mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2482 lines
84 KiB
2482 lines
84 KiB
/* |
|
* The simplest AC-3 encoder |
|
* Copyright (c) 2000 Fabrice Bellard |
|
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> |
|
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* The simplest AC-3 encoder. |
|
*/ |
|
|
|
//#define ASSERT_LEVEL 2 |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/audioconvert.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/avstring.h" |
|
#include "libavutil/crc.h" |
|
#include "libavutil/opt.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "dsputil.h" |
|
#include "ac3dsp.h" |
|
#include "ac3.h" |
|
#include "audioconvert.h" |
|
#include "fft.h" |
|
#include "ac3enc.h" |
|
#include "eac3enc.h" |
|
|
|
typedef struct AC3Mant { |
|
int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4 |
|
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
|
} AC3Mant; |
|
|
|
#define CMIXLEV_NUM_OPTIONS 3 |
|
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB |
|
}; |
|
|
|
#define SURMIXLEV_NUM_OPTIONS 3 |
|
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO |
|
}; |
|
|
|
#define EXTMIXLEV_NUM_OPTIONS 8 |
|
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = { |
|
LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB, |
|
LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO |
|
}; |
|
|
|
|
|
/** |
|
* LUT for number of exponent groups. |
|
* exponent_group_tab[coupling][exponent strategy-1][number of coefficients] |
|
*/ |
|
static uint8_t exponent_group_tab[2][3][256]; |
|
|
|
|
|
/** |
|
* List of supported channel layouts. |
|
*/ |
|
const int64_t ff_ac3_channel_layouts[19] = { |
|
AV_CH_LAYOUT_MONO, |
|
AV_CH_LAYOUT_STEREO, |
|
AV_CH_LAYOUT_2_1, |
|
AV_CH_LAYOUT_SURROUND, |
|
AV_CH_LAYOUT_2_2, |
|
AV_CH_LAYOUT_QUAD, |
|
AV_CH_LAYOUT_4POINT0, |
|
AV_CH_LAYOUT_5POINT0, |
|
AV_CH_LAYOUT_5POINT0_BACK, |
|
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
|
AV_CH_LAYOUT_5POINT1, |
|
AV_CH_LAYOUT_5POINT1_BACK, |
|
0 |
|
}; |
|
|
|
|
|
/** |
|
* LUT to select the bandwidth code based on the bit rate, sample rate, and |
|
* number of full-bandwidth channels. |
|
* bandwidth_tab[fbw_channels-1][sample rate code][bit rate code] |
|
*/ |
|
static const uint8_t ac3_bandwidth_tab[5][3][19] = { |
|
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 |
|
|
|
{ { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } }, |
|
|
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } } |
|
}; |
|
|
|
|
|
/** |
|
* LUT to select the coupling start band based on the bit rate, sample rate, and |
|
* number of full-bandwidth channels. -1 = coupling off |
|
* ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code] |
|
* |
|
* TODO: more testing for optimal parameters. |
|
* multi-channel tests at 44.1kHz and 32kHz. |
|
*/ |
|
static const int8_t ac3_coupling_start_tab[6][3][19] = { |
|
// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 |
|
|
|
// 2/0 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/0 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 2/1 - untested |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/1 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 2/2 - untested |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
|
|
// 3/2 |
|
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, |
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, |
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, |
|
}; |
|
|
|
|
|
/** |
|
* Adjust the frame size to make the average bit rate match the target bit rate. |
|
* This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_adjust_frame_size(AC3EncodeContext *s) |
|
{ |
|
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) { |
|
s->bits_written -= s->bit_rate; |
|
s->samples_written -= s->sample_rate; |
|
} |
|
s->frame_size = s->frame_size_min + |
|
2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); |
|
s->bits_written += s->frame_size * 8; |
|
s->samples_written += AC3_BLOCK_SIZE * s->num_blocks; |
|
} |
|
|
|
|
|
/** |
|
* Set the initial coupling strategy parameters prior to coupling analysis. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int got_cpl_snr; |
|
int num_cpl_blocks; |
|
|
|
/* set coupling use flags for each block/channel */ |
|
/* TODO: turn coupling on/off and adjust start band based on bit usage */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->channel_in_cpl[ch] = s->cpl_on; |
|
} |
|
|
|
/* enable coupling for each block if at least 2 channels have coupling |
|
enabled for that block */ |
|
got_cpl_snr = 0; |
|
num_cpl_blocks = 0; |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
block->num_cpl_channels = 0; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->num_cpl_channels += block->channel_in_cpl[ch]; |
|
block->cpl_in_use = block->num_cpl_channels > 1; |
|
num_cpl_blocks += block->cpl_in_use; |
|
if (!block->cpl_in_use) { |
|
block->num_cpl_channels = 0; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->channel_in_cpl[ch] = 0; |
|
} |
|
|
|
block->new_cpl_strategy = !blk; |
|
if (blk) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) { |
|
block->new_cpl_strategy = 1; |
|
break; |
|
} |
|
} |
|
} |
|
block->new_cpl_leak = block->new_cpl_strategy; |
|
|
|
if (!blk || (block->cpl_in_use && !got_cpl_snr)) { |
|
block->new_snr_offsets = 1; |
|
if (block->cpl_in_use) |
|
got_cpl_snr = 1; |
|
} else { |
|
block->new_snr_offsets = 0; |
|
} |
|
} |
|
if (!num_cpl_blocks) |
|
s->cpl_on = 0; |
|
|
|
/* set bandwidth for each channel */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) |
|
block->end_freq[ch] = s->start_freq[CPL_CH]; |
|
else |
|
block->end_freq[ch] = s->bandwidth_code * 3 + 73; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply stereo rematrixing to coefficients based on rematrixing flags. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_apply_rematrixing(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
int start, end; |
|
uint8_t *flags; |
|
|
|
if (!s->rematrixing_enabled) |
|
return; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (block->new_rematrixing_strategy) |
|
flags = block->rematrixing_flags; |
|
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); |
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { |
|
if (flags[bnd]) { |
|
start = ff_ac3_rematrix_band_tab[bnd]; |
|
end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
for (i = start; i < end; i++) { |
|
int32_t lt = block->fixed_coef[1][i]; |
|
int32_t rt = block->fixed_coef[2][i]; |
|
block->fixed_coef[1][i] = (lt + rt) >> 1; |
|
block->fixed_coef[2][i] = (lt - rt) >> 1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Initialize exponent tables. |
|
*/ |
|
static av_cold void exponent_init(AC3EncodeContext *s) |
|
{ |
|
int expstr, i, grpsize; |
|
|
|
for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) { |
|
grpsize = 3 << expstr; |
|
for (i = 12; i < 256; i++) { |
|
exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize; |
|
exponent_group_tab[1][expstr][i] = (i ) / grpsize; |
|
} |
|
} |
|
/* LFE */ |
|
exponent_group_tab[0][0][7] = 2; |
|
|
|
if (CONFIG_EAC3_ENCODER && s->eac3) |
|
ff_eac3_exponent_init(); |
|
} |
|
|
|
|
|
/* |
|
* Extract exponents from the MDCT coefficients. |
|
*/ |
|
static void extract_exponents(AC3EncodeContext *s) |
|
{ |
|
int ch = !s->cpl_on; |
|
int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1); |
|
AC3Block *block = &s->blocks[0]; |
|
|
|
s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size); |
|
} |
|
|
|
|
|
/** |
|
* Exponent Difference Threshold. |
|
* New exponents are sent if their SAD exceed this number. |
|
*/ |
|
#define EXP_DIFF_THRESHOLD 500 |
|
|
|
/** |
|
* Table used to select exponent strategy based on exponent reuse block interval. |
|
*/ |
|
static const uint8_t exp_strategy_reuse_tab[4][6] = { |
|
{ EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, |
|
{ EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, |
|
{ EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, |
|
{ EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 } |
|
}; |
|
|
|
/* |
|
* Calculate exponent strategies for all channels. |
|
* Array arrangement is reversed to simplify the per-channel calculation. |
|
*/ |
|
static void compute_exp_strategy(AC3EncodeContext *s) |
|
{ |
|
int ch, blk, blk1; |
|
|
|
for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) { |
|
uint8_t *exp_strategy = s->exp_strategy[ch]; |
|
uint8_t *exp = s->blocks[0].exp[ch]; |
|
int exp_diff; |
|
|
|
