You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1584 lines
43 KiB
1584 lines
43 KiB
/* |
|
* jrevdct.c |
|
* |
|
* Copyright (C) 1991, 1992, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains the basic inverse-DCT transformation subroutine. |
|
* |
|
* This implementation is based on an algorithm described in |
|
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
|
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
|
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
|
* The primary algorithm described there uses 11 multiplies and 29 adds. |
|
* We use their alternate method with 12 multiplies and 32 adds. |
|
* The advantage of this method is that no data path contains more than one |
|
* multiplication; this allows a very simple and accurate implementation in |
|
* scaled fixed-point arithmetic, with a minimal number of shifts. |
|
* |
|
* I've made lots of modifications to attempt to take advantage of the |
|
* sparse nature of the DCT matrices we're getting. Although the logic |
|
* is cumbersome, it's straightforward and the resulting code is much |
|
* faster. |
|
* |
|
* A better way to do this would be to pass in the DCT block as a sparse |
|
* matrix, perhaps with the difference cases encoded. |
|
*/ |
|
|
|
typedef int INT32; |
|
|
|
/* Definition of Contant integer scale factor. */ |
|
#define CONST_BITS 13 |
|
|
|
/* Misc DCT definitions */ |
|
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ |
|
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ |
|
|
|
#define GLOBAL /* a function referenced thru EXTERNs */ |
|
|
|
typedef int DCTELEM; |
|
typedef DCTELEM DCTBLOCK[DCTSIZE2]; |
|
|
|
void j_rev_dct (DCTELEM *data); |
|
|
|
|
|
#define GLOBAL /* a function referenced thru EXTERNs */ |
|
#define ORIG_DCT 1 |
|
|
|
/* We assume that right shift corresponds to signed division by 2 with |
|
* rounding towards minus infinity. This is correct for typical "arithmetic |
|
* shift" instructions that shift in copies of the sign bit. But some |
|
* C compilers implement >> with an unsigned shift. For these machines you |
|
* must define RIGHT_SHIFT_IS_UNSIGNED. |
|
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. |
|
* It is only applied with constant shift counts. SHIFT_TEMPS must be |
|
* included in the variables of any routine using RIGHT_SHIFT. |
|
*/ |
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
|
#define SHIFT_TEMPS INT32 shift_temp; |
|
#define RIGHT_SHIFT(x,shft) \ |
|
((shift_temp = (x)) < 0 ? \ |
|
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ |
|
(shift_temp >> (shft))) |
|
#else |
|
#define SHIFT_TEMPS |
|
#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) |
|
#endif |
|
|
|
/* |
|
* This routine is specialized to the case DCTSIZE = 8. |
|
*/ |
|
|
|
#if DCTSIZE != 8 |
|
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
|
#endif |
|
|
|
|
|
/* |
|
* A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT |
|
* on each column. Direct algorithms are also available, but they are |
|
* much more complex and seem not to be any faster when reduced to code. |
|
* |
|
* The poop on this scaling stuff is as follows: |
|
* |
|
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
|
* larger than the true IDCT outputs. The final outputs are therefore |
|
* a factor of N larger than desired; since N=8 this can be cured by |
|
* a simple right shift at the end of the algorithm. The advantage of |
|
* this arrangement is that we save two multiplications per 1-D IDCT, |
|
* because the y0 and y4 inputs need not be divided by sqrt(N). |
|
* |
|
* We have to do addition and subtraction of the integer inputs, which |
|
* is no problem, and multiplication by fractional constants, which is |
|
* a problem to do in integer arithmetic. We multiply all the constants |
|
* by CONST_SCALE and convert them to integer constants (thus retaining |
|
* CONST_BITS bits of precision in the constants). After doing a |
|
