mirror of https://github.com/FFmpeg/FFmpeg.git
577 lines
24 KiB
577 lines
24 KiB
/* |
|
* AOM film grain synthesis |
|
* Copyright (c) 2023 Niklas Haas <ffmpeg@haasn.xyz> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/* |
|
* Copyright © 2018, Niklas Haas |
|
* Copyright © 2018, VideoLAN and dav1d authors |
|
* Copyright © 2018, Two Orioles, LLC |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright notice, this |
|
* list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#include "bit_depth_template.c" |
|
|
|
#undef entry |
|
#undef bitdepth |
|
#undef bitdepth_max |
|
#undef HBD_DECL |
|
#undef HBD_CALL |
|
#undef SCALING_SIZE |
|
|
|
#if BIT_DEPTH > 8 |
|
# define entry int16_t |
|
# define bitdepth_max ((1 << bitdepth) - 1) |
|
# define HBD_DECL , const int bitdepth |
|
# define HBD_CALL , bitdepth |
|
# define SCALING_SIZE 4096 |
|
#else |
|
# define entry int8_t |
|
# define bitdepth 8 |
|
# define bitdepth_max UINT8_MAX |
|
# define HBD_DECL |
|
# define HBD_CALL |
|
# define SCALING_SIZE 256 |
|
#endif |
|
|
|
static void FUNC(generate_grain_y_c)(entry buf[][GRAIN_WIDTH], |
|
const AVFilmGrainParams *const params |
|
HBD_DECL) |
|
{ |
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const int bitdepth_min_8 = bitdepth - 8; |
|
unsigned seed = params->seed; |
|
const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; |
|
const int grain_ctr = 128 << bitdepth_min_8; |
|
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; |
|
|
|
const int ar_pad = 3; |
|
const int ar_lag = data->ar_coeff_lag; |
|
|
|
for (int y = 0; y < GRAIN_HEIGHT; y++) { |
|
for (int x = 0; x < GRAIN_WIDTH; x++) { |
|
const int value = get_random_number(11, &seed); |
|
buf[y][x] = round2(gaussian_sequence[ value ], shift); |
|
} |
|
} |
|
|
|
for (int y = ar_pad; y < GRAIN_HEIGHT; y++) { |
|
for (int x = ar_pad; x < GRAIN_WIDTH - ar_pad; x++) { |
|
const int8_t *coeff = data->ar_coeffs_y; |
|
int sum = 0, grain; |
|
for (int dy = -ar_lag; dy <= 0; dy++) { |
|
for (int dx = -ar_lag; dx <= ar_lag; dx++) { |
|
if (!dx && !dy) |
|
break; |
|
sum += *(coeff++) * buf[y + dy][x + dx]; |
|
} |
|
} |
|
|
|
grain = buf[y][x] + round2(sum, data->ar_coeff_shift); |
|
buf[y][x] = av_clip(grain, grain_min, grain_max); |
|
} |
|
} |
|
} |
|
|
|
static void |
|
FUNC(generate_grain_uv_c)(entry buf[][GRAIN_WIDTH], |
|
const entry buf_y[][GRAIN_WIDTH], |
|
const AVFilmGrainParams *const params, const intptr_t uv, |
|
const int subx, const int suby HBD_DECL) |
|
{ |
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const int bitdepth_min_8 = bitdepth - 8; |
|
unsigned seed = params->seed ^ (uv ? 0x49d8 : 0xb524); |
|
const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; |
|
const int grain_ctr = 128 << bitdepth_min_8; |
|
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; |
|
|
|
const int chromaW = subx ? SUB_GRAIN_WIDTH : GRAIN_WIDTH; |
|
const int chromaH = suby ? SUB_GRAIN_HEIGHT : GRAIN_HEIGHT; |
|
|
|
const int ar_pad = 3; |
|
const int ar_lag = data->ar_coeff_lag; |
|
|
|
for (int y = 0; y < chromaH; y++) { |
|
for (int x = 0; x < chromaW; x++) { |
|
const int value = get_random_number(11, &seed); |
|
buf[y][x] = round2(gaussian_sequence[ value ], shift); |
|
} |
|
} |
|
|
|
for (int y = ar_pad; y < chromaH; y++) { |
|
for (int x = ar_pad; x < chromaW - ar_pad; x++) { |
|
const int8_t *coeff = data->ar_coeffs_uv[uv]; |
|
int sum = 0, grain; |
|
for (int dy = -ar_lag; dy <= 0; dy++) { |
|
for (int dx = -ar_lag; dx <= ar_lag; dx++) { |
|
// For the final (current) pixel, we need to add in the |
|
// contribution from the luma grain texture |
|
if (!dx && !dy) { |
|
const int lumaX = ((x - ar_pad) << subx) + ar_pad; |
|
const int lumaY = ((y - ar_pad) << suby) + ar_pad; |
|
int luma = 0; |
|