/* estimate if the exponent variation & decide if they should be |
|
reused in the next frame */ |
|
exp_strategy[0] = EXP_NEW; |
|
exp += AC3_MAX_COEFS; |
|
for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) { |
|
if (ch == CPL_CH) { |
|
if (!s->blocks[blk-1].cpl_in_use) { |
|
exp_strategy[blk] = EXP_NEW; |
|
continue; |
|
} else if (!s->blocks[blk].cpl_in_use) { |
|
exp_strategy[blk] = EXP_REUSE; |
|
continue; |
|
} |
|
} else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) { |
|
exp_strategy[blk] = EXP_NEW; |
|
continue; |
|
} |
|
exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16); |
|
exp_strategy[blk] = EXP_REUSE; |
|
if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS)) |
|
exp_strategy[blk] = EXP_NEW; |
|
else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD) |
|
exp_strategy[blk] = EXP_NEW; |
|
} |
|
|
|
/* now select the encoding strategy type : if exponents are often |
|
recoded, we use a coarse encoding */ |
|
blk = 0; |
|
while (blk < s->num_blocks) { |
|
blk1 = blk + 1; |
|
while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) |
|
blk1++; |
|
exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1]; |
|
blk = blk1; |
|
} |
|
} |
|
if (s->lfe_on) { |
|
ch = s->lfe_channel; |
|
s->exp_strategy[ch][0] = EXP_D15; |
|
for (blk = 1; blk < s->num_blocks; blk++) |
|
s->exp_strategy[ch][blk] = EXP_REUSE; |
|
} |
|
|
|
/* for E-AC-3, determine frame exponent strategy */ |
|
if (CONFIG_EAC3_ENCODER && s->eac3) |
|
ff_eac3_get_frame_exp_strategy(s); |
|
} |
|
|
|
|
|
/** |
|
* Update the exponents so that they are the ones the decoder will decode. |
|
* |
|
* @param[in,out] exp array of exponents for 1 block in 1 channel |
|
* @param nb_exps number of exponents in active bandwidth |
|
* @param exp_strategy exponent strategy for the block |
|
* @param cpl indicates if the block is in the coupling channel |
|
*/ |
|
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, |
|
int cpl) |
|
{ |
|
int nb_groups, i, k; |
|
|
|
nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3; |
|
|
|
/* for each group, compute the minimum exponent */ |
|
switch(exp_strategy) { |
|
case EXP_D25: |
|
for (i = 1, k = 1-cpl; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
exp[i-cpl] = exp_min; |
|
k += 2; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = 1, k = 1-cpl; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
if (exp[k+2] < exp_min) |
|
exp_min = exp[k+2]; |
|
if (exp[k+3] < exp_min) |
|
exp_min = exp[k+3]; |
|
exp[i-cpl] = exp_min; |
|
k += 4; |
|
} |
|
break; |
|
} |
|
|
|
/* constraint for DC exponent */ |
|
if (!cpl && exp[0] > 15) |
|
exp[0] = 15; |
|
|
|
/* decrease the delta between each groups to within 2 so that they can be |
|
differentially encoded */ |
|
for (i = 1; i <= nb_groups; i++) |
|
exp[i] = FFMIN(exp[i], exp[i-1] + 2); |
|
i--; |
|
while (--i >= 0) |
|
exp[i] = FFMIN(exp[i], exp[i+1] + 2); |
|
|
|
if (cpl) |
|
exp[-1] = exp[0] & ~1; |
|
|
|
/* now we have the exponent values the decoder will see */ |
|
switch (exp_strategy) { |
|
case EXP_D25: |
|
for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) { |
|
uint8_t exp1 = exp[i-cpl]; |
|
exp[k--] = exp1; |
|
exp[k--] = exp1; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) { |
|
exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl]; |
|
k -= 4; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Encode exponents from original extracted form to what the decoder will see. |
|
* This copies and groups exponents based on exponent strategy and reduces |
|
* deltas between adjacent exponent groups so that they can be differentially |
|
* encoded. |
|
*/ |
|
static void encode_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, blk1, ch, cpl; |
|
uint8_t *exp, *exp_strategy; |
|
int nb_coefs, num_reuse_blocks; |
|
|
|
for (ch = !s->cpl_on; ch <= s->channels; ch++) { |
|
exp = s->blocks[0].exp[ch] + s->start_freq[ch]; |
|
exp_strategy = s->exp_strategy[ch]; |
|
|
|
cpl = (ch == CPL_CH); |
|
blk = 0; |
|
while (blk < s->num_blocks) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (cpl && !block->cpl_in_use) { |
|
exp += AC3_MAX_COEFS; |
|
blk++; |
|
continue; |
|
} |
|
nb_coefs = block->end_freq[ch] - s->start_freq[ch]; |
|
blk1 = blk + 1; |
|
|
|
/* count the number of EXP_REUSE blocks after the current block |
|
and set exponent reference block numbers */ |
|
s->exp_ref_block[ch][blk] = blk; |
|
while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) { |
|
s->exp_ref_block[ch][blk1] = blk; |
|
blk1++; |
|
} |
|
num_reuse_blocks = blk1 - blk - 1; |
|
|
|
/* for the EXP_REUSE case we select the min of the exponents */ |
|
s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks, |
|
AC3_MAX_COEFS); |
|
|
|
encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl); |
|
|
|
exp += AC3_MAX_COEFS * (num_reuse_blocks + 1); |
|
blk = blk1; |
|
} |
|
} |
|
|
|
/* reference block numbers have been changed, so reset ref_bap_set */ |
|
s->ref_bap_set = 0; |
|
} |
|
|
|
|
|
/* |
|
* Count exponent bits based on bandwidth, coupling, and exponent strategies. |
|
*/ |
|
static int count_exponent_bits(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int nb_groups, bit_count; |
|
|
|
bit_count = 0; |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
int exp_strategy = s->exp_strategy[ch][blk]; |
|
int cpl = (ch == CPL_CH); |
|
int nb_coefs = block->end_freq[ch] - s->start_freq[ch]; |
|
|
|
if (exp_strategy == EXP_REUSE) |
|
continue; |
|
|
|
nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs]; |
|
bit_count += 4 + (nb_groups * 7); |
|
} |
|
} |
|
|
|
return bit_count; |
|
} |
|
|
|
|
|
/** |
|
* Group exponents. |
|
* 3 delta-encoded exponents are in each 7-bit group. The number of groups |
|
* varies depending on exponent strategy and bandwidth. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_group_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, i, cpl; |
|
int group_size, nb_groups; |
|
uint8_t *p; |
|
int delta0, delta1, delta2; |
|
int exp0, exp1; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
int exp_strategy = s->exp_strategy[ch][blk]; |
|
if (exp_strategy == EXP_REUSE) |
|
continue; |
|
cpl = (ch == CPL_CH); |
|
group_size = exp_strategy + (exp_strategy == EXP_D45); |
|
nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]]; |
|
p = block->exp[ch] + s->start_freq[ch] - cpl; |
|
|
|
/* DC exponent */ |
|
exp1 = *p++; |
|
block->grouped_exp[ch][0] = exp1; |
|
|
|
/* remaining exponents are delta encoded */ |
|
for (i = 1; i <= nb_groups; i++) { |
|
/* merge three delta in one code */ |
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta0 = exp1 - exp0 + 2; |
|
av_assert2(delta0 >= 0 && delta0 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta1 = exp1 - exp0 + 2; |
|
av_assert2(delta1 >= 0 && delta1 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta2 = exp1 - exp0 + 2; |
|
av_assert2(delta2 >= 0 && delta2 <= 4); |
|
|
|
block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Calculate final exponents from the supplied MDCT coefficients and exponent shift. |
|
* Extract exponents from MDCT coefficients, calculate exponent strategies, |
|
* and encode final exponents. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_process_exponents(AC3EncodeContext *s) |
|
{ |
|
extract_exponents(s); |
|
|
|
compute_exp_strategy(s); |
|
|
|
encode_exponents(s); |
|
|
|
emms_c(); |
|
} |
|
|
|
|
|
/* |
|
* Count frame bits that are based solely on fixed parameters. |
|
* This only has to be run once when the encoder is initialized. |
|
*/ |
|
static void count_frame_bits_fixed(AC3EncodeContext *s) |
|
{ |
|
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
|
int blk; |
|
int frame_bits; |
|
|
|
/* assumptions: |
|
* no dynamic range codes |
|
* bit allocation parameters do not change between blocks |
|
* no delta bit allocation |
|
* no skipped data |
|
* no auxilliary data |
|
* no E-AC-3 metadata |
|
*/ |
|
|
|
/* header */ |
|
frame_bits = 16; /* sync info */ |
|
if (s->eac3) { |
|
/* bitstream info header */ |
|
frame_bits += 35; |
|
frame_bits += 1 + 1; |
|
if (s->num_blocks != 0x6) |
|
frame_bits++; |
|
frame_bits++; |
|
/* audio frame header */ |
|
if (s->num_blocks == 6) |
|
frame_bits += 2; |
|
frame_bits += 10; |
|
/* exponent strategy */ |
|
if (s->use_frame_exp_strategy) |
|
frame_bits += 5 * s->fbw_channels; |
|
else |
|
frame_bits += s->num_blocks * 2 * s->fbw_channels; |
|
if (s->lfe_on) |
|
frame_bits += s->num_blocks; |
|
/* converter exponent strategy */ |
|
if (s->num_blks_code != 0x3) |