* multiplication we have to divide the product by CONST_SCALE, with proper |
|
* rounding, to produce the correct output. This division can be done |
|
* cheaply as a right shift of CONST_BITS bits. We postpone shifting |
|
* as long as possible so that partial sums can be added together with |
|
* full fractional precision. |
|
* |
|
* The outputs of the first pass are scaled up by PASS1_BITS bits so that |
|
* they are represented to better-than-integral precision. These outputs |
|
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
|
* with the recommended scaling. (To scale up 12-bit sample data further, an |
|
* intermediate INT32 array would be needed.) |
|
* |
|
* To avoid overflow of the 32-bit intermediate results in pass 2, we must |
|
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
|
* shows that the values given below are the most effective. |
|
*/ |
|
|
|
#ifdef EIGHT_BIT_SAMPLES |
|
#define PASS1_BITS 2 |
|
#else |
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
|
#endif |
|
|
|
#define ONE ((INT32) 1) |
|
|
|
#define CONST_SCALE (ONE << CONST_BITS) |
|
|
|
/* Convert a positive real constant to an integer scaled by CONST_SCALE. |
|
* IMPORTANT: if your compiler doesn't do this arithmetic at compile time, |
|
* you will pay a significant penalty in run time. In that case, figure |
|
* the correct integer constant values and insert them by hand. |
|
*/ |
|
|
|
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) |
|
|
|
/* Descale and correctly round an INT32 value that's scaled by N bits. |
|
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
|
* the fudge factor is correct for either sign of X. |
|
*/ |
|
|
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
|
#define SCALE(x,n) ((INT32)(x) << n) |
|
|
|
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
|
* For 8-bit samples with the recommended scaling, all the variable |
|
* and constant values involved are no more than 16 bits wide, so a |
|
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply; |
|
* this provides a useful speedup on many machines. |
|
* There is no way to specify a 16x16->32 multiply in portable C, but |
|
* some C compilers will do the right thing if you provide the correct |
|
* combination of casts. |
|
* NB: for 12-bit samples, a full 32-bit multiplication will be needed. |
|
*/ |
|
|
|
#ifdef EIGHT_BIT_SAMPLES |
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
|
#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const))) |
|
#endif |
|
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
|
#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const))) |
|
#endif |
|
#endif |
|
|
|
#if 0 |
|
/* force a multiplication for x86 where a multiply is fast). We |
|
force the non constant operand to be in a register because |
|
otherwise it may be a 16 bit memory reference, which is not allowed |
|
by imull */ |
|
#define MULTIPLY(a,b) \ |
|
({\ |
|
int res;\ |
|
asm("imull %2,%1,%0" : "=r" (res) : "r" ((int)(a)), "i" (b));\ |
|
res;\ |
|
}) |
|
#endif |
|
|
|
#ifndef MULTIPLY /* default definition */ |
|
#define MULTIPLY(var,const) ((var) * (const)) |
|
#endif |
|
|
|
|
|
#ifndef ORIG_DCT |
|
|
|
#undef SSMUL |
|
#define SSMUL(var1,var2) ((INT16)(var1) * (INT32)(INT16)(var2)) |
|
|
|
/* Precomputed idct value arrays. */ |
|
|
|
STATIC DCTELEM PreIDCT[64][64]; |
|
|
|
/* Pre compute singleton coefficient IDCT values. */ |
|
void init_pre_idct() { |
|
int i; |
|
|
|
for (i = 0; i < 64; i++) { |
|
memset ((char *) PreIDCT[i], 0, 64 * sizeof(DCTELEM)); |
|
PreIDCT[i][i] = 2048; |
|
j_rev_dct (PreIDCT[i]); |
|
} |
|
} |
|
|
|
/* |
|
* Perform the inverse DCT on one block of coefficients. |
|
*/ |
|
|
|
void j_rev_dct_sparse (data, pos) |
|
DCTBLOCK data; |
|
int pos; |
|
{ |
|
register DCTELEM *dataptr; |
|
short int val; |
|
DCTELEM *ndataptr; |
|
int coeff, rr; |
|
|
|
/* If DC Coefficient. */ |
|
|
|
if (pos == 0) { |
|
register INT32 *dp; |
|
register INT32 v; |
|
|
|
dp = (INT32*)data; |
|
v = *data; |
