mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4234 lines
164 KiB
4234 lines
164 KiB
/* |
|
* H.26L/H.264/AVC/JVT/14496-10/... decoder |
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* H.264 / AVC / MPEG4 part10 codec. |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#define UNCHECKED_BITSTREAM_READER 1 |
|
|
|
#include "libavutil/imgutils.h" |
|
#include "libavutil/opt.h" |
|
#include "internal.h" |
|
#include "cabac.h" |
|
#include "cabac_functions.h" |
|
#include "dsputil.h" |
|
#include "avcodec.h" |
|
#include "mpegvideo.h" |
|
#include "h264.h" |
|
#include "h264data.h" |
|
#include "h264_mvpred.h" |
|
#include "golomb.h" |
|
#include "mathops.h" |
|
#include "rectangle.h" |
|
#include "thread.h" |
|
#include "vdpau_internal.h" |
|
#include "libavutil/avassert.h" |
|
|
|
// #undef NDEBUG |
|
#include <assert.h> |
|
|
|
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; |
|
|
|
static const uint8_t rem6[QP_MAX_NUM + 1] = { |
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, |
|
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, |
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, |
|
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, |
|
0, 1, 2, 3, |
|
}; |
|
|
|
static const uint8_t div6[QP_MAX_NUM + 1] = { |
|
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, |
|
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, |
|
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, |
|
10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13, |
|
14,14,14,14, |
|
}; |
|
|
|
static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = { |
|
PIX_FMT_DXVA2_VLD, |
|
PIX_FMT_VAAPI_VLD, |
|
PIX_FMT_VDA_VLD, |
|
PIX_FMT_YUVJ420P, |
|
PIX_FMT_NONE |
|
}; |
|
|
|
int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
return h ? h->sps.num_reorder_frames : 0; |
|
} |
|
|
|
/** |
|
* Check if the top & left blocks are available if needed and |
|
* change the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra4x4_pred_mode(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
static const int8_t top[12] = { |
|
-1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0 |
|
}; |
|
static const int8_t left[12] = { |
|
0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED |
|
}; |
|
int i; |
|
|
|
if (!(h->top_samples_available & 0x8000)) { |
|
for (i = 0; i < 4; i++) { |
|
int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]]; |
|
if (status < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"top block unavailable for requested intra4x4 mode %d at %d %d\n", |
|
status, s->mb_x, s->mb_y); |
|
return -1; |
|
} else if (status) { |
|
h->intra4x4_pred_mode_cache[scan8[0] + i] = status; |
|
} |
|
} |
|
} |
|
|
|
if ((h->left_samples_available & 0x8888) != 0x8888) { |
|
static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 }; |
|
for (i = 0; i < 4; i++) |
|
if (!(h->left_samples_available & mask[i])) { |
|
int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]]; |
|
if (status < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"left block unavailable for requested intra4x4 mode %d at %d %d\n", |
|
status, s->mb_x, s->mb_y); |
|
return -1; |
|
} else if (status) { |
|
h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} // FIXME cleanup like ff_h264_check_intra_pred_mode |
|
|
|
/** |
|
* Check if the top & left blocks are available if needed and |
|
* change the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
static const int8_t top[7] = { LEFT_DC_PRED8x8, 1, -1, -1 }; |
|
static const int8_t left[7] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 }; |
|
|
|
if (mode > 6U) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"out of range intra chroma pred mode at %d %d\n", |
|
s->mb_x, s->mb_y); |
|
return -1; |
|
} |
|
|
|
if (!(h->top_samples_available & 0x8000)) { |
|
mode = top[mode]; |
|
if (mode < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"top block unavailable for requested intra mode at %d %d\n", |
|
s->mb_x, s->mb_y); |
|
return -1; |
|
} |
|
} |
|
|
|
if ((h->left_samples_available & 0x8080) != 0x8080) { |
|
mode = left[mode]; |
|
if (is_chroma && (h->left_samples_available & 0x8080)) { |
|
// mad cow disease mode, aka MBAFF + constrained_intra_pred |
|
mode = ALZHEIMER_DC_L0T_PRED8x8 + |
|
(!(h->left_samples_available & 0x8000)) + |
|
2 * (mode == DC_128_PRED8x8); |
|
} |
|
if (mode < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"left block unavailable for requested intra mode at %d %d\n", |
|
s->mb_x, s->mb_y); |
|
return -1; |
|
} |
|
} |
|
|
|
return mode; |
|
} |
|
|
|
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, |
|
int *dst_length, int *consumed, int length) |
|
{ |
|
int i, si, di; |
|
uint8_t *dst; |
|
int bufidx; |
|
|
|
// src[0]&0x80; // forbidden bit |
|
h->nal_ref_idc = src[0] >> 5; |
|
h->nal_unit_type = src[0] & 0x1F; |
|
|
|
src++; |
|
length--; |
|
|
|
#if HAVE_FAST_UNALIGNED |
|
#if HAVE_FAST_64BIT |
|
#define RS 7 |
|
for (i = 0; i + 1 < length; i += 9) { |
|
if (!((~AV_RN64A(src + i) & |
|
(AV_RN64A(src + i) - 0x0100010001000101ULL)) & |
|
0x8000800080008080ULL)) |
|
#else |
|
#define RS 3 |
|
for (i = 0; i + 1 < length; i += 5) { |
|
if (!((~AV_RN32A(src + i) & |
|
(AV_RN32A(src + i) - 0x01000101U)) & |
|
0x80008080U)) |
|
#endif |
|
continue; |
|
if (i > 0 && !src[i]) |
|
i--; |
|
while (src[i]) |
|
i++; |
|
#else |
|
#define RS 0 |
|
for (i = 0; i + 1 < length; i += 2) { |
|
if (src[i]) |
|
continue; |
|
if (i > 0 && src[i - 1] == 0) |
|
i--; |
|
#endif |
|
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { |
|
if (src[i + 2] != 3) { |
|
/* startcode, so we must be past the end */ |
|
length = i; |
|
} |
|
break; |
|
} |
|
i -= RS; |
|
} |
|
|
|
// use second escape buffer for inter data |
|
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; |
|
|
|
si = h->rbsp_buffer_size[bufidx]; |
|
av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE); |
|
dst = h->rbsp_buffer[bufidx]; |
|
|
|
if (dst == NULL) |
|
return NULL; |
|
|
|
if(i>=length-1){ //no escaped 0 |
|
*dst_length= length; |
|
*consumed= length+1; //+1 for the header |
|
if(h->s.avctx->flags2 & CODEC_FLAG2_FAST){ |
|
return src; |
|
}else{ |
|
memcpy(dst, src, length); |
|
return dst; |
|
} |
|
} |
|
|
|
// printf("decoding esc\n"); |
|
memcpy(dst, src, i); |
|
si = di = i; |
|
while (si + 2 < length) { |
|
// remove escapes (very rare 1:2^22) |
|
if (src[si + 2] > 3) { |
|
dst[di++] = src[si++]; |
|
dst[di++] = src[si++]; |
|
} else if (src[si] == 0 && src[si + 1] == 0) { |
|
if (src[si + 2] == 3) { // escape |
|
dst[di++] = 0; |
|
dst[di++] = 0; |
|
si += 3; |
|
continue; |
|
} else // next start code |
|
goto nsc; |
|
} |
|
|
|
dst[di++] = src[si++]; |
|
} |
|
while (si < length) |
|
dst[di++] = src[si++]; |
|
nsc: |
|
|
|
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
*dst_length = di; |
|
*consumed = si + 1; // +1 for the header |
|
/* FIXME store exact number of bits in the getbitcontext |
|
* (it is needed for decoding) */ |
|
return dst; |
|
} |
|
|
|
/** |
|
* Identify the exact end of the bitstream |
|
* @return the length of the trailing, or 0 if damaged |