|
frame_bits++; |
|
else |
|
frame_bits += s->fbw_channels * 5; |
|
/* snr offsets */ |
|
frame_bits += 10; |
|
/* block start info */ |
|
if (s->num_blocks != 1) |
|
frame_bits++; |
|
} else { |
|
frame_bits += 49; |
|
frame_bits += frame_bits_inc[s->channel_mode]; |
|
} |
|
|
|
/* audio blocks */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
if (!s->eac3) { |
|
/* block switch flags */ |
|
frame_bits += s->fbw_channels; |
|
|
|
/* dither flags */ |
|
frame_bits += s->fbw_channels; |
|
} |
|
|
|
/* dynamic range */ |
|
frame_bits++; |
|
|
|
/* spectral extension */ |
|
if (s->eac3) |
|
frame_bits++; |
|
|
|
if (!s->eac3) { |
|
/* exponent strategy */ |
|
frame_bits += 2 * s->fbw_channels; |
|
if (s->lfe_on) |
|
frame_bits++; |
|
|
|
/* bit allocation params */ |
|
frame_bits++; |
|
if (!blk) |
|
frame_bits += 2 + 2 + 2 + 2 + 3; |
|
} |
|
|
|
/* converter snr offset */ |
|
if (s->eac3) |
|
frame_bits++; |
|
|
|
if (!s->eac3) { |
|
/* delta bit allocation */ |
|
frame_bits++; |
|
|
|
/* skipped data */ |
|
frame_bits++; |
|
} |
|
} |
|
|
|
/* auxiliary data */ |
|
frame_bits++; |
|
|
|
/* CRC */ |
|
frame_bits += 1 + 16; |
|
|
|
s->frame_bits_fixed = frame_bits; |
|
} |
|
|
|
|
|
/* |
|
* Initialize bit allocation. |
|
* Set default parameter codes and calculate parameter values. |
|
*/ |
|
static void bit_alloc_init(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
|
|
/* init default parameters */ |
|
s->slow_decay_code = 2; |
|
s->fast_decay_code = 1; |
|
s->slow_gain_code = 1; |
|
s->db_per_bit_code = s->eac3 ? 2 : 3; |
|
s->floor_code = 7; |
|
for (ch = 0; ch <= s->channels; ch++) |
|
s->fast_gain_code[ch] = 4; |
|
|
|
/* initial snr offset */ |
|
s->coarse_snr_offset = 40; |
|
|
|
/* compute real values */ |
|
/* currently none of these values change during encoding, so we can just |
|
set them once at initialization */ |
|
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
|
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
|
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
|
s->bit_alloc.cpl_fast_leak = 0; |
|
s->bit_alloc.cpl_slow_leak = 0; |
|
|
|
count_frame_bits_fixed(s); |
|
} |
|
|
|
|
|
/* |
|
* Count the bits used to encode the frame, minus exponents and mantissas. |
|
* Bits based on fixed parameters have already been counted, so now we just |
|
* have to add the bits based on parameters that change during encoding. |
|
*/ |
|
static void count_frame_bits(AC3EncodeContext *s) |
|
{ |
|
AC3EncOptions *opt = &s->options; |
|
int blk, ch; |
|
int frame_bits = 0; |
|
|
|
/* header */ |
|
if (s->eac3) { |
|
if (opt->eac3_mixing_metadata) { |
|
if (s->channel_mode > AC3_CHMODE_STEREO) |
|
frame_bits += 2; |
|
if (s->has_center) |
|
frame_bits += 6; |
|
if (s->has_surround) |
|
frame_bits += 6; |
|
frame_bits += s->lfe_on; |
|
frame_bits += 1 + 1 + 2; |
|
if (s->channel_mode < AC3_CHMODE_STEREO) |
|
frame_bits++; |
|
frame_bits++; |
|
} |
|
if (opt->eac3_info_metadata) { |
|
frame_bits += 3 + 1 + 1; |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
frame_bits += 2 + 2; |
|
if (s->channel_mode >= AC3_CHMODE_2F2R) |
|
frame_bits += 2; |
|
frame_bits++; |
|
if (opt->audio_production_info) |
|
frame_bits += 5 + 2 + 1; |
|
frame_bits++; |
|
} |
|
/* coupling */ |
|
if (s->channel_mode > AC3_CHMODE_MONO) { |
|
frame_bits++; |
|
for (blk = 1; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
frame_bits++; |
|
if (block->new_cpl_strategy) |
|
frame_bits++; |
|
} |
|
} |
|
/* coupling exponent strategy */ |
|
if (s->cpl_on) { |
|
if (s->use_frame_exp_strategy) { |
|
frame_bits += 5 * s->cpl_on; |
|
} else { |
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
frame_bits += 2 * s->blocks[blk].cpl_in_use; |
|
} |
|
} |
|
} else { |
|
if (opt->audio_production_info) |
|
frame_bits += 7; |
|
if (s->bitstream_id == 6) { |
|
if (opt->extended_bsi_1) |
|
frame_bits += 14; |
|
if (opt->extended_bsi_2) |
|
frame_bits += 14; |
|
} |
|
} |
|
|
|
/* audio blocks */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
/* coupling strategy */ |
|
if (!s->eac3) |
|
frame_bits++; |
|
if (block->new_cpl_strategy) { |
|
if (!s->eac3) |
|
frame_bits++; |
|
if (block->cpl_in_use) { |
|
if (s->eac3) |
|
frame_bits++; |
|
if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) |
|
frame_bits += s->fbw_channels; |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
frame_bits++; |
|
frame_bits += 4 + 4; |
|
if (s->eac3) |
|
frame_bits++; |
|
else |
|
frame_bits += s->num_cpl_subbands - 1; |
|
} |
|
} |
|
|
|
/* coupling coordinates */ |
|
if (block->cpl_in_use) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) { |
|
if (!s->eac3 || block->new_cpl_coords[ch] != 2) |
|
frame_bits++; |
|
if (block->new_cpl_coords[ch]) { |
|
frame_bits += 2; |
|
frame_bits += (4 + 4) * s->num_cpl_bands; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
if (!s->eac3 || blk > 0) |
|
frame_bits++; |
|
if (s->blocks[blk].new_rematrixing_strategy) |
|
frame_bits += block->num_rematrixing_bands; |
|
} |
|
|
|
/* bandwidth codes & gain range */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
if (!block->channel_in_cpl[ch]) |
|
frame_bits += 6; |
|
frame_bits += 2; |
|
} |
|
} |
|
|
|
/* coupling exponent strategy */ |
|
if (!s->eac3 && block->cpl_in_use) |
|
frame_bits += 2; |
|
|
|
/* snr offsets and fast gain codes */ |
|
if (!s->eac3) { |
|
frame_bits++; |
|
if (block->new_snr_offsets) |
|
frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3); |
|
} |
|
|
|
/* coupling leak info */ |
|
if (block->cpl_in_use) { |
|
if (!s->eac3 || block->new_cpl_leak != 2) |
|
frame_bits++; |
|
if (block->new_cpl_leak) |
|
frame_bits += 3 + 3; |
|
} |
|
} |
|
|
|
s->frame_bits = s->frame_bits_fixed + frame_bits; |
|
} |
|
|
|
|
|
/* |
|
* Calculate masking curve based on the final exponents. |
|
* Also calculate the power spectral densities to use in future calculations. |
|
*/ |
|
static void bit_alloc_masking(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
/* We only need psd and mask for calculating bap. |
|
Since we currently do not calculate bap when exponent |
|
strategy is EXP_REUSE we do not need to calculate psd or mask. */ |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch], |
|
block->end_freq[ch], block->psd[ch], |
|
block->band_psd[ch]); |
|
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch], |
|
s->start_freq[ch], block->end_freq[ch], |
|
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
|
ch == s->lfe_channel, |
|
DBA_NONE, 0, NULL, NULL, NULL, |
|
block->mask[ch]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Ensure that bap for each block and channel point to the current bap_buffer. |
|
* They may have been switched during the bit allocation search. |
|
*/ |
|
static void reset_block_bap(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
uint8_t *ref_bap; |
|
|
|
if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set) |
|
return; |
|
|
|
ref_bap = s->bap_buffer; |
|
for (ch = 0; ch <= s->channels; ch++) { |
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk]; |
|
ref_bap += AC3_MAX_COEFS * s->num_blocks; |
|
} |
|
s->ref_bap_set = 1; |
|
} |
|
|
|
|
|
/** |
|
* Initialize mantissa counts. |
|
* These are set so that they are padded to the next whole group size when bits |
|
* are counted in compute_mantissa_size. |
|
* |
|
* @param[in,out] mant_cnt running counts for each bap value for each block |
|
*/ |
|
static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16]) |
|
{ |
|
int blk; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk])); |
|
mant_cnt[blk][1] = mant_cnt[blk][2] = 2; |
|
mant_cnt[blk][4] = 1; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Update mantissa bit counts for all blocks in 1 channel in a given bandwidth |
|
* range. |
|
* |
|
* @param s AC-3 encoder private context |
|
* @param ch channel index |
|
* @param[in,out] mant_cnt running counts for each bap value for each block |
|
* @param start starting coefficient bin |
|
* @param end ending coefficient bin |
|
*/ |
|
static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch, |
|
uint16_t mant_cnt[AC3_MAX_BLOCKS][16], |
|
int start, int end) |
|
{ |
|
int blk; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (ch == CPL_CH && !block->cpl_in_use) |
|
continue; |
|
s->ac3dsp.update_bap_counts(mant_cnt[blk], |
|
s->ref_bap[ch][blk] + start, |
|
FFMIN(end, block->end_freq[ch]) - start); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Count the number of mantissa bits in the frame based on the bap values. |