|
/* Compute 32 bit value to assign. |
|
* This speeds things up a bit */ |
|
if (v < 0) |
|
val = (short)((v - 3) >> 3); |
|
else |
|
val = (short)((v + 4) >> 3); |
|
v = val | ((INT32)val << 16); |
|
dp[0] = v; dp[1] = v; dp[2] = v; dp[3] = v; |
|
dp[4] = v; dp[5] = v; dp[6] = v; dp[7] = v; |
|
dp[8] = v; dp[9] = v; dp[10] = v; dp[11] = v; |
|
dp[12] = v; dp[13] = v; dp[14] = v; dp[15] = v; |
|
dp[16] = v; dp[17] = v; dp[18] = v; dp[19] = v; |
|
dp[20] = v; dp[21] = v; dp[22] = v; dp[23] = v; |
|
dp[24] = v; dp[25] = v; dp[26] = v; dp[27] = v; |
|
dp[28] = v; dp[29] = v; dp[30] = v; dp[31] = v; |
|
return; |
|
} |
|
|
|
/* Some other coefficient. */ |
|
dataptr = (DCTELEM *)data; |
|
coeff = dataptr[pos]; |
|
ndataptr = PreIDCT[pos]; |
|
|
|
for (rr = 0; rr < 4; rr++) { |
|
dataptr[0] = (DCTELEM)(SSMUL (ndataptr[0] , coeff) >> (CONST_BITS-2)); |
|
dataptr[1] = (DCTELEM)(SSMUL (ndataptr[1] , coeff) >> (CONST_BITS-2)); |
|
dataptr[2] = (DCTELEM)(SSMUL (ndataptr[2] , coeff) >> (CONST_BITS-2)); |
|
dataptr[3] = (DCTELEM)(SSMUL (ndataptr[3] , coeff) >> (CONST_BITS-2)); |
|
dataptr[4] = (DCTELEM)(SSMUL (ndataptr[4] , coeff) >> (CONST_BITS-2)); |
|
dataptr[5] = (DCTELEM)(SSMUL (ndataptr[5] , coeff) >> (CONST_BITS-2)); |
|
dataptr[6] = (DCTELEM)(SSMUL (ndataptr[6] , coeff) >> (CONST_BITS-2)); |
|
dataptr[7] = (DCTELEM)(SSMUL (ndataptr[7] , coeff) >> (CONST_BITS-2)); |
|
dataptr[8] = (DCTELEM)(SSMUL (ndataptr[8] , coeff) >> (CONST_BITS-2)); |
|
dataptr[9] = (DCTELEM)(SSMUL (ndataptr[9] , coeff) >> (CONST_BITS-2)); |
|
dataptr[10] = (DCTELEM)(SSMUL (ndataptr[10], coeff) >> (CONST_BITS-2)); |
|
dataptr[11] = (DCTELEM)(SSMUL (ndataptr[11], coeff) >> (CONST_BITS-2)); |
|
dataptr[12] = (DCTELEM)(SSMUL (ndataptr[12], coeff) >> (CONST_BITS-2)); |
|
dataptr[13] = (DCTELEM)(SSMUL (ndataptr[13], coeff) >> (CONST_BITS-2)); |
|
dataptr[14] = (DCTELEM)(SSMUL (ndataptr[14], coeff) >> (CONST_BITS-2)); |
|
dataptr[15] = (DCTELEM)(SSMUL (ndataptr[15], coeff) >> (CONST_BITS-2)); |
|
dataptr += 16; |
|
ndataptr += 16; |
|
} |
|
} |
|
|
|
|
|
void j_rev_dct (data) |
|
DCTBLOCK data; |
|
{ |
|
INT32 tmp0, tmp1, tmp2, tmp3; |
|
INT32 tmp10, tmp11, tmp12, tmp13; |
|
INT32 z1, z2, z3, z4, z5; |
|
int d0, d1, d2, d3, d4, d5, d6, d7; |
|
register DCTELEM *dataptr; |
|
int rowctr; |
|
SHIFT_TEMPS; |
|
|
|
/* Pass 1: process rows. */ |
|
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
|
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
|
|
|
dataptr = data; |
|
|
|
for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) { |
|
/* Due to quantization, we will usually find that many of the input |
|
* coefficients are zero, especially the AC terms. We can exploit this |
|
* by short-circuiting the IDCT calculation for any row in which all |
|
* the AC terms are zero. In that case each output is equal to the |
|
* DC coefficient (with scale factor as needed). |
|
* With typical images and quantization tables, half or more of the |
|
* row DCT calculations can be simplified this way. |
|
*/ |
|
|
|
register INT32 *idataptr = (INT32*)dataptr; |
|
d0 = dataptr[0]; |
|
d1 = dataptr[1]; |
|
if ((d1 == 0) && (idataptr[1] | idataptr[2] | idataptr[3]) == 0) { |
|
/* AC terms all zero */ |
|
if (d0) { |
|
/* Compute a 32 bit value to assign. */ |
|
DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); |
|
register INT32 v = (dcval & 0xffff) | |
|
(((INT32)dcval << 16) & 0xffff0000L); |
|
|
|
idataptr[0] = v; |
|
idataptr[1] = v; |
|
idataptr[2] = v; |
|
idataptr[3] = v; |
|
} |
|
|
|
dataptr += DCTSIZE; /* advance pointer to next row */ |
|
continue; |
|
} |
|
d2 = dataptr[2]; |
|
d3 = dataptr[3]; |
|
d4 = dataptr[4]; |
|
d5 = dataptr[5]; |
|
d6 = dataptr[6]; |
|
d7 = dataptr[7]; |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
if (d6) { |
|
if (d4) { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, -FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} |
|
} else { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} |