if (!data->num_y_points) |
|
break; |
|
for (int i = 0; i <= suby; i++) { |
|
for (int j = 0; j <= subx; j++) { |
|
luma += buf_y[lumaY + i][lumaX + j]; |
|
} |
|
} |
|
luma = round2(luma, subx + suby); |
|
sum += luma * (*coeff); |
|
break; |
|
} |
|
|
|
sum += *(coeff++) * buf[y + dy][x + dx]; |
|
} |
|
} |
|
|
|
grain = buf[y][x] + round2(sum, data->ar_coeff_shift); |
|
buf[y][x] = av_clip(grain, grain_min, grain_max); |
|
} |
|
} |
|
} |
|
|
|
// samples from the correct block of a grain LUT, while taking into account the |
|
// offsets provided by the offsets cache |
|
static inline entry FUNC(sample_lut)(const entry grain_lut[][GRAIN_WIDTH], |
|
const int offsets[2][2], |
|
const int subx, const int suby, |
|
const int bx, const int by, |
|
const int x, const int y) |
|
{ |
|
const int randval = offsets[bx][by]; |
|
const int offx = 3 + (2 >> subx) * (3 + (randval >> 4)); |
|
const int offy = 3 + (2 >> suby) * (3 + (randval & 0xF)); |
|
return grain_lut[offy + y + (FG_BLOCK_SIZE >> suby) * by] |
|
[offx + x + (FG_BLOCK_SIZE >> subx) * bx]; |
|
} |
|
|
|
static void FUNC(fgy_32x32xn_c)(pixel *const dst_row, const pixel *const src_row, |
|
const ptrdiff_t stride, |
|
const AVFilmGrainParams *const params, const size_t pw, |
|
const uint8_t scaling[SCALING_SIZE], |
|
const entry grain_lut[][GRAIN_WIDTH], |
|
const int bh, const int row_num HBD_DECL) |
|
{ |
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const int rows = 1 + (data->overlap_flag && row_num > 0); |
|
const int bitdepth_min_8 = bitdepth - 8; |
|
const int grain_ctr = 128 << bitdepth_min_8; |
|
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; |
|
unsigned seed[2]; |
|
int offsets[2 /* col offset */][2 /* row offset */]; |
|
|
|
int min_value, max_value; |
|
if (data->limit_output_range) { |
|
min_value = 16 << bitdepth_min_8; |
|
max_value = 235 << bitdepth_min_8; |
|
} else { |
|
min_value = 0; |
|
max_value = bitdepth_max; |
|
} |
|
|
|
// seed[0] contains the current row, seed[1] contains the previous |
|
for (int i = 0; i < rows; i++) { |
|
seed[i] = params->seed; |
|
seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; |
|
seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); |
|
} |
|
|
|
av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0); |
|
|
|
// process this row in FG_BLOCK_SIZE^2 blocks |
|
for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE) { |
|
const int bw = FFMIN(FG_BLOCK_SIZE, (int) pw - bx); |
|
const pixel *src; |
|
pixel *dst; |
|
int noise; |
|
|
|
// x/y block offsets to compensate for overlapped regions |
|
const int ystart = data->overlap_flag && row_num ? FFMIN(2, bh) : 0; |
|
const int xstart = data->overlap_flag && bx ? FFMIN(2, bw) : 0; |
|
|
|
static const int w[2][2] = { { 27, 17 }, { 17, 27 } }; |
|
|
|
if (data->overlap_flag && bx) { |
|
// shift previous offsets left |
|
for (int i = 0; i < rows; i++) |
|
offsets[1][i] = offsets[0][i]; |
|
} |
|
|
|
// update current offsets |
|
for (int i = 0; i < rows; i++) |
|
offsets[0][i] = get_random_number(8, &seed[i]); |
|
|
|
#define add_noise_y(x, y, grain) \ |
|
src = (const pixel*)((const char*)src_row + (y) * stride) + (x) + bx; \ |
|
dst = (pixel*)((char*)dst_row + (y) * stride) + (x) + bx; \ |
|
noise = round2(scaling[ *src ] * (grain), data->scaling_shift); \ |
|
*dst = av_clip(*src + noise, min_value, max_value); |
|
|
|
for (int y = ystart; y < bh; y++) { |
|
// Non-overlapped image region (straightforward) |
|
for (int x = xstart; x < bw; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); |
|
add_noise_y(x, y, grain); |
|
} |
|
|
|
// Special case for overlapped column |
|
for (int x = 0; x < xstart; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y); |
|