|
*/ |
|
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src) |
|
{ |
|
int v = *src; |
|
int r; |
|
|
|
tprintf(h->s.avctx, "rbsp trailing %X\n", v); |
|
|
|
for (r = 1; r < 9; r++) { |
|
if (v & 1) |
|
return r; |
|
v >>= 1; |
|
} |
|
return 0; |
|
} |
|
|
|
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, |
|
int height, int y_offset, int list) |
|
{ |
|
int raw_my = h->mv_cache[list][scan8[n]][1]; |
|
int filter_height = (raw_my & 3) ? 2 : 0; |
|
int full_my = (raw_my >> 2) + y_offset; |
|
int top = full_my - filter_height; |
|
int bottom = full_my + filter_height + height; |
|
|
|
return FFMAX(abs(top), bottom); |
|
} |
|
|
|
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, |
|
int height, int y_offset, int list0, |
|
int list1, int *nrefs) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int my; |
|
|
|
y_offset += 16 * (s->mb_y >> MB_FIELD); |
|
|
|
if (list0) { |
|
int ref_n = h->ref_cache[0][scan8[n]]; |
|
Picture *ref = &h->ref_list[0][ref_n]; |
|
|
|
// Error resilience puts the current picture in the ref list. |
|
// Don't try to wait on these as it will cause a deadlock. |
|
// Fields can wait on each other, though. |
|
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque || |
|
(ref->f.reference & 3) != s->picture_structure) { |
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0); |
|
if (refs[0][ref_n] < 0) |
|
nrefs[0] += 1; |
|
refs[0][ref_n] = FFMAX(refs[0][ref_n], my); |
|
} |
|
} |
|
|
|
if (list1) { |
|
int ref_n = h->ref_cache[1][scan8[n]]; |
|
Picture *ref = &h->ref_list[1][ref_n]; |
|
|
|
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque || |
|
(ref->f.reference & 3) != s->picture_structure) { |
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1); |
|
if (refs[1][ref_n] < 0) |
|
nrefs[1] += 1; |
|
refs[1][ref_n] = FFMAX(refs[1][ref_n], my); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Wait until all reference frames are available for MC operations. |
|
* |
|
* @param h the H264 context |
|
*/ |
|
static void await_references(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int mb_xy = h->mb_xy; |
|
const int mb_type = s->current_picture.f.mb_type[mb_xy]; |
|
int refs[2][48]; |
|
int nrefs[2] = { 0 }; |
|
int ref, list; |
|
|
|
memset(refs, -1, sizeof(refs)); |
|
|
|
if (IS_16X16(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 16, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
} else if (IS_16X8(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 8, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
get_lowest_part_y(h, refs, 8, 8, 8, |
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); |
|
} else if (IS_8X16(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 16, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
get_lowest_part_y(h, refs, 4, 16, 0, |
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); |
|
} else { |
|
int i; |
|
|
|
assert(IS_8X8(mb_type)); |
|
|
|
for (i = 0; i < 4; i++) { |
|
const int sub_mb_type = h->sub_mb_type[i]; |
|
const int n = 4 * i; |
|
int y_offset = (i & 2) << 2; |
|
|
|
if (IS_SUB_8X8(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else if (IS_SUB_8X4(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 4, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
get_lowest_part_y(h, refs, n + 2, 4, y_offset + 4, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else if (IS_SUB_4X8(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
get_lowest_part_y(h, refs, n + 1, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else { |
|
int j; |
|
assert(IS_SUB_4X4(sub_mb_type)); |
|
for (j = 0; j < 4; j++) { |
|
int sub_y_offset = y_offset + 2 * (j & 2); |
|
get_lowest_part_y(h, refs, n + j, 4, sub_y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (list = h->list_count - 1; list >= 0; list--) |
|
for (ref = 0; ref < 48 && nrefs[list]; ref++) { |
|
int row = refs[list][ref]; |
|
if (row >= 0) { |
|
Picture *ref_pic = &h->ref_list[list][ref]; |
|
int ref_field = ref_pic->f.reference - 1; |
|
int ref_field_picture = ref_pic->field_picture; |
|
int pic_height = 16 * s->mb_height >> ref_field_picture; |
|
|
|
row <<= MB_MBAFF; |
|
nrefs[list]--; |
|
|
|
if (!FIELD_PICTURE && ref_field_picture) { // frame referencing two fields |
|
ff_thread_await_progress(&ref_pic->f, |
|
FFMIN((row >> 1) - !(row & 1), |
|
pic_height - 1), |
|
1); |
|
ff_thread_await_progress(&ref_pic->f, |
|
FFMIN((row >> 1), pic_height - 1), |
|
0); |
|
} else if (FIELD_PICTURE && !ref_field_picture) { // field referencing one field of a frame |
|
ff_thread_await_progress(&ref_pic->f, |
|
FFMIN(row * 2 + ref_field, |
|
pic_height - 1), |
|
0); |
|
} else if (FIELD_PICTURE) { |
|
ff_thread_await_progress(&ref_pic->f, |
|
FFMIN(row, pic_height - 1), |
|
ref_field); |
|
} else { |
|
ff_thread_await_progress(&ref_pic->f, |
|
FFMIN(row, pic_height - 1), |
|
0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void mc_dir_part(H264Context *h, Picture *pic, |
|
int n, int square, int height, |
|
int delta, int list, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int src_x_offset, int src_y_offset, |
|
qpel_mc_func *qpix_op, |
|
h264_chroma_mc_func chroma_op, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int mx = h->mv_cache[list][scan8[n]][0] + src_x_offset * 8; |
|
int my = h->mv_cache[list][scan8[n]][1] + src_y_offset * 8; |
|
const int luma_xy = (mx & 3) + ((my & 3) << 2); |
|
int offset = ((mx >> 2) << pixel_shift) + (my >> 2) * h->mb_linesize; |
|
uint8_t *src_y = pic->f.data[0] + offset; |
|
uint8_t *src_cb, *src_cr; |
|
int extra_width = h->emu_edge_width; |
|
int extra_height = h->emu_edge_height; |
|
int emu = 0; |
|
const int full_mx = mx >> 2; |
|
const int full_my = my >> 2; |
|
const int pic_width = 16 * s->mb_width; |
|
const int pic_height = 16 * s->mb_height >> MB_FIELD; |
|
int ysh; |
|
|
|
if (mx & 7) |
|
extra_width -= 3; |
|
if (my & 7) |
|
extra_height -= 3; |
|
|
|
if (full_mx < 0 - extra_width || |
|
full_my < 0 - extra_height || |
|
full_mx + 16 /*FIXME*/ > pic_width + extra_width || |
|
full_my + 16 /*FIXME*/ > pic_height + extra_height) { |
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, |
|
src_y - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, |
|
full_my - 2, pic_width, pic_height); |
|
src_y = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
emu = 1; |
|
} |
|
|
|
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); |
|
|
|
if (CONFIG_GRAY && s->flags & CODEC_FLAG_GRAY) |
|
return; |
|
|
|
if (chroma_idc == 3 /* yuv444 */) { |
|
src_cb = pic->f.data[1] + offset; |
|
if (emu) { |
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, |
|
src_cb - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, |
|
full_mx - 2, full_my - 2, |
|
pic_width, pic_height); |
|
src_cb = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
} |
|
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize); |
|
|
|
src_cr = pic->f.data[2] + offset; |
|
if (emu) { |
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, |
|
src_cr - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, |
|
full_mx - 2, full_my - 2, |
|
pic_width, pic_height); |