|
} |
|
} else { |
|
if (d4) { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = SCALE (d0 + d4, CONST_BITS); |
|
tmp11 = tmp12 = SCALE (d0 - d4, CONST_BITS); |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = SCALE (d4, CONST_BITS); |
|
tmp11 = tmp12 = -tmp10; |
|
} |
|
} |
|
} else { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ |
|
tmp10 = tmp13 = tmp11 = tmp12 = SCALE (d0, CONST_BITS); |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ |
|
tmp10 = tmp13 = tmp11 = tmp12 = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
|
|
if (d7) { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d5, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5; |
|
z3 = d7; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 = z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(d7, - FIX(0.601344887)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
tmp1 = MULTIPLY(d5, - FIX(0.509795578)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
z5 = MULTIPLY(d5 + d7, FIX(1.175875602)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z3; |
|
tmp1 += z4; |
|
tmp2 = z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d1, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(d3, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(d1, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 = z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z3 = d7 + d3; |
|
|
|
tmp0 = MULTIPLY(d7, - FIX(0.601344887)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
tmp2 = MULTIPLY(d3, FIX(0.509795579)); |
|
z2 = MULTIPLY(d3, - FIX(2.562915447)); |
|
z5 = MULTIPLY(z3, FIX(1.175875602)); |
|
z3 = MULTIPLY(z3, - FIX(0.785694958)); |
|
|
|
tmp0 += z3; |
|
tmp1 = z2 + z5; |
|
tmp2 += z3; |
|
tmp3 = z1 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z5 = MULTIPLY(z1, FIX(1.175875602)); |
|
|
|
z1 = MULTIPLY(z1, FIX(0.275899379)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
tmp0 = MULTIPLY(d7, - FIX(1.662939224)); |
|
z4 = MULTIPLY(d1, - FIX(0.390180644)); |
|
tmp3 = MULTIPLY(d1, FIX(1.111140466)); |
|
|
|
tmp0 += z1; |
|
tmp1 = z4 + z5; |
|
tmp2 = z3 + z5; |
|
tmp3 += z1; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(d7, - FIX(1.387039845)); |
|
tmp1 = MULTIPLY(d7, FIX(1.175875602)); |
|
tmp2 = MULTIPLY(d7, - FIX(0.785694958)); |
|
tmp3 = MULTIPLY(d7, FIX(0.275899379)); |
|
} |
|
} |
|
} |
|
} else { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(d3 + z4, FIX(1.175875602)); |
|
|
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(d1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(d3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 = z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
|
|
z5 = MULTIPLY(z2, FIX(1.175875602)); |
|
tmp1 = MULTIPLY(d5, FIX(1.662939225)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
z2 = MULTIPLY(z2, - FIX(1.387039845)); |
|
tmp2 = MULTIPLY(d3, FIX(1.111140466)); |
|
z3 = MULTIPLY(d3, - FIX(1.961570560)); |
|
|
|
tmp0 = z3 + z5; |
|
tmp1 += z2; |
|
tmp2 += z2; |
|
tmp3 = z4 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
z4 = d5 + d1; |
|
|
|
z5 = MULTIPLY(z4, FIX(1.175875602)); |
|
z1 = MULTIPLY(d1, - FIX(0.899976223)); |
|
tmp3 = MULTIPLY(d1, FIX(0.601344887)); |
|
tmp1 = MULTIPLY(d5, - FIX(0.509795578)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z4 = MULTIPLY(z4, FIX(0.785694958)); |
|
|
|
tmp0 = z1 + z5; |
|
tmp1 += z4; |
|
tmp2 = z2 + z5; |
|
tmp3 += z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d5, FIX(1.175875602)); |
|
tmp1 = MULTIPLY(d5, FIX(0.275899380)); |
|
tmp2 = MULTIPLY(d5, - FIX(1.387039845)); |
|
tmp3 = MULTIPLY(d5, FIX(0.785694958)); |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
z5 = d1 + d3; |
|
tmp3 = MULTIPLY(d1, FIX(0.211164243)); |
|
tmp2 = MULTIPLY(d3, - FIX(1.451774981)); |
|
z1 = MULTIPLY(d1, FIX(1.061594337)); |
|
z2 = MULTIPLY(d3, - FIX(2.172734803)); |
|
z4 = MULTIPLY(z5, FIX(0.785694958)); |
|
z5 = MULTIPLY(z5, FIX(1.175875602)); |
|
|
|
tmp0 = z1 - z4; |