|
*/ |
|
static int count_mantissa_bits(AC3EncodeContext *s) |
|
{ |
|
int ch, max_end_freq; |
|
LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]); |
|
|
|
count_mantissa_bits_init(mant_cnt); |
|
|
|
max_end_freq = s->bandwidth_code * 3 + 73; |
|
for (ch = !s->cpl_enabled; ch <= s->channels; ch++) |
|
count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch], |
|
max_end_freq); |
|
|
|
return s->ac3dsp.compute_mantissa_size(mant_cnt); |
|
} |
|
|
|
|
|
/** |
|
* Run the bit allocation with a given SNR offset. |
|
* This calculates the bit allocation pointers that will be used to determine |
|
* the quantization of each mantissa. |
|
* |
|
* @param s AC-3 encoder private context |
|
* @param snr_offset SNR offset, 0 to 1023 |
|
* @return the number of bits needed for mantissas if the given SNR offset is |
|
* is used. |
|
*/ |
|
static int bit_alloc(AC3EncodeContext *s, int snr_offset) |
|
{ |
|
int blk, ch; |
|
|
|
snr_offset = (snr_offset - 240) << 2; |
|
|
|
reset_block_bap(s); |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
/* Currently the only bit allocation parameters which vary across |
|
blocks within a frame are the exponent values. We can take |
|
advantage of that by reusing the bit allocation pointers |
|
whenever we reuse exponents. */ |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch], |
|
s->start_freq[ch], block->end_freq[ch], |
|
snr_offset, s->bit_alloc.floor, |
|
ff_ac3_bap_tab, s->ref_bap[ch][blk]); |
|
} |
|
} |
|
} |
|
return count_mantissa_bits(s); |
|
} |
|
|
|
|
|
/* |
|
* Constant bitrate bit allocation search. |
|
* Find the largest SNR offset that will allow data to fit in the frame. |
|
*/ |
|
static int cbr_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
int bits_left; |
|
int snr_offset, snr_incr; |
|
|
|
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits); |
|
if (bits_left < 0) |
|
return AVERROR(EINVAL); |
|
|
|
snr_offset = s->coarse_snr_offset << 4; |
|
|
|
/* if previous frame SNR offset was 1023, check if current frame can also |
|
use SNR offset of 1023. if so, skip the search. */ |
|
if ((snr_offset | s->fine_snr_offset[1]) == 1023) { |
|
if (bit_alloc(s, 1023) <= bits_left) |
|
return 0; |
|
} |
|
|
|
while (snr_offset >= 0 && |
|
bit_alloc(s, snr_offset) > bits_left) { |
|
snr_offset -= 64; |
|
} |
|
if (snr_offset < 0) |
|
return AVERROR(EINVAL); |
|
|
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) { |
|
while (snr_offset + snr_incr <= 1023 && |
|
bit_alloc(s, snr_offset + snr_incr) <= bits_left) { |
|
snr_offset += snr_incr; |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
} |
|
} |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
reset_block_bap(s); |
|
|
|
s->coarse_snr_offset = snr_offset >> 4; |
|
for (ch = !s->cpl_on; ch <= s->channels; ch++) |
|
s->fine_snr_offset[ch] = snr_offset & 0xF; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/* |
|
* Perform bit allocation search. |
|
* Finds the SNR offset value that maximizes quality and fits in the specified |
|
* frame size. Output is the SNR offset and a set of bit allocation pointers |
|
* used to quantize the mantissas. |
|
*/ |
|
int ff_ac3_compute_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
count_frame_bits(s); |
|
|
|
s->exponent_bits = count_exponent_bits(s); |
|
|
|
bit_alloc_masking(s); |
|
|
|
return cbr_bit_allocation(s); |
|
} |
|
|
|
|
|
/** |
|
* Symmetric quantization on 'levels' levels. |
|
* |
|
* @param c unquantized coefficient |
|
* @param e exponent |
|
* @param levels number of quantization levels |
|
* @return quantized coefficient |
|
*/ |
|
static inline int sym_quant(int c, int e, int levels) |
|
{ |
|
int v = (((levels * c) >> (24 - e)) + levels) >> 1; |
|
av_assert2(v >= 0 && v < levels); |
|
return v; |
|
} |
|
|
|
|
|
/** |
|
* Asymmetric quantization on 2^qbits levels. |
|
* |
|
* @param c unquantized coefficient |
|
* @param e exponent |
|
* @param qbits number of quantization bits |
|
* @return quantized coefficient |
|
*/ |
|
static inline int asym_quant(int c, int e, int qbits) |
|
{ |
|
int m; |
|
|
|
c = (((c << e) >> (24 - qbits)) + 1) >> 1; |
|
m = (1 << (qbits-1)); |
|
if (c >= m) |
|
c = m - 1; |
|
av_assert2(c >= -m); |
|
return c; |
|
} |
|
|
|
|
|
/** |
|
* Quantize a set of mantissas for a single channel in a single block. |
|
* |
|
* @param s Mantissa count context |
|
* @param fixed_coef unquantized fixed-point coefficients |
|
* @param exp exponents |
|
* @param bap bit allocation pointer indices |
|
* @param[out] qmant quantized coefficients |
|
* @param start_freq starting coefficient bin |
|
* @param end_freq ending coefficient bin |
|
*/ |
|
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, |
|
uint8_t *exp, uint8_t *bap, |
|
int16_t *qmant, int start_freq, |
|
int end_freq) |
|
{ |
|
int i; |
|
|
|
for (i = start_freq; i < end_freq; i++) { |
|
int v; |
|
int c = fixed_coef[i]; |
|
int e = exp[i]; |
|
int b = bap[i]; |
|
switch (b) { |
|
case 0: |
|
v = 0; |
|
break; |
|
case 1: |
|
v = sym_quant(c, e, 3); |
|
switch (s->mant1_cnt) { |
|
case 0: |
|
s->qmant1_ptr = &qmant[i]; |
|
v = 9 * v; |
|
s->mant1_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant1_ptr += 3 * v; |
|
s->mant1_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant1_ptr += v; |
|
s->mant1_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 2: |
|
v = sym_quant(c, e, 5); |
|
switch (s->mant2_cnt) { |
|
case 0: |
|
s->qmant2_ptr = &qmant[i]; |
|
v = 25 * v; |
|
s->mant2_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant2_ptr += 5 * v; |
|
s->mant2_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant2_ptr += v; |
|
s->mant2_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 3: |
|
v = sym_quant(c, e, 7); |
|
break; |
|
case 4: |
|
v = sym_quant(c, e, 11); |
|
switch (s->mant4_cnt) { |
|
case 0: |
|
s->qmant4_ptr = &qmant[i]; |
|
v = 11 * v; |
|
s->mant4_cnt = 1; |
|
break; |
|
default: |
|
*s->qmant4_ptr += v; |
|
s->mant4_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 5: |
|
v = sym_quant(c, e, 15); |
|
break; |
|
case 14: |
|
v = asym_quant(c, e, 14); |
|
break; |
|
case 15: |
|
v = asym_quant(c, e, 16); |
|
break; |
|
default: |
|
v = asym_quant(c, e, b - 1); |
|
break; |
|
} |
|
qmant[i] = v; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Quantize mantissas using coefficients, exponents, and bit allocation pointers. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
void ff_ac3_quantize_mantissas(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, ch0=0, got_cpl; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
AC3Mant m = { 0 }; |
|
|
|
got_cpl = !block->cpl_in_use; |
|
for (ch = 1; ch <= s->channels; ch++) { |
|
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { |
|
ch0 = ch - 1; |
|
ch = CPL_CH; |
|
got_cpl = 1; |
|
} |
|
quantize_mantissas_blk_ch(&m, block->fixed_coef[ch], |
|
s->blocks[s->exp_ref_block[ch][blk]].exp[ch], |
|
s->ref_bap[ch][blk], block->qmant[ch], |
|
s->start_freq[ch], block->end_freq[ch]); |
|
if (ch == CPL_CH) |
|
ch = ch0; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Write the AC-3 frame header to the output bitstream. |
|
*/ |
|
static void ac3_output_frame_header(AC3EncodeContext *s) |
|
{ |
|
AC3EncOptions *opt = &s->options; |
|
|
|
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
|
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
|
put_bits(&s->pb, 2, s->bit_alloc.sr_code); |
|
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
|
put_bits(&s->pb, 5, s->bitstream_id); |
|
put_bits(&s->pb, 3, s->bitstream_mode); |
|
put_bits(&s->pb, 3, s->channel_mode); |
|
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
|
put_bits(&s->pb, 2, s->center_mix_level); |
|
if (s->channel_mode & 0x04) |
|
put_bits(&s->pb, 2, s->surround_mix_level); |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
put_bits(&s->pb, 2, opt->dolby_surround_mode); |
|
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
|
put_bits(&s->pb, 5, -opt->dialogue_level); |
|
put_bits(&s->pb, 1, 0); /* no compression control word */ |
|
put_bits(&s->pb, 1, 0); /* no lang code */ |
|
put_bits(&s->pb, 1, opt->audio_production_info); |
|
if (opt->audio_production_info) { |
|
put_bits(&s->pb, 5, opt->mixing_level - 80); |
|
put_bits(&s->pb, 2, opt->room_type); |
|
} |
|
put_bits(&s->pb, 1, opt->copyright); |
|
put_bits(&s->pb, 1, opt->original); |
|
if (s->bitstream_id == 6) { |
|
/* alternate bit stream syntax */ |
|
put_bits(&s->pb, 1, opt->extended_bsi_1); |
|
