static av_cold int vc2_encode_init(AVCodecContext *avctx)
{
Plane *p;
SubBand *b;
int i, level, o, shift, ret;
const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
const int depth = fmt->comp[0].depth;
VC2EncContext *s = avctx->priv_data;
s->picture_number = 0;
/* Total allowed quantization range */
s->q_ceil = DIRAC_MAX_QUANT_INDEX;
s->ver.major = 2;
s->ver.minor = 0;
s->profile = 3;
s->level = 3;
s->base_vf = -1;
s->strict_compliance = 1;
s->q_avg = 0;
s->slice_max_bytes = 0;
s->slice_min_bytes = 0;
/* Mark unknown as progressive */
s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
(avctx->field_order == AV_FIELD_PROGRESSIVE));
for (i = 0; i < base_video_fmts_len; i++) {
const VC2BaseVideoFormat *fmt = &base_video_fmts[i];
if (avctx->pix_fmt != fmt->pix_fmt)
continue;
if (avctx->time_base.num != fmt->time_base.num)
continue;
if (avctx->time_base.den != fmt->time_base.den)
continue;
if (avctx->width != fmt->width)
continue;
if (avctx->height != fmt->height)
continue;
if (s->interlaced != fmt->interlaced)
continue;
s->base_vf = i;
s->level = base_video_fmts[i].level;
break;
}
if (s->interlaced)
av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
if ((s->slice_width & (s->slice_width - 1)) ||
(s->slice_height & (s->slice_height - 1))) {
av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
return AVERROR_UNKNOWN;
}
if ((s->slice_width > avctx->width) ||
(s->slice_height > avctx->height)) {
av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
return AVERROR_UNKNOWN;
}
if (s->base_vf <= 0) {
if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) {
s->strict_compliance = s->base_vf = 0;
av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n");
} else {
av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
"the specifications, decrease strictness to use it.\n");
return AVERROR_UNKNOWN;
}
} else {
av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n",
s->base_vf, base_video_fmts[s->base_vf].name);
}
/* Chroma subsampling */
ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
if (ret)
return ret;
/* Bit depth and color range index */
if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
s->bpp = 1;
s->bpp_idx = 1;
s->diff_offset = 128;
} else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
s->bpp = 1;
s->bpp_idx = 2;
s->diff_offset = 128;
} else if (depth == 10) {
s->bpp = 2;
s->bpp_idx = 3;
s->diff_offset = 512;
} else {
s->bpp = 2;
s->bpp_idx = 4;
s->diff_offset = 2048;
}
/* Planes initialization */
for (i = 0; i < 3; i++) {
int w, h;
p = &s->plane[i];
p->width = avctx->width >> (i ? s->chroma_x_shift : 0);
p->height = avctx->height >> (i ? s->chroma_y_shift : 0);
if (s->interlaced)
p->height >>= 1;
p->dwt_width = w = FFALIGN(p->width, (1 << s->wavelet_depth));
p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
p->coef_stride = FFALIGN(p->dwt_width, 32);
p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
if (!p->coef_buf)
return AVERROR(ENOMEM);
for (level = s->wavelet_depth-1; level >= 0; level--) {
w = w >> 1;
h = h >> 1;
for (o = 0; o < 4; o++) {
b = &p->band[level][o];
b->width = w;
b->height = h;
b->stride = p->coef_stride;
shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
b->buf = p->coef_buf + shift;
}
}
/* DWT init */
if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
s->plane[i].coef_stride,
s->plane[i].dwt_height,
s->slice_width, s->slice_height))
return AVERROR(ENOMEM);
}
/* Slices */
s->num_x = s->plane[0].dwt_width/s->slice_width;
s->num_y = s->plane[0].dwt_height/s->slice_height;
s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs));
if (!s->slice_args)
return AVERROR(ENOMEM);
for (i = 0; i < 116; i++) {
const uint64_t qf = ff_dirac_qscale_tab[i];
const uint32_t m = av_log2(qf);
const uint32_t t = (1ULL << (m + 32)) / qf;
const uint32_t r = (t*qf + qf) & UINT32_MAX;
if (!(qf & (qf - 1))) {
s->qmagic_lut[i][0] = 0xFFFFFFFF;
s->qmagic_lut[i][1] = 0xFFFFFFFF;
} else if (r <= 1 << m) {
s->qmagic_lut[i][0] = t + 1;
s->qmagic_lut[i][1] = 0;
} else {
s->qmagic_lut[i][0] = t;
s->qmagic_lut[i][1] = t;
}
}
return 0;
}
#define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption vc2enc_options[] = {
{"tolerance", "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"},
{"slice_width", "Slice width", offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, "slice_width"},
{"slice_height", "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, "slice_height"},
{"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"},
{"wavelet_type", "Transform type", offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"},
{"9_7", "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
{"5_3", "LeGall (5,3)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
{"haar", "Haar (with shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
{"haar_noshift", "Haar (without shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
{"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"},
{"default", "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
{"color", "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
{"flat", "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
{NULL}
};
static const AVClass vc2enc_class = {
.class_name = "SMPTE VC-2 encoder",
.category = AV_CLASS_CATEGORY_ENCODER,
.option = vc2enc_options,
.item_name = av_default_item_name,
.version = LIBAVUTIL_VERSION_INT
};
static const FFCodecDefault vc2enc_defaults[] = {
{ "b", "600000000" },
{ NULL },
};
static const enum AVPixelFormat allowed_pix_fmts[] = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_NONE
};
const FFCodec ff_vc2_encoder = {
.p.name = "vc2",
.p.long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-2"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DIRAC,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
.priv_data_size = sizeof(VC2EncContext),
.init = vc2_encode_init,
.close = vc2_encode_end,
FF_CODEC_ENCODE_CB(vc2_encode_frame),
.p.priv_class = &vc2enc_class,
.defaults = vc2enc_defaults,
.p.pix_fmts = allowed_pix_fmts
};