|
tmp1 = z2 + z4; |
|
tmp2 += z5; |
|
tmp3 += z5; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d3, - FIX(0.785694958)); |
|
tmp1 = MULTIPLY(d3, - FIX(1.387039845)); |
|
tmp2 = MULTIPLY(d3, - FIX(0.275899379)); |
|
tmp3 = MULTIPLY(d3, FIX(1.175875602)); |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d1, FIX(0.275899379)); |
|
tmp1 = MULTIPLY(d1, FIX(0.785694958)); |
|
tmp2 = MULTIPLY(d1, FIX(1.175875602)); |
|
tmp3 = MULTIPLY(d1, FIX(1.387039845)); |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = tmp1 = tmp2 = tmp3 = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
|
dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
|
dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
|
dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
|
dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
|
dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
|
dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
|
dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
|
|
|
dataptr += DCTSIZE; /* advance pointer to next row */ |
|
} |
|
|
|
/* Pass 2: process columns. */ |
|
/* Note that we must descale the results by a factor of 8 == 2**3, */ |
|
/* and also undo the PASS1_BITS scaling. */ |
|
|
|
dataptr = data; |
|
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { |
|
/* Columns of zeroes can be exploited in the same way as we did with rows. |
|
* However, the row calculation has created many nonzero AC terms, so the |
|
* simplification applies less often (typically 5% to 10% of the time). |
|
* On machines with very fast multiplication, it's possible that the |
|
* test takes more time than it's worth. In that case this section |
|
* may be commented out. |
|
*/ |
|
|
|
d0 = dataptr[DCTSIZE*0]; |
|
d1 = dataptr[DCTSIZE*1]; |
|
d2 = dataptr[DCTSIZE*2]; |
|
d3 = dataptr[DCTSIZE*3]; |
|
d4 = dataptr[DCTSIZE*4]; |
|
d5 = dataptr[DCTSIZE*5]; |
|
d6 = dataptr[DCTSIZE*6]; |
|
d7 = dataptr[DCTSIZE*7]; |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
if (d6) { |
|
if (d4) { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, -FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} |
|
} else { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(d6, - FIX(1.306562965)); |
|
tmp3 = MULTIPLY(d6, FIX(0.541196100)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} |
|
} |
|
} else { |
|
if (d4) { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp2 - tmp0; |
|
tmp12 = -(tmp0 + tmp2); |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = SCALE (d0 + d4, CONST_BITS); |
|
tmp11 = tmp12 = SCALE (d0 - d4, CONST_BITS); |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = SCALE (d4, CONST_BITS); |
|
tmp11 = tmp12 = -tmp10; |
|
} |
|
} |
|
} else { |
|
if (d2) { |
|
if (d0) { |
|
/* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp0 = SCALE (d0, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp0 + tmp2; |
|
tmp12 = tmp0 - tmp2; |
|
} else { |
|
/* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX(0.541196100)); |
|
tmp3 = MULTIPLY(d2, FIX(1.306562965)); |
|
|
|
tmp10 = tmp3; |
|
tmp13 = -tmp3; |
|
tmp11 = tmp2; |
|
tmp12 = -tmp2; |
|
} |
|
} else { |
|
if (d0) { |
|
/* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ |
|
tmp10 = tmp13 = tmp11 = tmp12 = SCALE (d0, CONST_BITS); |
|
} else { |
|
/* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ |
|
tmp10 = tmp13 = tmp11 = tmp12 = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
if (d7) { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d5, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5; |
|
z3 = d7; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 = z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(d7, - FIX(0.601344887)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
tmp1 = MULTIPLY(d5, - FIX(0.509795578)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
z5 = MULTIPLY(d5 + d7, FIX(1.175875602)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z3; |
|
tmp1 += z4; |
|