|
src_cr = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
} |
|
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize); |
|
return; |
|
} |
|
|
|
ysh = 3 - (chroma_idc == 2 /* yuv422 */); |
|
if (chroma_idc == 1 /* yuv420 */ && MB_FIELD) { |
|
// chroma offset when predicting from a field of opposite parity |
|
my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1)); |
|
emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1); |
|
} |
|
|
|
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + |
|
(my >> ysh) * h->mb_uvlinesize; |
|
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + |
|
(my >> ysh) * h->mb_uvlinesize; |
|
|
|
if (emu) { |
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, |
|
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), |
|
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); |
|
src_cb = s->edge_emu_buffer; |
|
} |
|
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, |
|
height >> (chroma_idc == 1 /* yuv420 */), |
|
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); |
|
|
|
if (emu) { |
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, |
|
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), |
|
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); |
|
src_cr = s->edge_emu_buffer; |
|
} |
|
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), |
|
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); |
|
} |
|
|
|
static av_always_inline void mc_part_std(H264Context *h, int n, int square, |
|
int height, int delta, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int x_offset, int y_offset, |
|
qpel_mc_func *qpix_put, |
|
h264_chroma_mc_func chroma_put, |
|
qpel_mc_func *qpix_avg, |
|
h264_chroma_mc_func chroma_avg, |
|
int list0, int list1, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
qpel_mc_func *qpix_op = qpix_put; |
|
h264_chroma_mc_func chroma_op = chroma_put; |
|
|
|
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
} else if (chroma_idc == 2 /* yuv422 */) { |
|
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
} else { /* yuv420 */ |
|
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
} |
|
x_offset += 8 * s->mb_x; |
|
y_offset += 8 * (s->mb_y >> MB_FIELD); |
|
|
|
if (list0) { |
|
Picture *ref = &h->ref_list[0][h->ref_cache[0][scan8[n]]]; |
|
mc_dir_part(h, ref, n, square, height, delta, 0, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_op, chroma_op, pixel_shift, chroma_idc); |
|
|
|
qpix_op = qpix_avg; |
|
chroma_op = chroma_avg; |
|
} |
|
|
|
if (list1) { |
|
Picture *ref = &h->ref_list[1][h->ref_cache[1][scan8[n]]]; |
|
mc_dir_part(h, ref, n, square, height, delta, 1, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_op, chroma_op, pixel_shift, chroma_idc); |
|
} |
|
} |
|
|
|
static av_always_inline void mc_part_weighted(H264Context *h, int n, int square, |
|
int height, int delta, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int x_offset, int y_offset, |
|
qpel_mc_func *qpix_put, |
|
h264_chroma_mc_func chroma_put, |
|
h264_weight_func luma_weight_op, |
|
h264_weight_func chroma_weight_op, |
|
h264_biweight_func luma_weight_avg, |
|
h264_biweight_func chroma_weight_avg, |
|
int list0, int list1, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int chroma_height; |
|
|
|
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
chroma_height = height; |
|
chroma_weight_avg = luma_weight_avg; |
|
chroma_weight_op = luma_weight_op; |
|
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
} else if (chroma_idc == 2 /* yuv422 */) { |
|
chroma_height = height; |
|
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
} else { /* yuv420 */ |
|
chroma_height = height >> 1; |
|
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
} |
|
x_offset += 8 * s->mb_x; |
|
y_offset += 8 * (s->mb_y >> MB_FIELD); |
|
|
|
if (list0 && list1) { |
|
/* don't optimize for luma-only case, since B-frames usually |
|
* use implicit weights => chroma too. */ |
|
uint8_t *tmp_cb = s->obmc_scratchpad; |
|
uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift); |
|
uint8_t *tmp_y = s->obmc_scratchpad + 16 * h->mb_uvlinesize; |
|
int refn0 = h->ref_cache[0][scan8[n]]; |
|
int refn1 = h->ref_cache[1][scan8[n]]; |
|
|
|
mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0, |
|
dest_y, dest_cb, dest_cr, |
|
x_offset, y_offset, qpix_put, chroma_put, |
|
pixel_shift, chroma_idc); |
|
mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1, |
|
tmp_y, tmp_cb, tmp_cr, |
|
x_offset, y_offset, qpix_put, chroma_put, |
|
pixel_shift, chroma_idc); |
|
|
|
if (h->use_weight == 2) { |
|
int weight0 = h->implicit_weight[refn0][refn1][s->mb_y & 1]; |
|
int weight1 = 64 - weight0; |
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, |
|
height, 5, weight0, weight1, 0); |
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, |
|
chroma_height, 5, weight0, weight1, 0); |
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, |
|
chroma_height, 5, weight0, weight1, 0); |
|
} else { |
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, |
|
h->luma_log2_weight_denom, |
|
h->luma_weight[refn0][0][0], |
|
h->luma_weight[refn1][1][0], |
|
h->luma_weight[refn0][0][1] + |
|
h->luma_weight[refn1][1][1]); |
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn0][0][0][0], |
|
h->chroma_weight[refn1][1][0][0], |
|
h->chroma_weight[refn0][0][0][1] + |
|
h->chroma_weight[refn1][1][0][1]); |
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn0][0][1][0], |
|
h->chroma_weight[refn1][1][1][0], |
|
h->chroma_weight[refn0][0][1][1] + |
|
h->chroma_weight[refn1][1][1][1]); |
|
} |
|
} else { |
|
int list = list1 ? 1 : 0; |
|
int refn = h->ref_cache[list][scan8[n]]; |
|
Picture *ref = &h->ref_list[list][refn]; |
|
mc_dir_part(h, ref, n, square, height, delta, list, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_put, chroma_put, pixel_shift, chroma_idc); |
|
|
|
luma_weight_op(dest_y, h->mb_linesize, height, |
|
h->luma_log2_weight_denom, |
|
h->luma_weight[refn][list][0], |
|
h->luma_weight[refn][list][1]); |
|
if (h->use_weight_chroma) { |
|
chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn][list][0][0], |
|
h->chroma_weight[refn][list][0][1]); |
|
chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn][list][1][0], |
|
h->chroma_weight[refn][list][1][1]); |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void prefetch_motion(H264Context *h, int list, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
/* fetch pixels for estimated mv 4 macroblocks ahead |
|
* optimized for 64byte cache lines */ |
|
MpegEncContext *const s = &h->s; |
|
const int refn = h->ref_cache[list][scan8[0]]; |
|
if (refn >= 0) { |
|
const int mx = (h->mv_cache[list][scan8[0]][0] >> 2) + 16 * s->mb_x + 8; |
|
const int my = (h->mv_cache[list][scan8[0]][1] >> 2) + 16 * s->mb_y; |
|
uint8_t **src = h->ref_list[list][refn].f.data; |
|
int off = (mx << pixel_shift) + |
|
(my + (s->mb_x & 3) * 4) * h->mb_linesize + |
|
(64 << pixel_shift); |
|
s->dsp.prefetch(src[0] + off, s->linesize, 4); |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
s->dsp.prefetch(src[1] + off, s->linesize, 4); |
|