if (opt->extended_bsi_1) { |
|
put_bits(&s->pb, 2, opt->preferred_stereo_downmix); |
|
put_bits(&s->pb, 3, s->ltrt_center_mix_level); |
|
put_bits(&s->pb, 3, s->ltrt_surround_mix_level); |
|
put_bits(&s->pb, 3, s->loro_center_mix_level); |
|
put_bits(&s->pb, 3, s->loro_surround_mix_level); |
|
} |
|
put_bits(&s->pb, 1, opt->extended_bsi_2); |
|
if (opt->extended_bsi_2) { |
|
put_bits(&s->pb, 2, opt->dolby_surround_ex_mode); |
|
put_bits(&s->pb, 2, opt->dolby_headphone_mode); |
|
put_bits(&s->pb, 1, opt->ad_converter_type); |
|
put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */ |
|
} |
|
} else { |
|
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
|
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
|
} |
|
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
|
} |
|
|
|
|
|
/* |
|
* Write one audio block to the output bitstream. |
|
*/ |
|
static void output_audio_block(AC3EncodeContext *s, int blk) |
|
{ |
|
int ch, i, baie, bnd, got_cpl; |
|
int av_uninit(ch0); |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
/* block switching */ |
|
if (!s->eac3) { |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 0); |
|
} |
|
|
|
/* dither flags */ |
|
if (!s->eac3) { |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 1); |
|
} |
|
|
|
/* dynamic range codes */ |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* spectral extension */ |
|
if (s->eac3) |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* channel coupling */ |
|
if (!s->eac3) |
|
put_bits(&s->pb, 1, block->new_cpl_strategy); |
|
if (block->new_cpl_strategy) { |
|
if (!s->eac3) |
|
put_bits(&s->pb, 1, block->cpl_in_use); |
|
if (block->cpl_in_use) { |
|
int start_sub, end_sub; |
|
if (s->eac3) |
|
put_bits(&s->pb, 1, 0); /* enhanced coupling */ |
|
if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, block->channel_in_cpl[ch]); |
|
} |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
put_bits(&s->pb, 1, 0); /* phase flags in use */ |
|
start_sub = (s->start_freq[CPL_CH] - 37) / 12; |
|
end_sub = (s->cpl_end_freq - 37) / 12; |
|
put_bits(&s->pb, 4, start_sub); |
|
put_bits(&s->pb, 4, end_sub - 3); |
|
/* coupling band structure */ |
|
if (s->eac3) { |
|
put_bits(&s->pb, 1, 0); /* use default */ |
|
} else { |
|
for (bnd = start_sub+1; bnd < end_sub; bnd++) |
|
put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]); |
|
} |
|
} |
|
} |
|
|
|
/* coupling coordinates */ |
|
if (block->cpl_in_use) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (block->channel_in_cpl[ch]) { |
|
if (!s->eac3 || block->new_cpl_coords[ch] != 2) |
|
put_bits(&s->pb, 1, block->new_cpl_coords[ch]); |
|
if (block->new_cpl_coords[ch]) { |
|
put_bits(&s->pb, 2, block->cpl_master_exp[ch]); |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]); |
|
put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
if (!s->eac3 || blk > 0) |
|
put_bits(&s->pb, 1, block->new_rematrixing_strategy); |
|
if (block->new_rematrixing_strategy) { |
|
/* rematrixing flags */ |
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) |
|
put_bits(&s->pb, 1, block->rematrixing_flags[bnd]); |
|
} |
|
} |
|
|
|
/* exponent strategy */ |
|
if (!s->eac3) { |
|
for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++) |
|
put_bits(&s->pb, 2, s->exp_strategy[ch][blk]); |
|
if (s->lfe_on) |
|
put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]); |
|
} |
|
|
|
/* bandwidth */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch]) |
|
put_bits(&s->pb, 6, s->bandwidth_code); |
|
} |
|
|
|
/* exponents */ |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
int nb_groups; |
|
int cpl = (ch == CPL_CH); |
|
|
|
if (s->exp_strategy[ch][blk] == EXP_REUSE) |
|
continue; |
|
|
|
/* DC exponent */ |
|
put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl); |
|
|
|
/* exponent groups */ |
|
nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]]; |
|
for (i = 1; i <= nb_groups; i++) |
|
put_bits(&s->pb, 7, block->grouped_exp[ch][i]); |
|
|
|
/* gain range info */ |
|
if (ch != s->lfe_channel && !cpl) |
|
put_bits(&s->pb, 2, 0); |
|
} |
|
|
|
/* bit allocation info */ |
|
if (!s->eac3) { |
|
baie = (blk == 0); |
|
put_bits(&s->pb, 1, baie); |
|
if (baie) { |
|
put_bits(&s->pb, 2, s->slow_decay_code); |
|
put_bits(&s->pb, 2, s->fast_decay_code); |
|
put_bits(&s->pb, 2, s->slow_gain_code); |
|
put_bits(&s->pb, 2, s->db_per_bit_code); |
|
put_bits(&s->pb, 3, s->floor_code); |
|
} |
|
} |
|
|
|
/* snr offset */ |
|
if (!s->eac3) { |
|
put_bits(&s->pb, 1, block->new_snr_offsets); |
|
if (block->new_snr_offsets) { |
|
put_bits(&s->pb, 6, s->coarse_snr_offset); |
|
for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { |
|
put_bits(&s->pb, 4, s->fine_snr_offset[ch]); |
|
put_bits(&s->pb, 3, s->fast_gain_code[ch]); |
|
} |
|
} |
|
} else { |
|
put_bits(&s->pb, 1, 0); /* no converter snr offset */ |
|
} |
|
|
|
/* coupling leak */ |
|
if (block->cpl_in_use) { |
|
if (!s->eac3 || block->new_cpl_leak != 2) |
|
put_bits(&s->pb, 1, block->new_cpl_leak); |
|
if (block->new_cpl_leak) { |
|
put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak); |
|
put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak); |
|
} |
|
} |
|
|
|
if (!s->eac3) { |
|
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
|
put_bits(&s->pb, 1, 0); /* no data to skip */ |
|
} |
|
|
|
/* mantissas */ |
|
got_cpl = !block->cpl_in_use; |
|
for (ch = 1; ch <= s->channels; ch++) { |
|
int b, q; |
|
|
|
if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { |
|
ch0 = ch - 1; |
|
ch = CPL_CH; |
|
got_cpl = 1; |
|
} |
|
for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) { |
|
q = block->qmant[ch][i]; |
|
b = s->ref_bap[ch][blk][i]; |
|
switch (b) { |
|
case 0: break; |
|
case 1: if (q != 128) put_bits (&s->pb, 5, q); break; |
|
case 2: if (q != 128) put_bits (&s->pb, 7, q); break; |
|
case 3: put_sbits(&s->pb, 3, q); break; |
|
case 4: if (q != 128) put_bits (&s->pb, 7, q); break; |
|
case 14: put_sbits(&s->pb, 14, q); break; |
|
case 15: put_sbits(&s->pb, 16, q); break; |
|
default: put_sbits(&s->pb, b-1, q); break; |
|
} |
|
} |
|
if (ch == CPL_CH) |
|
ch = ch0; |
|
} |
|
} |
|
|
|
|
|
/** CRC-16 Polynomial */ |
|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
|
|
|
|
|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
|
{ |
|
unsigned int c; |
|
|
|
c = 0; |
|
while (a) { |
|
if (a & 1) |
|
c ^= b; |
|
a = a >> 1; |
|
b = b << 1; |
|
if (b & (1 << 16)) |
|
b ^= poly; |
|
} |
|
return c; |
|
} |
|
|
|
|
|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
|
{ |
|
unsigned int r; |
|
r = 1; |
|
while (n) { |
|
if (n & 1) |
|
r = mul_poly(r, a, poly); |
|
a = mul_poly(a, a, poly); |
|
n >>= 1; |
|
} |
|
return r; |
|
} |
|
|
|
|
|
/* |
|
* Fill the end of the frame with 0's and compute the two CRCs. |
|
*/ |
|
static void output_frame_end(AC3EncodeContext *s) |
|
{ |
|
const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI); |
|
int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv; |
|
uint8_t *frame; |
|
|
|
frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1; |
|
|
|
/* pad the remainder of the frame with zeros */ |
|
av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18); |
|
flush_put_bits(&s->pb); |
|
frame = s->pb.buf; |
|
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2; |
|
av_assert2(pad_bytes >= 0); |
|
if (pad_bytes > 0) |
|
memset(put_bits_ptr(&s->pb), 0, pad_bytes); |
|
|
|
if (s->eac3) { |
|
/* compute crc2 */ |
|
crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5); |
|
} else { |
|
/* compute crc1 */ |
|
/* this is not so easy because it is at the beginning of the data... */ |
|
crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4)); |
|
crc_inv = s->crc_inv[s->frame_size > s->frame_size_min]; |
|
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
|
AV_WB16(frame + 2, crc1); |
|
|
|
/* compute crc2 */ |
|
crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58, |
|
s->frame_size - frame_size_58 - 3); |
|
} |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
/* ensure crc2 does not match sync word by flipping crcrsv bit if needed */ |
|
if (crc2 == 0x770B) { |
|
frame[s->frame_size - 3] ^= 0x1; |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
} |
|
crc2 = av_bswap16(crc2); |
|
AV_WB16(frame + s->frame_size - 2, crc2); |
|
} |
|
|
|
|
|
/** |
|
* Write the frame to the output bitstream. |
|
* |
|
* @param s AC-3 encoder private context |
|
* @param frame output data buffer |
|
*/ |
|
void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame) |