tmp2 = z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d1, FIX(1.175875602)); |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(d3, - FIX(2.562915447)); |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(d1, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 = z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z3 = d7 + d3; |
|
|
|
tmp0 = MULTIPLY(d7, - FIX(0.601344887)); |
|
z1 = MULTIPLY(d7, - FIX(0.899976223)); |
|
tmp2 = MULTIPLY(d3, FIX(0.509795579)); |
|
z2 = MULTIPLY(d3, - FIX(2.562915447)); |
|
z5 = MULTIPLY(z3, FIX(1.175875602)); |
|
z3 = MULTIPLY(z3, - FIX(0.785694958)); |
|
|
|
tmp0 += z3; |
|
tmp1 = z2 + z5; |
|
tmp2 += z3; |
|
tmp3 = z1 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z5 = MULTIPLY(z1, FIX(1.175875602)); |
|
|
|
z1 = MULTIPLY(z1, FIX(0.275899379)); |
|
z3 = MULTIPLY(d7, - FIX(1.961570560)); |
|
tmp0 = MULTIPLY(d7, - FIX(1.662939224)); |
|
z4 = MULTIPLY(d1, - FIX(0.390180644)); |
|
tmp3 = MULTIPLY(d1, FIX(1.111140466)); |
|
|
|
tmp0 += z1; |
|
tmp1 = z4 + z5; |
|
tmp2 = z3 + z5; |
|
tmp3 += z1; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(d7, - FIX(1.387039845)); |
|
tmp1 = MULTIPLY(d7, FIX(1.175875602)); |
|
tmp2 = MULTIPLY(d7, - FIX(0.785694958)); |
|
tmp3 = MULTIPLY(d7, FIX(0.275899379)); |
|
} |
|
} |
|
} |
|
} else { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(d3 + z4, FIX(1.175875602)); |
|
|
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); |
|
z1 = MULTIPLY(d1, - FIX(0.899976223)); |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); |
|
z3 = MULTIPLY(d3, - FIX(1.961570560)); |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 = z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
|
|
z5 = MULTIPLY(z2, FIX(1.175875602)); |
|
tmp1 = MULTIPLY(d5, FIX(1.662939225)); |
|
z4 = MULTIPLY(d5, - FIX(0.390180644)); |
|
z2 = MULTIPLY(z2, - FIX(1.387039845)); |
|
tmp2 = MULTIPLY(d3, FIX(1.111140466)); |
|
z3 = MULTIPLY(d3, - FIX(1.961570560)); |
|
|
|
tmp0 = z3 + z5; |
|
tmp1 += z2; |
|
tmp2 += z2; |
|
tmp3 = z4 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
z4 = d5 + d1; |
|
|
|
z5 = MULTIPLY(z4, FIX(1.175875602)); |
|
z1 = MULTIPLY(d1, - FIX(0.899976223)); |
|
tmp3 = MULTIPLY(d1, FIX(0.601344887)); |
|
tmp1 = MULTIPLY(d5, - FIX(0.509795578)); |
|
z2 = MULTIPLY(d5, - FIX(2.562915447)); |
|
z4 = MULTIPLY(z4, FIX(0.785694958)); |
|
|
|
tmp0 = z1 + z5; |
|
tmp1 += z4; |
|
tmp2 = z2 + z5; |
|
tmp3 += z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d5, FIX(1.175875602)); |
|
tmp1 = MULTIPLY(d5, FIX(0.275899380)); |
|
tmp2 = MULTIPLY(d5, - FIX(1.387039845)); |
|
tmp3 = MULTIPLY(d5, FIX(0.785694958)); |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
z5 = d1 + d3; |
|
tmp3 = MULTIPLY(d1, FIX(0.211164243)); |
|
tmp2 = MULTIPLY(d3, - FIX(1.451774981)); |
|
z1 = MULTIPLY(d1, FIX(1.061594337)); |
|
z2 = MULTIPLY(d3, - FIX(2.172734803)); |
|
z4 = MULTIPLY(z5, FIX(0.785694958)); |
|
z5 = MULTIPLY(z5, FIX(1.175875602)); |
|
|
|
tmp0 = z1 - z4; |
|
tmp1 = z2 + z4; |
|
tmp2 += z5; |
|
tmp3 += z5; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d3, - FIX(0.785694958)); |
|
tmp1 = MULTIPLY(d3, - FIX(1.387039845)); |
|
tmp2 = MULTIPLY(d3, - FIX(0.275899379)); |
|
tmp3 = MULTIPLY(d3, FIX(1.175875602)); |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d1, FIX(0.275899379)); |
|
tmp1 = MULTIPLY(d1, FIX(0.785694958)); |
|
tmp2 = MULTIPLY(d1, FIX(1.175875602)); |
|
tmp3 = MULTIPLY(d1, FIX(1.387039845)); |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = tmp1 = tmp2 = tmp3 = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, |
|
CONST_BITS+PASS1_BITS+3); |
|
|
|
dataptr++; /* advance pointer to next column */ |
|
} |
|
} |
|
|
|
#else |
|
|
|
/*---- debugging/tracing macros ----*/ |
|
|
|
#if _MSC_VER |
|
#pragma optimize("",on) |
|
#if _MSC_VER > 700 |
|
/*#pragma optimize("l",off)*/ |
|
#endif |
|
#endif |
|
|
|
#define idct_single_pos0() |
|
#define idct_zero_col_stat() |
|
#define idct_zero_row_stat() |