grain = round2(old * w[x][0] + grain * w[x][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_y(x, y, grain); |
|
} |
|
} |
|
|
|
for (int y = 0; y < ystart; y++) { |
|
// Special case for overlapped row (sans corner) |
|
for (int x = xstart; x < bw; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y); |
|
grain = round2(old * w[y][0] + grain * w[y][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_y(x, y, grain); |
|
} |
|
|
|
// Special case for doubly-overlapped corner |
|
for (int x = 0; x < xstart; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y); |
|
int top = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 1, x, y); |
|
|
|
// Blend the top pixel with the top left block |
|
top = round2(old * w[x][0] + top * w[x][1], 5); |
|
top = av_clip(top, grain_min, grain_max); |
|
|
|
// Blend the current pixel with the left block |
|
old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y); |
|
grain = round2(old * w[x][0] + grain * w[x][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
|
|
// Mix the row rows together and apply grain |
|
grain = round2(top * w[y][0] + grain * w[y][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_y(x, y, grain); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void |
|
FUNC(fguv_32x32xn_c)(pixel *const dst_row, const pixel *const src_row, |
|
const ptrdiff_t stride, const AVFilmGrainParams *const params, |
|
const size_t pw, const uint8_t scaling[SCALING_SIZE], |
|
const entry grain_lut[][GRAIN_WIDTH], const int bh, |
|
const int row_num, const pixel *const luma_row, |
|
const ptrdiff_t luma_stride, const int uv, const int is_id, |
|
const int sx, const int sy HBD_DECL) |
|
{ |
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const int rows = 1 + (data->overlap_flag && row_num > 0); |
|
const int bitdepth_min_8 = bitdepth - 8; |
|
const int grain_ctr = 128 << bitdepth_min_8; |
|
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; |
|
unsigned seed[2]; |
|
int offsets[2 /* col offset */][2 /* row offset */]; |
|
|
|
int min_value, max_value; |
|
if (data->limit_output_range) { |
|
min_value = 16 << bitdepth_min_8; |
|
max_value = (is_id ? 235 : 240) << bitdepth_min_8; |
|
} else { |
|
min_value = 0; |
|
max_value = bitdepth_max; |
|
} |
|
|
|
// seed[0] contains the current row, seed[1] contains the previous |
|
for (int i = 0; i < rows; i++) { |
|
seed[i] = params->seed; |
|
seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; |
|
seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); |
|
} |
|
|
|
av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0); |
|
|
|
// process this row in FG_BLOCK_SIZE^2 blocks (subsampled) |
|
for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE >> sx) { |
|
const int bw = FFMIN(FG_BLOCK_SIZE >> sx, (int)(pw - bx)); |
|
int val, lx, ly, noise; |
|
const pixel *src, *luma; |
|
pixel *dst, avg; |
|
|
|
// x/y block offsets to compensate for overlapped regions |
|
const int ystart = data->overlap_flag && row_num ? FFMIN(2 >> sy, bh) : 0; |
|
const int xstart = data->overlap_flag && bx ? FFMIN(2 >> sx, bw) : 0; |
|
|
|
static const int w[2 /* sub */][2 /* off */][2] = { |
|
{ { 27, 17 }, { 17, 27 } }, |
|
{ { 23, 22 } }, |
|
}; |
|
|
|
if (data->overlap_flag && bx) { |
|
// shift previous offsets left |
|
for (int i = 0; i < rows; i++) |
|
offsets[1][i] = offsets[0][i]; |
|
} |
|
|
|
// update current offsets |
|
for (int i = 0; i < rows; i++) |
|
offsets[0][i] = get_random_number(8, &seed[i]); |
|
|
|
#define add_noise_uv(x, y, grain) \ |
|
lx = (bx + x) << sx; \ |
|
ly = y << sy; \ |
|
luma = (const pixel*)((const char*)luma_row + ly * luma_stride) + lx;\ |
|
avg = luma[0]; \ |
|
if (sx) \ |
|
avg = (avg + luma[1] + 1) >> 1; \ |
|
src = (const pixel*)((const char *)src_row + (y) * stride) + bx + (x);\ |
|