|
{ |
|
int blk; |
|
|
|
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
|
|
|
s->output_frame_header(s); |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
output_audio_block(s, blk); |
|
|
|
output_frame_end(s); |
|
} |
|
|
|
|
|
static void dprint_options(AC3EncodeContext *s) |
|
{ |
|
#ifdef DEBUG |
|
AVCodecContext *avctx = s->avctx; |
|
AC3EncOptions *opt = &s->options; |
|
char strbuf[32]; |
|
|
|
switch (s->bitstream_id) { |
|
case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break; |
|
case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break; |
|
case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break; |
|
case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break; |
|
case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR"); |
|
} |
|
av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id); |
|
av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt)); |
|
av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout); |
|
av_dlog(avctx, "channel_layout: %s\n", strbuf); |
|
av_dlog(avctx, "sample_rate: %d\n", s->sample_rate); |
|
av_dlog(avctx, "bit_rate: %d\n", s->bit_rate); |
|
av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code); |
|
if (s->cutoff) |
|
av_dlog(avctx, "cutoff: %d\n", s->cutoff); |
|
|
|
av_dlog(avctx, "per_frame_metadata: %s\n", |
|
opt->allow_per_frame_metadata?"on":"off"); |
|
if (s->has_center) |
|
av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level, |
|
s->center_mix_level); |
|
else |
|
av_dlog(avctx, "center_mixlev: {not written}\n"); |
|
if (s->has_surround) |
|
av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level, |
|
s->surround_mix_level); |
|
else |
|
av_dlog(avctx, "surround_mixlev: {not written}\n"); |
|
if (opt->audio_production_info) { |
|
av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level); |
|
switch (opt->room_type) { |
|
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break; |
|
case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type); |
|
} |
|
av_dlog(avctx, "room_type: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "mixing_level: {not written}\n"); |
|
av_dlog(avctx, "room_type: {not written}\n"); |
|
} |
|
av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off"); |
|
av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level); |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
switch (opt->dolby_surround_mode) { |
|
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; |
|
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode); |
|
} |
|
av_dlog(avctx, "dsur_mode: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "dsur_mode: {not written}\n"); |
|
} |
|
av_dlog(avctx, "original: %s\n", opt->original?"on":"off"); |
|
|
|
if (s->bitstream_id == 6) { |
|
if (opt->extended_bsi_1) { |
|
switch (opt->preferred_stereo_downmix) { |
|
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break; |
|
case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix); |
|
} |
|
av_dlog(avctx, "dmix_mode: %s\n", strbuf); |
|
av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n", |
|
opt->ltrt_center_mix_level, s->ltrt_center_mix_level); |
|
av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n", |
|
opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level); |
|
av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n", |
|
opt->loro_center_mix_level, s->loro_center_mix_level); |
|
av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n", |
|
opt->loro_surround_mix_level, s->loro_surround_mix_level); |
|
} else { |
|
av_dlog(avctx, "extended bitstream info 1: {not written}\n"); |
|
} |
|
if (opt->extended_bsi_2) { |
|
switch (opt->dolby_surround_ex_mode) { |
|
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; |
|
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode); |
|
} |
|
av_dlog(avctx, "dsurex_mode: %s\n", strbuf); |
|
switch (opt->dolby_headphone_mode) { |
|
case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; |
|
case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; |
|
case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode); |
|
} |
|
av_dlog(avctx, "dheadphone_mode: %s\n", strbuf); |
|
|
|
switch (opt->ad_converter_type) { |
|
case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break; |
|
case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break; |
|
default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type); |
|
} |
|
av_dlog(avctx, "ad_conv_type: %s\n", strbuf); |
|
} else { |
|
av_dlog(avctx, "extended bitstream info 2: {not written}\n"); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
|
|
#define FLT_OPTION_THRESHOLD 0.01 |
|
|
|
static int validate_float_option(float v, const float *v_list, int v_list_size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < v_list_size; i++) { |
|
if (v < (v_list[i] + FLT_OPTION_THRESHOLD) && |
|
v > (v_list[i] - FLT_OPTION_THRESHOLD)) |
|
break; |
|
} |
|
if (i == v_list_size) |
|
return -1; |
|
|
|
return i; |
|
} |
|
|
|
|
|
static void validate_mix_level(void *log_ctx, const char *opt_name, |
|
float *opt_param, const float *list, |
|
int list_size, int default_value, int min_value, |
|
int *ctx_param) |
|
{ |
|
int mixlev = validate_float_option(*opt_param, list, list_size); |
|
if (mixlev < min_value) { |
|
mixlev = default_value; |
|
if (*opt_param >= 0.0) { |
|
av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using " |
|
"default value: %0.3f\n", opt_name, list[mixlev]); |
|
} |
|
} |
|
*opt_param = list[mixlev]; |
|
*ctx_param = mixlev; |
|
} |
|
|
|
|
|
/** |
|
* Validate metadata options as set by AVOption system. |
|
* These values can optionally be changed per-frame. |
|
* |
|
* @param s AC-3 encoder private context |
|
*/ |
|
int ff_ac3_validate_metadata(AC3EncodeContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
AC3EncOptions *opt = &s->options; |
|
|
|
opt->audio_production_info = 0; |
|
opt->extended_bsi_1 = 0; |
|
opt->extended_bsi_2 = 0; |
|
opt->eac3_mixing_metadata = 0; |
|
opt->eac3_info_metadata = 0; |
|
|
|
/* determine mixing metadata / xbsi1 use */ |
|
if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) { |
|
opt->extended_bsi_1 = 1; |
|
opt->eac3_mixing_metadata = 1; |
|
} |
|
if (s->has_center && |
|
(opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) { |
|
opt->extended_bsi_1 = 1; |
|
opt->eac3_mixing_metadata = 1; |
|
} |
|
if (s->has_surround && |
|
(opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) { |
|
opt->extended_bsi_1 = 1; |
|
opt->eac3_mixing_metadata = 1; |
|
} |
|
|
|
if (s->eac3) { |
|
/* determine info metadata use */ |
|
if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN) |
|
opt->eac3_info_metadata = 1; |
|
if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE) |
|
opt->eac3_info_metadata = 1; |
|
if (s->channel_mode == AC3_CHMODE_STEREO && |
|
(opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE)) |
|
opt->eac3_info_metadata = 1; |
|
if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE) |
|
opt->eac3_info_metadata = 1; |
|
if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE || |
|
opt->ad_converter_type != AC3ENC_OPT_NONE) { |
|
opt->audio_production_info = 1; |
|
opt->eac3_info_metadata = 1; |
|
} |
|
} else { |
|
/* determine audio production info use */ |
|
if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE) |
|
opt->audio_production_info = 1; |
|
|
|
/* determine xbsi2 use */ |
|
if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE) |
|
opt->extended_bsi_2 = 1; |
|
if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE) |
|
opt->extended_bsi_2 = 1; |
|
if (opt->ad_converter_type != AC3ENC_OPT_NONE) |
|
opt->extended_bsi_2 = 1; |
|
} |
|
|
|
/* validate AC-3 mixing levels */ |
|
if (!s->eac3) { |
|
if (s->has_center) { |
|
validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level, |
|
cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0, |
|
&s->center_mix_level); |
|
} |
|
if (s->has_surround) { |
|
validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level, |
|
surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0, |
|
&s->surround_mix_level); |
|
} |
|
} |
|
|
|
/* validate extended bsi 1 / mixing metadata */ |
|
if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) { |
|
/* default preferred stereo downmix */ |
|
if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE) |
|
opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED; |
|
if (!s->eac3 || s->has_center) { |
|
/* validate Lt/Rt center mix level */ |
|
validate_mix_level(avctx, "ltrt_center_mix_level", |