|
#define idct_nonzero_col_stat() |
|
#define idct_nonzero_row_stat() |
|
#define DUMP_COEFS(p) |
|
#define TRACE(args) |
|
#define FAST_DCTPTRS 1 |
|
|
|
#if 0 /* to count cases */ |
|
void idct_single_pos0 (void) { static int count; count++; } |
|
void idct_zero_col_stat (void) { static int count; count++; } |
|
void idct_zero_row_stat (void) { static int count; count++; } |
|
void idct_nonzero_col_stat (void) { static int count; count++; } |
|
void idct_nonzero_row_stat (void) { static int count; count++; } |
|
#undef idct_single_pos0 |
|
#undef idct_zero_col_stat |
|
#undef idct_zero_row_stat |
|
#undef idct_nonzero_col_stat |
|
#undef idct_nonzero_row_stat |
|
#endif |
|
|
|
void init_pre_idct (void) { } |
|
|
|
void j_rev_dct_sparse (DCTBLOCK data, int pos) |
|
{ |
|
/* If just DC Coefficient. */ |
|
|
|
if (pos == 0) { |
|
register DCTELEM *dp, *dq; |
|
DCTELEM dcval; |
|
|
|
idct_single_pos0(); |
|
|
|
dp = data; |
|
dcval = dp[0]; |
|
if (dcval < 0) |
|
dcval = (short)((dcval - 3) >> 3); |
|
else |
|
dcval = (short)((dcval + 4) >> 3); |
|
|
|
if (dcval) { |
|
for (dq = dp + 64; dp < dq; dp += 8) { |
|
dp[3] = dp[2] = dp[1] = dp[0] = dcval; |
|
dp[7] = dp[6] = dp[5] = dp[4] = dcval; |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/* Some other coeff */ |
|
j_rev_dct (data); |
|
} |
|
|
|
#ifndef OPTIMIZE_ASM |
|
void j_rev_dct (DCTBLOCK data) |
|
{ |
|
INT32 tmp0, tmp1, tmp2, tmp3; |
|
INT32 tmp10, tmp11, tmp12, tmp13; |
|
INT32 z1, z2, z3, z4, z5; |
|
register DCTELEM *dp; |
|
int rowctr; |
|
SHIFT_TEMPS; |
|
|
|
/* Pass 1: process rows. */ |
|
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
|
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
|
|
|
DUMP_COEFS(data); |
|
|
|
dp = data; |
|
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--, dp += DCTSIZE) { |
|
/* Due to quantization, we will usually find that many of the input |
|
* coefficients are zero, especially the AC terms. We can exploit this |
|
* by short-circuiting the IDCT calculation for any row in which all |
|
* the AC terms are zero. In that case each output is equal to the |
|
* DC coefficient (with scale factor as needed). |
|
* With typical images and quantization tables, half or more of the |
|
* row DCT calculations can be simplified this way. |
|
*/ |
|
|
|
#if FAST_DCTPTRS |
|
#define d0 dp[0] |
|
#define d1 dp[1] |
|
#define d2 dp[2] |
|
#define d3 dp[3] |
|
#define d4 dp[4] |
|
#define d5 dp[5] |
|
#define d6 dp[6] |
|
#define d7 dp[7] |
|
#else |
|
int d0 = dp[0]; |
|
int d1 = dp[1]; |
|
int d2 = dp[2]; |
|
int d3 = dp[3]; |
|
int d4 = dp[4]; |
|
int d5 = dp[5]; |
|
int d6 = dp[6]; |
|
int d7 = dp[7]; |
|
#endif |
|
|
|
#ifndef NO_ZERO_ROW_TEST |
|
if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
|
/* AC terms all zero */ |
|
DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); |
|
|
|
if (d0) { |
|
dp[0] = dcval; |
|
dp[1] = dcval; |
|
dp[2] = dcval; |
|
dp[3] = dcval; |
|
dp[4] = dcval; |
|
dp[5] = dcval; |
|
dp[6] = dcval; |
|
dp[7] = dcval; |
|
} |
|
idct_zero_row_stat(); |
|
continue; |
|
} |
|
#endif |
|
|
|
idct_nonzero_row_stat(); |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
|
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
|
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */ |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */ |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */ |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */ |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */ |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */ |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */ |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */ |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */ |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dp[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
|
dp[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
|
dp[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