s->dsp.prefetch(src[2] + off, s->linesize, 4); |
|
} else { |
|
off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize; |
|
s->dsp.prefetch(src[1] + off, src[2] - src[1], 2); |
|
} |
|
} |
|
} |
|
|
|
static void free_tables(H264Context *h, int free_rbsp) |
|
{ |
|
int i; |
|
H264Context *hx; |
|
|
|
av_freep(&h->intra4x4_pred_mode); |
|
av_freep(&h->chroma_pred_mode_table); |
|
av_freep(&h->cbp_table); |
|
av_freep(&h->mvd_table[0]); |
|
av_freep(&h->mvd_table[1]); |
|
av_freep(&h->direct_table); |
|
av_freep(&h->non_zero_count); |
|
av_freep(&h->slice_table_base); |
|
h->slice_table = NULL; |
|
av_freep(&h->list_counts); |
|
|
|
av_freep(&h->mb2b_xy); |
|
av_freep(&h->mb2br_xy); |
|
|
|
for (i = 0; i < MAX_THREADS; i++) { |
|
hx = h->thread_context[i]; |
|
if (!hx) |
|
continue; |
|
av_freep(&hx->top_borders[1]); |
|
av_freep(&hx->top_borders[0]); |
|
av_freep(&hx->s.obmc_scratchpad); |
|
if (free_rbsp) { |
|
av_freep(&hx->rbsp_buffer[1]); |
|
av_freep(&hx->rbsp_buffer[0]); |
|
hx->rbsp_buffer_size[0] = 0; |
|
hx->rbsp_buffer_size[1] = 0; |
|
} |
|
if (i) |
|
av_freep(&h->thread_context[i]); |
|
} |
|
} |
|
|
|
static void init_dequant8_coeff_table(H264Context *h) |
|
{ |
|
int i, j, q, x; |
|
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); |
|
|
|
for (i = 0; i < 6; i++) { |
|
h->dequant8_coeff[i] = h->dequant8_buffer[i]; |
|
for (j = 0; j < i; j++) |
|
if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], |
|
64 * sizeof(uint8_t))) { |
|
h->dequant8_coeff[i] = h->dequant8_buffer[j]; |
|
break; |
|
} |
|
if (j < i) |
|
continue; |
|
|
|
for (q = 0; q < max_qp + 1; q++) { |
|
int shift = div6[q]; |
|
int idx = rem6[q]; |
|
for (x = 0; x < 64; x++) |
|
h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] = |
|
((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] * |
|
h->pps.scaling_matrix8[i][x]) << shift; |
|
} |
|
} |
|
} |
|
|
|
static void init_dequant4_coeff_table(H264Context *h) |
|
{ |
|
int i, j, q, x; |
|
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); |
|
for (i = 0; i < 6; i++) { |
|
h->dequant4_coeff[i] = h->dequant4_buffer[i]; |
|
for (j = 0; j < i; j++) |
|
if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], |
|
16 * sizeof(uint8_t))) { |
|
h->dequant4_coeff[i] = h->dequant4_buffer[j]; |
|
break; |
|
} |
|
if (j < i) |
|
continue; |
|
|
|
for (q = 0; q < max_qp + 1; q++) { |
|
int shift = div6[q] + 2; |
|
int idx = rem6[q]; |
|
for (x = 0; x < 16; x++) |
|
h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] = |
|
((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * |
|
h->pps.scaling_matrix4[i][x]) << shift; |
|
} |
|
} |
|
} |
|
|
|
static void init_dequant_tables(H264Context *h) |
|
{ |
|
int i, x; |
|
init_dequant4_coeff_table(h); |
|
if (h->pps.transform_8x8_mode) |
|
init_dequant8_coeff_table(h); |
|
if (h->sps.transform_bypass) { |
|
for (i = 0; i < 6; i++) |
|
for (x = 0; x < 16; x++) |
|
h->dequant4_coeff[i][0][x] = 1 << 6; |
|
if (h->pps.transform_8x8_mode) |
|
for (i = 0; i < 6; i++) |
|
for (x = 0; x < 64; x++) |
|
h->dequant8_coeff[i][0][x] = 1 << 6; |
|
} |
|
} |
|
|
|
int ff_h264_alloc_tables(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int big_mb_num = s->mb_stride * (s->mb_height + 1); |
|
const int row_mb_num = 2*s->mb_stride*FFMAX(s->avctx->thread_count, 1); |
|
int x, y; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, |
|
row_mb_num * 8 * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count, |
|
big_mb_num * 48 * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base, |
|
(big_mb_num + s->mb_stride) * sizeof(*h->slice_table_base), fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, |
|
big_mb_num * sizeof(uint16_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, |
|
4 * big_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
|
|
memset(h->slice_table_base, -1, |
|
(big_mb_num + s->mb_stride) * sizeof(*h->slice_table_base)); |
|
h->slice_table = h->slice_table_base + s->mb_stride * 2 + 1; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
for (y = 0; y < s->mb_height; y++) |
|
for (x = 0; x < s->mb_width; x++) { |
|
const int mb_xy = x + y * s->mb_stride; |
|
const int b_xy = 4 * x + 4 * y * h->b_stride; |
|
|
|
h->mb2b_xy[mb_xy] = b_xy; |
|
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * s->mb_stride))); |
|
} |
|
|
|
s->obmc_scratchpad = NULL; |
|
|
|
if (!h->dequant4_coeff[0]) |
|
init_dequant_tables(h); |
|
|
|
return 0; |
|
|
|
fail: |
|
free_tables(h, 1); |
|
return -1; |
|
} |
|
|
|
/** |
|
* Mimic alloc_tables(), but for every context thread. |
|
*/ |
|
static void clone_tables(H264Context *dst, H264Context *src, int i) |
|
{ |
|
MpegEncContext *const s = &src->s; |
|
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * s->mb_stride; |
|
dst->non_zero_count = src->non_zero_count; |
|
dst->slice_table = src->slice_table; |
|
dst->cbp_table = src->cbp_table; |
|
dst->mb2b_xy = src->mb2b_xy; |
|
dst->mb2br_xy = src->mb2br_xy; |
|
dst->chroma_pred_mode_table = src->chroma_pred_mode_table; |
|
dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * s->mb_stride; |
|
dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * s->mb_stride; |
|
dst->direct_table = src->direct_table; |
|
dst->list_counts = src->list_counts; |
|
dst->s.obmc_scratchpad = NULL; |
|
ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma, |
|
src->sps.chroma_format_idc); |
|
} |
|
|
|
/** |
|
* Init context |
|
* Allocate buffers which are not shared amongst multiple threads. |
|
*/ |
|
static int context_init(H264Context *h) |
|
{ |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], |
|
h->s.mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) |
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], |
|
h->s.mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) |
|
|
|
h->ref_cache[0][scan8[5] + 1] = |
|
h->ref_cache[0][scan8[7] + 1] = |
|
h->ref_cache[0][scan8[13] + 1] = |
|
h->ref_cache[1][scan8[5] + 1] = |
|
h->ref_cache[1][scan8[7] + 1] = |
|
h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; |
|
|
|
return 0; |
|
|
|
fail: |
|
return -1; // free_tables will clean up for us |
|
} |
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size); |
|
|
|
static av_cold void common_init(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
|
|
s->width = s->avctx->width; |
|
s->height = s->avctx->height; |
|
s->codec_id = s->avctx->codec->id; |
|
|
|
s->avctx->bits_per_raw_sample = 8; |
|
h->cur_chroma_format_idc = 1; |
|
|
|
ff_h264dsp_init(&h->h264dsp, |
|
s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc); |
|
ff_h264_pred_init(&h->hpc, s->codec_id, |
|
s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc); |
|
|
|
h->dequant_coeff_pps = -1; |
|
s->unrestricted_mv = 1; |
|
|
|
s->dsp.dct_bits = 16; |
|
/* needed so that IDCT permutation is known early */ |
|
ff_dsputil_init(&s->dsp, s->avctx); |
|
|
|
memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t)); |
|
memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t)); |
|
} |
|
|
|
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size) |
|
{ |
|
AVCodecContext *avctx = h->s.avctx; |
|