dst = (pixel *) ((char *) dst_row + (y) * stride) + bx + (x); \ |
|
val = avg; \ |
|
if (!data->chroma_scaling_from_luma) { \ |
|
const int combined = avg * data->uv_mult_luma[uv] + \ |
|
*src * data->uv_mult[uv]; \ |
|
val = av_clip( (combined >> 6) + \ |
|
(data->uv_offset[uv] * (1 << bitdepth_min_8)), \ |
|
0, bitdepth_max ); \ |
|
} \ |
|
noise = round2(scaling[ val ] * (grain), data->scaling_shift); \ |
|
*dst = av_clip(*src + noise, min_value, max_value); |
|
|
|
for (int y = ystart; y < bh; y++) { |
|
// Non-overlapped image region (straightforward) |
|
for (int x = xstart; x < bw; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); |
|
add_noise_uv(x, y, grain); |
|
} |
|
|
|
// Special case for overlapped column |
|
for (int x = 0; x < xstart; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y); |
|
grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_uv(x, y, grain); |
|
} |
|
} |
|
|
|
for (int y = 0; y < ystart; y++) { |
|
// Special case for overlapped row (sans corner) |
|
for (int x = xstart; x < bw; x++) { |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y); |
|
grain = round2(old * w[sy][y][0] + grain * w[sy][y][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_uv(x, y, grain); |
|
} |
|
|
|
// Special case for doubly-overlapped corner |
|
for (int x = 0; x < xstart; x++) { |
|
int top = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y); |
|
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 1, x, y); |
|
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y); |
|
|
|
// Blend the top pixel with the top left block |
|
top = round2(old * w[sx][x][0] + top * w[sx][x][1], 5); |
|
top = av_clip(top, grain_min, grain_max); |
|
|
|
// Blend the current pixel with the left block |
|
old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y); |
|
grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
|
|
// Mix the row rows together and apply to image |
|
grain = round2(top * w[sy][y][0] + grain * w[sy][y][1], 5); |
|
grain = av_clip(grain, grain_min, grain_max); |
|
add_noise_uv(x, y, grain); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void FUNC(generate_scaling)(const uint8_t points[][2], const int num, |
|
uint8_t scaling[SCALING_SIZE] HBD_DECL) |
|
{ |
|
const int shift_x = bitdepth - 8; |
|
const int scaling_size = 1 << bitdepth; |
|
const int max_value = points[num - 1][0] << shift_x; |
|
av_assert0(scaling_size <= SCALING_SIZE); |
|
|
|
if (num == 0) { |
|
memset(scaling, 0, scaling_size); |
|
return; |
|
} |
|
|
|
// Fill up the preceding entries with the initial value |
|
memset(scaling, points[0][1], points[0][0] << shift_x); |
|
|
|
// Linearly interpolate the values in the middle |
|
for (int i = 0; i < num - 1; i++) { |
|
const int bx = points[i][0]; |
|
const int by = points[i][1]; |
|
const int ex = points[i+1][0]; |
|
const int ey = points[i+1][1]; |
|
const int dx = ex - bx; |
|
const int dy = ey - by; |
|
const int delta = dy * ((0x10000 + (dx >> 1)) / dx); |
|
av_assert1(dx > 0); |
|
for (int x = 0, d = 0x8000; x < dx; x++) { |
|
scaling[(bx + x) << shift_x] = by + (d >> 16); |
|
d += delta; |
|
} |
|
} |
|
|
|
// Fill up the remaining entries with the final value |
|
memset(&scaling[max_value], points[num - 1][1], scaling_size - max_value); |
|
|
|
#if BIT_DEPTH != 8 |
|
for (int i = 0; i < num - 1; i++) { |
|
const int pad = 1 << shift_x, rnd = pad >> 1; |
|
const int bx = points[i][0] << shift_x; |
|
const int ex = points[i+1][0] << shift_x; |
|
const int dx = ex - bx; |
|
for (int x = 0; x < dx; x += pad) { |
|
const int range = scaling[bx + x + pad] - scaling[bx + x]; |
|
for (int n = 1, r = rnd; n < pad; n++) { |
|
r += range; |
|
scaling[bx + x + n] = scaling[bx + x] + (r >> shift_x); |
|
} |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