|
dp[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
|
dp[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
|
dp[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
|
dp[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
|
dp[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
|
} |
|
#if FAST_DCTPTRS |
|
#undef d0 |
|
#undef d1 |
|
#undef d2 |
|
#undef d3 |
|
#undef d4 |
|
#undef d5 |
|
#undef d6 |
|
#undef d7 |
|
#endif |
|
|
|
/* Pass 2: process columns. */ |
|
/* Note that we must descale the results by a factor of 8 == 2**3, */ |
|
/* and also undo the PASS1_BITS scaling. */ |
|
|
|
dp = data; |
|
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--, dp++) { |
|
/* Columns of zeroes can be exploited in the same way as we did with rows. |
|
* However, the row calculation has created many nonzero AC terms, so the |
|
* simplification applies less often (typically 5% to 10% of the time). |
|
* On machines with very fast multiplication, it's possible that the |
|
* test takes more time than it's worth. In that case this section |
|
* may be commented out. |
|
*/ |
|
|
|
#if FAST_DCTPTRS |
|
#define d0 dp[DCTSIZE*0] |
|
#define d1 dp[DCTSIZE*1] |
|
#define d2 dp[DCTSIZE*2] |
|
#define d3 dp[DCTSIZE*3] |
|
#define d4 dp[DCTSIZE*4] |
|
#define d5 dp[DCTSIZE*5] |
|
#define d6 dp[DCTSIZE*6] |
|
#define d7 dp[DCTSIZE*7] |
|
#else |
|
int d0 = dp[DCTSIZE*0]; |
|
int d1 = dp[DCTSIZE*1]; |
|
int d2 = dp[DCTSIZE*2]; |
|
int d3 = dp[DCTSIZE*3]; |
|
int d4 = dp[DCTSIZE*4]; |
|
int d5 = dp[DCTSIZE*5]; |
|
int d6 = dp[DCTSIZE*6]; |
|
int d7 = dp[DCTSIZE*7]; |
|
#endif |
|
|
|
#ifndef NO_ZERO_COLUMN_TEST |
|
if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
|
/* AC terms all zero */ |
|
DCTELEM dcval = (DCTELEM) DESCALE((INT32) d0, PASS1_BITS+3); |
|
|
|
if (d0) { |
|
dp[DCTSIZE*0] = dcval; |
|
dp[DCTSIZE*1] = dcval; |
|
dp[DCTSIZE*2] = dcval; |
|
dp[DCTSIZE*3] = dcval; |
|
dp[DCTSIZE*4] = dcval; |
|
dp[DCTSIZE*5] = dcval; |
|
dp[DCTSIZE*6] = dcval; |
|
dp[DCTSIZE*7] = dcval; |
|
} |
|
idct_zero_col_stat(); |
|
continue; |
|
} |
|
#endif |
|
|
|
idct_nonzero_col_stat(); |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
|
|
z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); |
|
tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); |
|
tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); |
|
|
|
tmp0 = SCALE (d0 + d4, CONST_BITS); |
|
tmp1 = SCALE (d0 - d4, CONST_BITS); |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
|
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */ |
|
|
|
tmp0 = MULTIPLY(d7, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */ |
|
tmp1 = MULTIPLY(d5, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */ |
|
tmp2 = MULTIPLY(d3, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */ |
|
tmp3 = MULTIPLY(d1, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */ |
|
z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */ |
|
z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */ |
|
z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */ |
|
z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */ |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dp[DCTSIZE*0] = (DCTELEM)DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*7] = (DCTELEM)DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*1] = (DCTELEM)DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*6] = (DCTELEM)DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*2] = (DCTELEM)DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*5] = (DCTELEM)DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*3] = (DCTELEM)DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3); |
|
dp[DCTSIZE*4] = (DCTELEM)DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3); |
|
} |
|
#if FAST_DCTPTRS |
|
#undef d0 |
|
#undef d1 |
|
#undef d2 |
|
#undef d3 |
|
#undef d4 |
|
#undef d5 |
|
#undef d6 |
|
#undef d7 |
|
#endif |
|
} |
|
#endif /* optimize.asm */ |
|
|
|
#endif
|
|
|