|
|
if (!buf || size <= 0) |
|
return -1; |
|
|
|
if (buf[0] == 1) { |
|
int i, cnt, nalsize; |
|
const unsigned char *p = buf; |
|
|
|
h->is_avc = 1; |
|
|
|
if (size < 7) { |
|
av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); |
|
return -1; |
|
} |
|
/* sps and pps in the avcC always have length coded with 2 bytes, |
|
* so put a fake nal_length_size = 2 while parsing them */ |
|
h->nal_length_size = 2; |
|
// Decode sps from avcC |
|
cnt = *(p + 5) & 0x1f; // Number of sps |
|
p += 6; |
|
for (i = 0; i < cnt; i++) { |
|
nalsize = AV_RB16(p) + 2; |
|
if(nalsize > size - (p-buf)) |
|
return -1; |
|
if (decode_nal_units(h, p, nalsize) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Decoding sps %d from avcC failed\n", i); |
|
return -1; |
|
} |
|
p += nalsize; |
|
} |
|
// Decode pps from avcC |
|
cnt = *(p++); // Number of pps |
|
for (i = 0; i < cnt; i++) { |
|
nalsize = AV_RB16(p) + 2; |
|
if(nalsize > size - (p-buf)) |
|
return -1; |
|
if (decode_nal_units(h, p, nalsize) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Decoding pps %d from avcC failed\n", i); |
|
return -1; |
|
} |
|
p += nalsize; |
|
} |
|
// Now store right nal length size, that will be used to parse all other nals |
|
h->nal_length_size = (buf[4] & 0x03) + 1; |
|
} else { |
|
h->is_avc = 0; |
|
if (decode_nal_units(h, buf, size) < 0) |
|
return -1; |
|
} |
|
return size; |
|
} |
|
|
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
MpegEncContext *const s = &h->s; |
|
int i; |
|
|
|
ff_MPV_decode_defaults(s); |
|
|
|
s->avctx = avctx; |
|
common_init(h); |
|
|
|
s->out_format = FMT_H264; |
|
s->workaround_bugs = avctx->workaround_bugs; |
|
|
|
/* set defaults */ |
|
// s->decode_mb = ff_h263_decode_mb; |
|
s->quarter_sample = 1; |
|
if (!avctx->has_b_frames) |
|
s->low_delay = 1; |
|
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; |
|
|
|
ff_h264_decode_init_vlc(); |
|
|
|
h->pixel_shift = 0; |
|
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; |
|
|
|
h->thread_context[0] = h; |
|
h->outputed_poc = h->next_outputed_poc = INT_MIN; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
h->prev_poc_msb = 1 << 16; |
|
h->prev_frame_num = -1; |
|
h->x264_build = -1; |
|
ff_h264_reset_sei(h); |
|
if (avctx->codec_id == CODEC_ID_H264) { |
|
if (avctx->ticks_per_frame == 1) |
|
s->avctx->time_base.den *= 2; |
|
avctx->ticks_per_frame = 2; |
|
} |
|
|
|
if (avctx->extradata_size > 0 && avctx->extradata && |
|
ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size) < 0) { |
|
ff_h264_free_context(h); |
|
return -1; |
|
} |
|
|
|
if (h->sps.bitstream_restriction_flag && |
|
s->avctx->has_b_frames < h->sps.num_reorder_frames) { |
|
s->avctx->has_b_frames = h->sps.num_reorder_frames; |
|
s->low_delay = 0; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size)))) |
|
|
|
static void copy_picture_range(Picture **to, Picture **from, int count, |
|
MpegEncContext *new_base, |
|
MpegEncContext *old_base) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < count; i++) { |
|
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) || |
|
IN_RANGE(from[i], old_base->picture, |
|
sizeof(Picture) * old_base->picture_count) || |
|
!from[i])); |
|
to[i] = REBASE_PICTURE(from[i], new_base, old_base); |
|
} |
|
} |
|
|
|
static void copy_parameter_set(void **to, void **from, int count, int size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < count; i++) { |
|
if (to[i] && !from[i]) |
|
av_freep(&to[i]); |
|
else if (from[i] && !to[i]) |
|
to[i] = av_malloc(size); |
|
|
|
if (from[i]) |
|
memcpy(to[i], from[i], size); |
|
} |
|
} |
|
|
|
static int decode_init_thread_copy(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
|
|
if (!avctx->internal->is_copy) |
|
return 0; |
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); |
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); |
|
|
|
return 0; |
|
} |
|
|
|
#define copy_fields(to, from, start_field, end_field) \ |
|
memcpy(&to->start_field, &from->start_field, \ |
|
(char *)&to->end_field - (char *)&to->start_field) |
|
|
|
static int decode_update_thread_context(AVCodecContext *dst, |
|
const AVCodecContext *src) |
|
{ |
|
H264Context *h = dst->priv_data, *h1 = src->priv_data; |
|
MpegEncContext *const s = &h->s, *const s1 = &h1->s; |
|
int inited = s->context_initialized, err; |
|
int i; |
|
|
|
if (dst == src) |
|
return 0; |
|
|
|
err = ff_mpeg_update_thread_context(dst, src); |
|
if (err) |
|
return err; |
|
|
|
// FIXME handle width/height changing |
|
if (!inited) { |
|
for (i = 0; i < MAX_SPS_COUNT; i++) |
|
av_freep(h->sps_buffers + i); |
|
|
|
for (i = 0; i < MAX_PPS_COUNT; i++) |
|
av_freep(h->pps_buffers + i); |
|
|
|
// copy all fields after MpegEnc |
|
memcpy(&h->s + 1, &h1->s + 1, |
|
sizeof(H264Context) - sizeof(MpegEncContext)); |
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); |
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); |
|
|
|
if (s1->context_initialized) { |
|
if (ff_h264_alloc_tables(h) < 0) { |
|
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
context_init(h); |
|
|
|
/* frame_start may not be called for the next thread (if it's decoding |
|
* a bottom field) so this has to be allocated here */ |
|
h->s.obmc_scratchpad = av_malloc(16 * 6 * s->linesize); |
|
} |
|
|
|
for (i = 0; i < 2; i++) { |
|
h->rbsp_buffer[i] = NULL; |
|
h->rbsp_buffer_size[i] = 0; |
|
} |
|
|
|
h->thread_context[0] = h; |
|
|
|
s->dsp.clear_blocks(h->mb); |
|
s->dsp.clear_blocks(h->mb + (24 * 16 << h->pixel_shift)); |
|
} |
|
|
|
// extradata/NAL handling |
|
h->is_avc = h1->is_avc; |
|
|
|
// SPS/PPS |
|
copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers, |
|
MAX_SPS_COUNT, sizeof(SPS)); |
|
h->sps = h1->sps; |
|
copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers, |
|
MAX_PPS_COUNT, sizeof(PPS)); |
|
h->pps = h1->pps; |
|
|
|
// Dequantization matrices |
|
// FIXME these are big - can they be only copied when PPS changes? |
|
copy_fields(h, h1, dequant4_buffer, dequant4_coeff); |
|
|
|
for (i = 0; i < 6; i++) |
|
h->dequant4_coeff[i] = h->dequant4_buffer[0] + |
|
(h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); |
|
|
|
for (i = 0; i < 6; i++) |
|
h->dequant8_coeff[i] = h->dequant8_buffer[0] + |
|
(h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); |
|
|
|
h->dequant_coeff_pps = h1->dequant_coeff_pps; |
|
|
|
// POC timing |
|
copy_fields(h, h1, poc_lsb, redundant_pic_count); |
|
|
|
// reference lists |
|
copy_fields(h, h1, ref_count, list_count); |
|
copy_fields(h, h1, ref_list, intra_gb); |
|
copy_fields(h, h1, short_ref, cabac_init_idc); |
|
|
|
copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1); |
|
copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1); |
|
copy_picture_range(h->delayed_pic, h1->delayed_pic, |
|
MAX_DELAYED_PIC_COUNT + 2, s, s1); |
|
|
|
h->last_slice_type = h1->last_slice_type; |
|
h->sync = h1->sync; |
|
|
|
if (!s->current_picture_ptr) |
|
return 0; |
|
|
|
if (!s->dropable) { |
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); |
|
h->prev_poc_msb = h->poc_msb; |
|
h->prev_poc_lsb = h->poc_lsb; |
|
} |
|