|
&opt->ltrt_center_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 5, 0, |
|
&s->ltrt_center_mix_level); |
|
/* validate Lo/Ro center mix level */ |
|
validate_mix_level(avctx, "loro_center_mix_level", |
|
&opt->loro_center_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 5, 0, |
|
&s->loro_center_mix_level); |
|
} |
|
if (!s->eac3 || s->has_surround) { |
|
/* validate Lt/Rt surround mix level */ |
|
validate_mix_level(avctx, "ltrt_surround_mix_level", |
|
&opt->ltrt_surround_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 6, 3, |
|
&s->ltrt_surround_mix_level); |
|
/* validate Lo/Ro surround mix level */ |
|
validate_mix_level(avctx, "loro_surround_mix_level", |
|
&opt->loro_surround_mix_level, extmixlev_options, |
|
EXTMIXLEV_NUM_OPTIONS, 6, 3, |
|
&s->loro_surround_mix_level); |
|
} |
|
} |
|
|
|
/* validate audio service type / channels combination */ |
|
if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE && |
|
avctx->channels == 1) || |
|
((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY || |
|
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY || |
|
avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER) |
|
&& avctx->channels > 1)) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the " |
|
"specified number of channels\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
/* validate extended bsi 2 / info metadata */ |
|
if (opt->extended_bsi_2 || opt->eac3_info_metadata) { |
|
/* default dolby headphone mode */ |
|
if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE) |
|
opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED; |
|
/* default dolby surround ex mode */ |
|
if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE) |
|
opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED; |
|
/* default A/D converter type */ |
|
if (opt->ad_converter_type == AC3ENC_OPT_NONE) |
|
opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD; |
|
} |
|
|
|
/* copyright & original defaults */ |
|
if (!s->eac3 || opt->eac3_info_metadata) { |
|
/* default copyright */ |
|
if (opt->copyright == AC3ENC_OPT_NONE) |
|
opt->copyright = AC3ENC_OPT_OFF; |
|
/* default original */ |
|
if (opt->original == AC3ENC_OPT_NONE) |
|
opt->original = AC3ENC_OPT_ON; |
|
} |
|
|
|
/* dolby surround mode default */ |
|
if (!s->eac3 || opt->eac3_info_metadata) { |
|
if (opt->dolby_surround_mode == AC3ENC_OPT_NONE) |
|
opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED; |
|
} |
|
|
|
/* validate audio production info */ |
|
if (opt->audio_production_info) { |
|
if (opt->mixing_level == AC3ENC_OPT_NONE) { |
|
av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if " |
|
"room_type is set\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (opt->mixing_level < 80) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between " |
|
"80dB and 111dB\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
/* default room type */ |
|
if (opt->room_type == AC3ENC_OPT_NONE) |
|
opt->room_type = AC3ENC_OPT_NOT_INDICATED; |
|
} |
|
|
|
/* set bitstream id for alternate bitstream syntax */ |
|
if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) { |
|
if (s->bitstream_id > 8 && s->bitstream_id < 11) { |
|
static int warn_once = 1; |
|
if (warn_once) { |
|
av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is " |
|
"not compatible with reduced samplerates. writing of " |
|
"extended bitstream information will be disabled.\n"); |
|
warn_once = 0; |
|
} |
|
} else { |
|
s->bitstream_id = 6; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Finalize encoding and free any memory allocated by the encoder. |
|
* |
|
* @param avctx Codec context |
|
*/ |
|
av_cold int ff_ac3_encode_close(AVCodecContext *avctx) |
|
{ |
|
int blk, ch; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
|
|
av_freep(&s->windowed_samples); |
|
for (ch = 0; ch < s->channels; ch++) |
|
av_freep(&s->planar_samples[ch]); |
|
av_freep(&s->planar_samples); |
|
av_freep(&s->bap_buffer); |
|
av_freep(&s->bap1_buffer); |
|
av_freep(&s->mdct_coef_buffer); |
|
av_freep(&s->fixed_coef_buffer); |
|
av_freep(&s->exp_buffer); |
|
av_freep(&s->grouped_exp_buffer); |
|
av_freep(&s->psd_buffer); |
|
av_freep(&s->band_psd_buffer); |
|
av_freep(&s->mask_buffer); |
|
av_freep(&s->qmant_buffer); |
|
av_freep(&s->cpl_coord_exp_buffer); |
|
av_freep(&s->cpl_coord_mant_buffer); |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
av_freep(&block->mdct_coef); |
|
av_freep(&block->fixed_coef); |
|
av_freep(&block->exp); |
|
av_freep(&block->grouped_exp); |
|
av_freep(&block->psd); |
|
av_freep(&block->band_psd); |
|
av_freep(&block->mask); |
|
av_freep(&block->qmant); |
|
av_freep(&block->cpl_coord_exp); |
|
av_freep(&block->cpl_coord_mant); |
|
} |
|
|
|
s->mdct_end(s); |
|
|
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
|
|
/* |
|
* Set channel information during initialization. |
|
*/ |
|
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
|
int64_t *channel_layout) |
|
{ |
|
int ch_layout; |
|
|
|
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
|
return AVERROR(EINVAL); |
|
if ((uint64_t)*channel_layout > 0x7FF) |
|
return AVERROR(EINVAL); |
|
ch_layout = *channel_layout; |
|
if (!ch_layout) |
|
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL); |
|
|
|
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
|
s->channels = channels; |
|
s->fbw_channels = channels - s->lfe_on; |
|
s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1; |
|
if (s->lfe_on) |
|
ch_layout -= AV_CH_LOW_FREQUENCY; |
|
|
|
switch (ch_layout) { |
|
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
|
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
|
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
|
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
|
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
|
case AV_CH_LAYOUT_QUAD: |
|
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
|
case AV_CH_LAYOUT_5POINT0: |
|
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO; |
|
s->has_surround = s->channel_mode & 0x04; |
|
|
|
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
|
*channel_layout = ch_layout; |
|
if (s->lfe_on) |
|
*channel_layout |= AV_CH_LOW_FREQUENCY; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static av_cold int validate_options(AC3EncodeContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
int i, ret, max_sr; |
|
|
|
/* validate channel layout */ |
|
if (!avctx->channel_layout) { |
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " |
|
"encoder will guess the layout, but it " |
|
"might be incorrect.\n"); |
|
} |
|
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n"); |
|
return ret; |
|
} |
|
|
|
/* validate sample rate */ |
|
/* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a |
|
decoder that supports half sample rate so we can validate that |
|
the generated files are correct. */ |
|
max_sr = s->eac3 ? 2 : 8; |
|
for (i = 0; i <= max_sr; i++) { |
|
if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate) |
|
break; |
|
} |
|
if (i > max_sr) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->sample_rate = avctx->sample_rate; |
|
s->bit_alloc.sr_shift = i / 3; |
|
s->bit_alloc.sr_code = i % 3; |
|
s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift; |
|
|
|
/* validate bit rate */ |
|
if (s->eac3) { |
|
int max_br, min_br, wpf, min_br_dist, min_br_code; |
|
int num_blks_code, num_blocks, frame_samples; |
|
|
|
/* calculate min/max bitrate */ |
|
/* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've |
|
found use either 6 blocks or 1 block, even though 2 or 3 blocks |
|
would work as far as the bit rate is concerned. */ |
|
for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) { |
|
num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code]; |
|
frame_samples = AC3_BLOCK_SIZE * num_blocks; |
|
max_br = 2048 * s->sample_rate / frame_samples * 16; |
|
min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16; |
|
if (avctx->bit_rate <= max_br) |
|
break; |
|
} |
|
if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d " |
|
"for this sample rate\n", min_br, max_br); |
|
return AVERROR(EINVAL); |
|
} |
|
s->num_blks_code = num_blks_code; |
|
s->num_blocks = num_blocks; |
|
|
|
/* calculate words-per-frame for the selected bitrate */ |
|
wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate; |
|
av_assert1(wpf > 0 && wpf <= 2048); |
|
|
|
/* find the closest AC-3 bitrate code to the selected bitrate. |
|
this is needed for lookup tables for bandwidth and coupling |