static av_always_inline void |
|
FUNC(apply_grain_row)(AVFrame *out, const AVFrame *in, |
|
const int ss_x, const int ss_y, |
|
const uint8_t scaling[3][SCALING_SIZE], |
|
const entry grain_lut[3][GRAIN_HEIGHT+1][GRAIN_WIDTH], |
|
const AVFilmGrainParams *params, |
|
const int row HBD_DECL) |
|
{ |
|
// Synthesize grain for the affected planes |
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const int cpw = (out->width + ss_x) >> ss_x; |
|
const int is_id = out->colorspace == AVCOL_SPC_RGB; |
|
const int bh = (FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE) + ss_y) >> ss_y; |
|
const ptrdiff_t uv_off = row * FG_BLOCK_SIZE * out->linesize[1] >> ss_y; |
|
pixel *const luma_src = (pixel *) |
|
((char *) in->data[0] + row * FG_BLOCK_SIZE * in->linesize[0]); |
|
|
|
if (data->num_y_points) { |
|
const int bh = FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE); |
|
const ptrdiff_t off = row * FG_BLOCK_SIZE * out->linesize[0]; |
|
FUNC(fgy_32x32xn_c)((pixel *) ((char *) out->data[0] + off), luma_src, |
|
out->linesize[0], params, out->width, scaling[0], |
|
grain_lut[0], bh, row HBD_CALL); |
|
} |
|
|
|
if (!data->num_uv_points[0] && !data->num_uv_points[1] && |
|
!data->chroma_scaling_from_luma) |
|
{ |
|
return; |
|
} |
|
|
|
// extend padding pixels |
|
if (out->width & ss_x) { |
|
pixel *ptr = luma_src; |
|
for (int y = 0; y < bh; y++) { |
|
ptr[out->width] = ptr[out->width - 1]; |
|
ptr = (pixel *) ((char *) ptr + (in->linesize[0] << ss_y)); |
|
} |
|
} |
|
|
|
if (data->chroma_scaling_from_luma) { |
|
for (int pl = 0; pl < 2; pl++) |
|
FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off), |
|
(const pixel *) ((const char *) in->data[1 + pl] + uv_off), |
|
in->linesize[1], params, cpw, scaling[0], |
|
grain_lut[1 + pl], bh, row, luma_src, |
|
in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL); |
|
} else { |
|
for (int pl = 0; pl < 2; pl++) { |
|
if (data->num_uv_points[pl]) { |
|
FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off), |
|
(const pixel *) ((const char *) in->data[1 + pl] + uv_off), |
|
in->linesize[1], params, cpw, scaling[1 + pl], |
|
grain_lut[1 + pl], bh, row, luma_src, |
|
in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int FUNC(apply_film_grain)(AVFrame *out_frame, const AVFrame *in_frame, |
|
const AVFilmGrainParams *params HBD_DECL) |
|
{ |
|
entry grain_lut[3][GRAIN_HEIGHT + 1][GRAIN_WIDTH]; |
|
uint8_t scaling[3][SCALING_SIZE]; |
|
|
|
const AVFilmGrainAOMParams *const data = ¶ms->codec.aom; |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(out_frame->format); |
|
const int rows = AV_CEIL_RSHIFT(out_frame->height, 5); /* log2(FG_BLOCK_SIZE) */ |
|
const int subx = desc->log2_chroma_w, suby = desc->log2_chroma_h; |
|
|
|
// Generate grain LUTs as needed |
|
FUNC(generate_grain_y_c)(grain_lut[0], params HBD_CALL); |
|
if (data->num_uv_points[0] || data->chroma_scaling_from_luma) |
|
FUNC(generate_grain_uv_c)(grain_lut[1], grain_lut[0], params, 0, subx, suby HBD_CALL); |
|
if (data->num_uv_points[1] || data->chroma_scaling_from_luma) |
|
FUNC(generate_grain_uv_c)(grain_lut[2], grain_lut[0], params, 1, subx, suby HBD_CALL); |
|
|
|
// Generate scaling LUTs as needed |
|
if (data->num_y_points || data->chroma_scaling_from_luma) |
|
FUNC(generate_scaling)(data->y_points, data->num_y_points, scaling[0] HBD_CALL); |
|
if (data->num_uv_points[0]) |
|
FUNC(generate_scaling)(data->uv_points[0], data->num_uv_points[0], scaling[1] HBD_CALL); |
|
if (data->num_uv_points[1]) |
|
FUNC(generate_scaling)(data->uv_points[1], data->num_uv_points[1], scaling[2] HBD_CALL); |
|
|
|
for (int row = 0; row < rows; row++) { |
|
FUNC(apply_grain_row)(out_frame, in_frame, subx, suby, scaling, grain_lut, |
|
params, row HBD_CALL); |
|
} |
|
|
|
return 0; |
|
}
|
|
|