h->prev_frame_num_offset = h->frame_num_offset; |
|
h->prev_frame_num = h->frame_num; |
|
h->outputed_poc = h->next_outputed_poc; |
|
|
|
return err; |
|
} |
|
|
|
int ff_h264_frame_start(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int i; |
|
const int pixel_shift = h->pixel_shift; |
|
|
|
if (ff_MPV_frame_start(s, s->avctx) < 0) |
|
return -1; |
|
ff_er_frame_start(s); |
|
/* |
|
* ff_MPV_frame_start uses pict_type to derive key_frame. |
|
* This is incorrect for H.264; IDR markings must be used. |
|
* Zero here; IDR markings per slice in frame or fields are ORed in later. |
|
* See decode_nal_units(). |
|
*/ |
|
s->current_picture_ptr->f.key_frame = 0; |
|
s->current_picture_ptr->sync = 0; |
|
s->current_picture_ptr->mmco_reset = 0; |
|
|
|
assert(s->linesize && s->uvlinesize); |
|
|
|
for (i = 0; i < 16; i++) { |
|
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * s->linesize * ((scan8[i] - scan8[0]) >> 3); |
|
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * s->linesize * ((scan8[i] - scan8[0]) >> 3); |
|
} |
|
for (i = 0; i < 16; i++) { |
|
h->block_offset[16 + i] = |
|
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * s->uvlinesize * ((scan8[i] - scan8[0]) >> 3); |
|
h->block_offset[48 + 16 + i] = |
|
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * s->uvlinesize * ((scan8[i] - scan8[0]) >> 3); |
|
} |
|
|
|
/* can't be in alloc_tables because linesize isn't known there. |
|
* FIXME: redo bipred weight to not require extra buffer? */ |
|
for (i = 0; i < s->slice_context_count; i++) |
|
if (h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad) |
|
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16 * 6 * s->linesize); |
|
|
|
/* Some macroblocks can be accessed before they're available in case |
|
* of lost slices, MBAFF or threading. */ |
|
memset(h->slice_table, -1, |
|
(s->mb_height * s->mb_stride - 1) * sizeof(*h->slice_table)); |
|
|
|
// s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding || |
|
// s->current_picture.f.reference /* || h->contains_intra */ || 1; |
|
|
|
/* We mark the current picture as non-reference after allocating it, so |
|
* that if we break out due to an error it can be released automatically |
|
* in the next ff_MPV_frame_start(). |
|
* SVQ3 as well as most other codecs have only last/next/current and thus |
|
* get released even with set reference, besides SVQ3 and others do not |
|
* mark frames as reference later "naturally". */ |
|
if (s->codec_id != CODEC_ID_SVQ3) |
|
s->current_picture_ptr->f.reference = 0; |
|
|
|
s->current_picture_ptr->field_poc[0] = |
|
s->current_picture_ptr->field_poc[1] = INT_MAX; |
|
|
|
h->next_output_pic = NULL; |
|
|
|
assert(s->current_picture_ptr->long_ref == 0); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Run setup operations that must be run after slice header decoding. |
|
* This includes finding the next displayed frame. |
|
* |
|
* @param h h264 master context |
|
* @param setup_finished enough NALs have been read that we can call |
|
* ff_thread_finish_setup() |
|
*/ |
|
static void decode_postinit(H264Context *h, int setup_finished) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
Picture *out = s->current_picture_ptr; |
|
Picture *cur = s->current_picture_ptr; |
|
int i, pics, out_of_order, out_idx; |
|
|
|
s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264; |
|
s->current_picture_ptr->f.pict_type = s->pict_type; |
|
|
|
if (h->next_output_pic) |
|
return; |
|
|
|
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { |
|
/* FIXME: if we have two PAFF fields in one packet, we can't start |
|
* the next thread here. If we have one field per packet, we can. |
|
* The check in decode_nal_units() is not good enough to find this |
|
* yet, so we assume the worst for now. */ |
|
// if (setup_finished) |
|
// ff_thread_finish_setup(s->avctx); |
|
return; |
|
} |
|
|
|
cur->f.interlaced_frame = 0; |
|
cur->f.repeat_pict = 0; |
|
|
|
/* Signal interlacing information externally. */ |
|
/* Prioritize picture timing SEI information over used |
|
* decoding process if it exists. */ |
|
|
|
if (h->sps.pic_struct_present_flag) { |
|
switch (h->sei_pic_struct) { |
|
case SEI_PIC_STRUCT_FRAME: |
|
break; |
|
case SEI_PIC_STRUCT_TOP_FIELD: |
|
case SEI_PIC_STRUCT_BOTTOM_FIELD: |
|
cur->f.interlaced_frame = 1; |
|
break; |
|
case SEI_PIC_STRUCT_TOP_BOTTOM: |
|
case SEI_PIC_STRUCT_BOTTOM_TOP: |
|
if (FIELD_OR_MBAFF_PICTURE) |
|
cur->f.interlaced_frame = 1; |
|
else |
|
// try to flag soft telecine progressive |
|
cur->f.interlaced_frame = h->prev_interlaced_frame; |
|
break; |
|
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: |
|
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: |
|
/* Signal the possibility of telecined film externally |
|
* (pic_struct 5,6). From these hints, let the applications |
|
* decide if they apply deinterlacing. */ |
|
cur->f.repeat_pict = 1; |
|
break; |
|
case SEI_PIC_STRUCT_FRAME_DOUBLING: |
|
// Force progressive here, doubling interlaced frame is a bad idea. |
|
cur->f.repeat_pict = 2; |
|
break; |
|
case SEI_PIC_STRUCT_FRAME_TRIPLING: |
|
cur->f.repeat_pict = 4; |
|
break; |
|
} |
|
|
|
if ((h->sei_ct_type & 3) && |
|
h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) |
|
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0; |
|
} else { |
|
/* Derive interlacing flag from used decoding process. */ |
|
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE; |
|
} |
|
h->prev_interlaced_frame = cur->f.interlaced_frame; |
|
|
|
if (cur->field_poc[0] != cur->field_poc[1]) { |
|
/* Derive top_field_first from field pocs. */ |
|
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1]; |
|
} else { |
|
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) { |
|
/* Use picture timing SEI information. Even if it is a |
|
* information of a past frame, better than nothing. */ |
|
if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || |
|
h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) |
|
cur->f.top_field_first = 1; |
|
else |
|
cur->f.top_field_first = 0; |
|
} else { |
|
/* Most likely progressive */ |
|
cur->f.top_field_first = 0; |
|
} |
|
} |
|
|
|
cur->mmco_reset = h->mmco_reset; |
|
h->mmco_reset = 0; |
|
// FIXME do something with unavailable reference frames |
|
|
|
/* Sort B-frames into display order */ |
|
|
|
if (h->sps.bitstream_restriction_flag && |
|
s->avctx->has_b_frames < h->sps.num_reorder_frames) { |
|
s->avctx->has_b_frames = h->sps.num_reorder_frames; |
|
s->low_delay = 0; |
|
} |
|
|
|
if (s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && |
|
!h->sps.bitstream_restriction_flag) { |
|
s->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1; |
|
s->low_delay = 0; |
|
} |
|
|
|
for (i = 0; 1; i++) { |
|
if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){ |
|
if(i) |
|
h->last_pocs[i-1] = cur->poc; |
|
break; |
|
} else if(i) { |
|
h->last_pocs[i-1]= h->last_pocs[i]; |
|
} |
|
} |
|
out_of_order = MAX_DELAYED_PIC_COUNT - i; |
|
if( cur->f.pict_type == AV_PICTURE_TYPE_B |
|
|| (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2)) |
|
out_of_order = FFMAX(out_of_order, 1); |