|
parameter selection */ |
|
min_br_code = -1; |
|
min_br_dist = INT_MAX; |
|
for (i = 0; i < 19; i++) { |
|
int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate); |
|
if (br_dist < min_br_dist) { |
|
min_br_dist = br_dist; |
|
min_br_code = i; |
|
} |
|
} |
|
|
|
/* make sure the minimum frame size is below the average frame size */ |
|
s->frame_size_code = min_br_code << 1; |
|
while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate) |
|
wpf--; |
|
s->frame_size_min = 2 * wpf; |
|
} else { |
|
for (i = 0; i < 19; i++) { |
|
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
|
break; |
|
} |
|
if (i == 19) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->frame_size_code = i << 1; |
|
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code]; |
|
s->num_blks_code = 0x3; |
|
s->num_blocks = 6; |
|
} |
|
s->bit_rate = avctx->bit_rate; |
|
s->frame_size = s->frame_size_min; |
|
|
|
/* validate cutoff */ |
|
if (avctx->cutoff < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->cutoff = avctx->cutoff; |
|
if (s->cutoff > (s->sample_rate >> 1)) |
|
s->cutoff = s->sample_rate >> 1; |
|
|
|
ret = ff_ac3_validate_metadata(s); |
|
if (ret) |
|
return ret; |
|
|
|
s->rematrixing_enabled = s->options.stereo_rematrixing && |
|
(s->channel_mode == AC3_CHMODE_STEREO); |
|
|
|
s->cpl_enabled = s->options.channel_coupling && |
|
s->channel_mode >= AC3_CHMODE_STEREO; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/* |
|
* Set bandwidth for all channels. |
|
* The user can optionally supply a cutoff frequency. Otherwise an appropriate |
|
* default value will be used. |
|
*/ |
|
static av_cold void set_bandwidth(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int av_uninit(cpl_start); |
|
|
|
if (s->cutoff) { |
|
/* calculate bandwidth based on user-specified cutoff frequency */ |
|
int fbw_coeffs; |
|
fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate; |
|
s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
|
} else { |
|
/* use default bandwidth setting */ |
|
s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2]; |
|
} |
|
|
|
/* set number of coefficients for each channel */ |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
s->start_freq[ch] = 0; |
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73; |
|
} |
|
/* LFE channel always has 7 coefs */ |
|
if (s->lfe_on) { |
|
s->start_freq[s->lfe_channel] = 0; |
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
s->blocks[blk].end_freq[ch] = 7; |
|
} |
|
|
|
/* initialize coupling strategy */ |
|
if (s->cpl_enabled) { |
|
if (s->options.cpl_start != AC3ENC_OPT_AUTO) { |
|
cpl_start = s->options.cpl_start; |
|
} else { |
|
cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2]; |
|
if (cpl_start < 0) { |
|
if (s->options.channel_coupling == AC3ENC_OPT_AUTO) |
|
s->cpl_enabled = 0; |
|
else |
|
cpl_start = 15; |
|
} |
|
} |
|
} |
|
if (s->cpl_enabled) { |
|
int i, cpl_start_band, cpl_end_band; |
|
uint8_t *cpl_band_sizes = s->cpl_band_sizes; |
|
|
|
cpl_end_band = s->bandwidth_code / 4 + 3; |
|
cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15)); |
|
|
|
s->num_cpl_subbands = cpl_end_band - cpl_start_band; |
|
|
|
s->num_cpl_bands = 1; |
|
*cpl_band_sizes = 12; |
|
for (i = cpl_start_band + 1; i < cpl_end_band; i++) { |
|
if (ff_eac3_default_cpl_band_struct[i]) { |
|
*cpl_band_sizes += 12; |
|
} else { |
|
s->num_cpl_bands++; |
|
cpl_band_sizes++; |
|
*cpl_band_sizes = 12; |
|
} |
|
} |
|
|
|
s->start_freq[CPL_CH] = cpl_start_band * 12 + 37; |
|
s->cpl_end_freq = cpl_end_band * 12 + 37; |
|
for (blk = 0; blk < s->num_blocks; blk++) |
|
s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq; |
|
} |
|
} |
|
|
|
|
|
static av_cold int allocate_buffers(AC3EncodeContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
int blk, ch; |
|
int channels = s->channels + 1; /* includes coupling channel */ |
|
int channel_blocks = channels * s->num_blocks; |
|
int total_coefs = AC3_MAX_COEFS * channel_blocks; |
|
|
|
if (s->allocate_sample_buffers(s)) |
|
goto alloc_fail; |
|
|
|
FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs * |
|
sizeof(*s->bap_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs * |
|
sizeof(*s->bap1_buffer), alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs * |
|
sizeof(*s->mdct_coef_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs * |
|
sizeof(*s->exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 * |
|
sizeof(*s->grouped_exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs * |
|
sizeof(*s->psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 * |
|
sizeof(*s->band_psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 * |
|
sizeof(*s->mask_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs * |
|
sizeof(*s->qmant_buffer), alloc_fail); |
|
if (s->cpl_enabled) { |
|
FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 * |
|
sizeof(*s->cpl_coord_exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 * |
|
sizeof(*s->cpl_coord_mant_buffer), alloc_fail); |
|
} |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant), |
|
alloc_fail); |
|
if (s->cpl_enabled) { |
|
FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant), |
|
alloc_fail); |
|
} |
|
|
|
for (ch = 0; ch < channels; ch++) { |
|
/* arrangement: block, channel, coeff */ |
|
block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)]; |
|
block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; |
|
block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)]; |
|
block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)]; |
|
block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; |
|
if (s->cpl_enabled) { |
|
block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)]; |
|
block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)]; |
|
} |
|
|
|
/* arrangement: channel, block, coeff */ |
|
block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; |
|
block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; |
|
} |
|
} |
|
|
|
if (!s->fixed_point) { |
|
FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs * |
|
sizeof(*s->fixed_coef_buffer), alloc_fail); |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < channels; ch++) |
|
block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; |
|
} |
|
} else { |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < channels; ch++) |
|
block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch]; |
|
} |
|
} |
|
|
|
return 0; |
|
alloc_fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
|
|
av_cold int ff_ac3_encode_init(AVCodecContext *avctx) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
int ret, frame_size_58; |
|
|
|
s->avctx = avctx; |
|
|
|
s->eac3 = avctx->codec_id == CODEC_ID_EAC3; |
|
|
|
ff_ac3_common_init(); |
|
|
|
ret = validate_options(s); |
|
if (ret) |
|
return ret; |
|
|
|
avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks; |
|
|
|
s->bitstream_mode = avctx->audio_service_type; |
|
if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE) |
|
s->bitstream_mode = 0x7; |
|
|
|
s->bits_written = 0; |
|
s->samples_written = 0; |
|
|
|
/* calculate crc_inv for both possible frame sizes */ |
|
frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1; |
|
s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
if (s->bit_alloc.sr_code == 1) { |
|
frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1; |
|
s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
} |
|
|
|
/* set function pointers */ |
|
if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) { |
|
s->mdct_end = ff_ac3_fixed_mdct_end; |
|
s->mdct_init = ff_ac3_fixed_mdct_init; |
|
s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers; |
|
} else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) { |
|
s->mdct_end = ff_ac3_float_mdct_end; |
|
s->mdct_init = ff_ac3_float_mdct_init; |
|
s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers; |
|
} |
|
if (CONFIG_EAC3_ENCODER && s->eac3) |
|
s->output_frame_header = ff_eac3_output_frame_header; |
|
else |
|
s->output_frame_header = ac3_output_frame_header; |
|
|
|
set_bandwidth(s); |
|
|
|
exponent_init(s); |
|
|
|
bit_alloc_init(s); |
|
|
|
ret = s->mdct_init(s); |
|
if (ret) |
|
goto init_fail; |
|
|
|
ret = allocate_buffers(s); |
|
if (ret) |
|
goto init_fail; |
|
|
|
avctx->coded_frame= avcodec_alloc_frame(); |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT); |
|
|
|
dprint_options(s); |
|
|
|
return 0; |
|
init_fail: |
|
ff_ac3_encode_close(avctx); |
|
return ret; |
|
}
|
|
|