|
if(s->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){ |
|
av_log(s->avctx, AV_LOG_VERBOSE, "Increasing reorder buffer to %d\n", out_of_order); |
|
s->avctx->has_b_frames = out_of_order; |
|
s->low_delay = 0; |
|
} |
|
|
|
pics = 0; |
|
while (h->delayed_pic[pics]) |
|
pics++; |
|
|
|
av_assert0(pics <= MAX_DELAYED_PIC_COUNT); |
|
|
|
h->delayed_pic[pics++] = cur; |
|
if (cur->f.reference == 0) |
|
cur->f.reference = DELAYED_PIC_REF; |
|
|
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; h->delayed_pic[i] && |
|
!h->delayed_pic[i]->f.key_frame && |
|
!h->delayed_pic[i]->mmco_reset; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
if (s->avctx->has_b_frames == 0 && |
|
(h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) |
|
h->next_outputed_poc = INT_MIN; |
|
out_of_order = out->poc < h->next_outputed_poc; |
|
|
|
if (out_of_order || pics > s->avctx->has_b_frames) { |
|
out->f.reference &= ~DELAYED_PIC_REF; |
|
// for frame threading, the owner must be the second field's thread or |
|
// else the first thread can release the picture and reuse it unsafely |
|
out->owner2 = s; |
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
} |
|
if (!out_of_order && pics > s->avctx->has_b_frames) { |
|
h->next_output_pic = out; |
|
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) { |
|
h->next_outputed_poc = INT_MIN; |
|
} else |
|
h->next_outputed_poc = out->poc; |
|
} else { |
|
av_log(s->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : ""); |
|
} |
|
|
|
if (h->next_output_pic && h->next_output_pic->sync) { |
|
h->sync |= 2; |
|
} |
|
|
|
if (setup_finished) |
|
ff_thread_finish_setup(s->avctx); |
|
} |
|
|
|
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, |
|
uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, |
|
int simple) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
uint8_t *top_border; |
|
int top_idx = 1; |
|
const int pixel_shift = h->pixel_shift; |
|
int chroma444 = CHROMA444; |
|
int chroma422 = CHROMA422; |
|
|
|
src_y -= linesize; |
|
src_cb -= uvlinesize; |
|
src_cr -= uvlinesize; |
|
|
|
if (!simple && FRAME_MBAFF) { |
|
if (s->mb_y & 1) { |
|
if (!MB_MBAFF) { |
|
top_border = h->top_borders[0][s->mb_x]; |
|
AV_COPY128(top_border, src_y + 15 * linesize); |
|
if (pixel_shift) |
|
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16); |
|
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16); |
|
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize); |
|
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16); |
|
} else { |
|
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize); |
|
} |
|
} else if (chroma422) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize); |
|
} |
|
} else { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); |
|
} |
|
} |
|
} |
|
} |
|
} else if (MB_MBAFF) { |
|
top_idx = 0; |
|
} else |
|
return; |
|
} |
|
|
|
top_border = h->top_borders[top_idx][s->mb_x]; |
|
/* There are two lines saved, the line above the top macroblock |
|
* of a pair, and the line above the bottom macroblock. */ |
|
AV_COPY128(top_border, src_y + 16 * linesize); |
|
if (pixel_shift) |
|
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16); |
|
|
|
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 16 * linesize); |
|
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16); |
|
AV_COPY128(top_border + 64, src_cr + 16 * linesize); |
|
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16); |
|
} else { |
|
AV_COPY128(top_border + 16, src_cb + 16 * linesize); |
|
AV_COPY128(top_border + 32, src_cr + 16 * linesize); |
|
} |
|
} else if (chroma422) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize); |
|
} |
|
} else { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y, |
|
uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, |
|
int xchg, int chroma444, |
|
int simple, int pixel_shift) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int deblock_topleft; |
|
int deblock_top; |
|
int top_idx = 1; |
|
uint8_t *top_border_m1; |
|
uint8_t *top_border; |
|
|
|
if (!simple && FRAME_MBAFF) { |
|
if (s->mb_y & 1) { |
|
if (!MB_MBAFF) |
|
return; |
|
} else { |
|
top_idx = MB_MBAFF ? 0 : 1; |
|
} |
|
} |
|
|
|
if (h->deblocking_filter == 2) { |
|
deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num; |
|
deblock_top = h->top_type; |
|
} else { |
|
deblock_topleft = (s->mb_x > 0); |
|
deblock_top = (s->mb_y > !!MB_FIELD); |
|
} |
|
|
|
src_y -= linesize + 1 + pixel_shift; |
|
src_cb -= uvlinesize + 1 + pixel_shift; |
|
src_cr -= uvlinesize + 1 + pixel_shift; |
|
|
|
top_border_m1 = h->top_borders[top_idx][s->mb_x - 1]; |
|
top_border = h->top_borders[top_idx][s->mb_x]; |
|
|
|
#define XCHG(a, b, xchg) \ |
|
if (pixel_shift) { \ |
|
if (xchg) { \ |
|
AV_SWAP64(b + 0, a + 0); \ |
|
AV_SWAP64(b + 8, a + 8); \ |
|
} else { \ |
|
AV_COPY128(b, a); \ |
|
} \ |
|
} else if (xchg) \ |
|
AV_SWAP64(b, a); \ |
|
else \ |
|
AV_COPY64(b, a); |
|
|
|
if (deblock_top) { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (8 << pixel_shift), |
|
src_y - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1); |
|
if (s->mb_x + 1 < s->mb_width) { |
|
XCHG(h->top_borders[top_idx][s->mb_x + 1], |
|
src_y + (17 << pixel_shift), 1); |
|
} |
|
} |
|
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1); |
|
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1); |
|
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1); |
|
if (s->mb_x + 1 < s->mb_width) { |
|
XCHG(h->top_borders[top_idx][s->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1); |
|
XCHG(h->top_borders[top_idx][s->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1); |
|
} |
|
} else { |
|
if (deblock_top) { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1); |
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1); |
|
XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth, |
|
int index) |
|
{ |
|
if (high_bit_depth) { |
|
return AV_RN32A(((int32_t *)mb) + index); |
|
} else |
|
return AV_RN16A(mb + index); |
|
} |
|
|
|
static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth, |
|
int index, int value) |
|
{ |
|
if (high_bit_depth) { |
|
AV_WN32A(((int32_t *)mb) + index, value); |
|
} else |
|
AV_WN16A(mb + index, value); |
|
} |
|
|
|
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, |
|
int mb_type, int is_h264, |
|
int simple, |
|
int transform_bypass, |
|
int pixel_shift, |
|
int *block_offset, |
|
int linesize, |
|
uint8_t *dest_y, int p) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); |
|
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride); |
|
int i; |
|
int qscale = p == 0 ? s->qscale : h->chroma_qp[p - 1]; |
|
block_offset += 16 * p; |
|
if (IS_INTRA4x4(mb_type)) { |
|
if (simple || !s->encoding) { |
|
if (IS_8x8DCT(mb_type)) { |
|
if (transform_bypass) { |
|
idct_dc_add = |
|
idct_add = s->dsp.add_pixels8; |
|
} else { |
|
idct_dc_add = h->h264dsp.h264_idct8_dc_add; |
|
idct_add = h->h264dsp.h264_idct8_add; |
|
} |
|
for (i = 0; i < 16; i += 4) { |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; |
|
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { |
|
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else { |
|
const int nnz = h->non_zero_count_cache[scan8[i + p * 16]]; |
|
h->hpc.pred8x8l[dir](ptr, (h->topleft_samples_available << i) & 0x8000, |
|
(h->topright_samples_available << i) & 0x4000, linesize); |
|
if (nnz) { |
|
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
else |
|
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} |
|
} |
|
} |
|
} else { |
|
if (transform_bypass) { |
|
idct_dc_add = |
|
idct_add = s->dsp.add_pixels4; |
|
} else { |
|
idct_dc_add = h->h264dsp.h264_idct_dc_add; |
|
idct_add = h->h264dsp.h264_idct_add; |
|
} |
|
for (i = 0; i < 16; i++) { |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; |
|
|
|
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { |
|
h->hpc.pred4x4_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else { |
|
uint8_t *topright; |
|
int nnz, tr; |
|
uint64_t tr_high; |
|
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) { |
|
const int topright_avail = (h->topright_samples_available << i) & 0x8000; |
|
assert(s->mb_y || linesize <= block_offset[i]); |
|
if (!topright_avail) { |
|
if (pixel_shift) { |
|
tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL; |
|
topright = (uint8_t *)&tr_high; |
|
} else { |
|
tr = ptr[3 - linesize] * 0x01010101u; |
|
topright = (uint8_t *)&tr; |
|
} |
|
} else |
|
topright = ptr + (4 << pixel_shift) - linesize; |
|
} else |
|
topright = NULL; |
|
|
|
h->hpc.pred4x4[dir](ptr, topright, linesize); |
|
nnz = h->non_zero_count_cache[scan8[i + p * 16]]; |
|
if (nnz) { |
|
if (is_h264) { |
|
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
else |
|
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else if (CONFIG_SVQ3_DECODER) |
|
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, qscale, 0); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
h->hpc.pred16x16[h->intra16x16_pred_mode](dest_y, linesize); |
|
if (is_h264) { |
|
if (h->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) { |
|
if (!transform_bypass) |
|
h->h264dsp.h264_luma_dc_dequant_idct(h->mb + (p * 256 << pixel_shift), |
|
h->mb_luma_dc[p], |
|
h->dequant4_coeff[p][qscale][0]); |
|
else { |
|
static const uint8_t dc_mapping[16] = { |
|
0 * 16, 1 * 16, 4 * 16, 5 * 16, |
|
2 * 16, 3 * 16, 6 * 16, 7 * 16, |
|
8 * 16, 9 * 16, 12 * 16, 13 * 16, |
|
10 * 16, 11 * 16, 14 * 16, 15 * 16 }; |
|
for (i = 0; i < 16; i++) |
|
dctcoef_set(h->mb + (p * 256 << pixel_shift), |
|
pixel_shift, dc_mapping[i], |
|
dctcoef_get(h->mb_luma_dc[p], |
|
pixel_shift, i)); |
|
} |
|
} |
|
} else if (CONFIG_SVQ3_DECODER) |
|
ff_svq3_luma_dc_dequant_idct_c(h->mb + p * 256, |
|
h->mb_luma_dc[p], qscale); |
|
} |
|
} |
|
|
|
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, |
|
int is_h264, int simple, |
|
int transform_bypass, |
|
int pixel_shift, |
|
int *block_offset, |
|
int linesize, |
|
uint8_t *dest_y, int p) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); |
|
int i; |
|
block_offset += 16 * p; |
|
if (!IS_INTRA4x4(mb_type)) { |
|
if (is_h264) { |
|
if (IS_INTRA16x16(mb_type)) { |
|
if (transform_bypass) { |
|
if (h->sps.profile_idc == 244 && |
|
(h->intra16x16_pred_mode == VERT_PRED8x8 || |
|
h->intra16x16_pred_mode == HOR_PRED8x8)) { |
|
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize); |
|
} else { |
|
for (i = 0; i < 16; i++) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]] || |
|
dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
s->dsp.add_pixels4(dest_y + block_offset[i], |
|
h->mb + (i * 16 + p * 256 << pixel_shift), |
|
linesize); |
|
} |
|
} else { |
|
h->h264dsp.h264_idct_add16intra(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
} |
|
} else if (h->cbp & 15) { |
|
if (transform_bypass) { |
|
const int di = IS_8x8DCT(mb_type) ? 4 : 1; |
|
idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 |
|
: s->dsp.add_pixels4; |
|
for (i = 0; i < 16; i += di) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]]) |
|
idct_add(dest_y + block_offset[i], |
|
h->mb + (i * 16 + p * 256 << pixel_shift), |
|
linesize); |
|
} else { |
|
if (IS_8x8DCT(mb_type)) |
|
h->h264dsp.h264_idct8_add4(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
else |
|
h->h264dsp.h264_idct_add16(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
} |
|
} |
|
} else if (CONFIG_SVQ3_DECODER) { |
|
for (i = 0; i < 16; i++) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]] || h->mb[i * 16 + p * 256]) { |
|
// FIXME benchmark weird rule, & below |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, |
|
s->qscale, IS_INTRA(mb_type) ? 1 : 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#define BITS 8 |
|
#define SIMPLE 1 |
|
#include "h264_mb_template.c" |
|
|
|
#undef BITS |
|
#define BITS 16 |
|
#include "h264_mb_template.c" |
|
|
|
#undef SIMPLE |
|
#define SIMPLE 0 |
|
#include "h264_mb_template.c" |
|
|
|
void ff_h264_hl_decode_mb(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int mb_xy = h->mb_xy; |
|
const int mb_type = s->current_picture.f.mb_type[mb_xy]; |
|
int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0; |
|
|
|
if (CHROMA444) { |
|
if (is_complex || h->pixel_shift) |
|
hl_decode_mb_444_complex(h); |
|
else |
|
hl_decode_mb_444_simple_8(h); |
|
} else if (is_complex) { |
|
hl_decode_mb_complex(h); |
|
} else if (h->pixel_shift) { |
|
hl_decode_mb_simple_16(h); |
|
} else |
|
hl_decode_mb_simple_8(h); |
|
} |
|
|
|
static int pred_weight_table(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int list, i; |
|
int luma_def, chroma_def; |
|
|
|
h->use_weight = 0; |
|
h->use_weight_chroma = 0; |
|
h->luma_log2_weight_denom = get_ue_golomb(&s->gb); |
|
if (h->sps.chroma_format_idc) |
|
h->chroma_log2_weight_denom = get_ue_golomb(&s->gb); |
|
luma_def = 1 << h->luma_log2_weight_denom; |
|
chroma_def = 1 << h->chroma_log2_weight_denom; |
|
|
|
for (list = 0; list < 2; list++) { |
|
h->luma_weight_flag[list] = 0; |
|
h->chroma_weight_flag[list] = 0; |
|
for (i = 0; i < h->ref_count[list]; i++) { |
|
int luma_weight_flag, chroma_weight_flag; |
|
|
|
luma_weight_flag = get_bits1(&s->gb); |
|
if (luma_weight_flag) { |
|
h->luma_weight[i][list][0] = get_se_golomb(&s->gb); |
|
h->luma_weight[i][list][1] = get_se_golomb(&s->gb); |
|
if (h->luma_weight[i][list][0] != luma_def || |
|
h->luma_weight[i][list][1] != 0) { |
|
h->use_weight = 1; |
|
h->luma_weight_flag[list] = 1; |
|
} |
|
} else { |
|
h->luma_weight[i][list][0] = luma_def; |
|
h->luma_weight[i][list][1] = 0; |
|
} |
|
|
|
if (h->sps.chroma_format_idc) { |
|
chroma_weight_flag = get_bits1(&s->gb); |
|
if (chroma_weight_flag) { |
|
int j; |
|
for (j = 0; j < 2; j++) { |
|
h->chroma_weight[i][list][j][0] = get_se_golomb(&s->gb); |
|
h->chroma_weight[i][list][j][1] = get_se_golomb(&s->gb); |
|
if (h->chroma_weight[i][list][j][0] != chroma_def || |
|
h->chroma_weight[i][list][j][1] != 0) { |
|
h->use_weight_chroma = 1; |
|
h->chroma_weight_flag[list] = 1; |
|
} |
|
} |
|
} else { |
|
int j; |
|
for (j = 0; j < 2; j++) { |
|
h->chroma_weight[i][list][j][0] = chroma_def; |
|
h->chroma_weight[i][list][j][1] = 0; |
|
} |
|
} |
|
} |
|
} |
|
if (h->slice_type_nos != AV_PICTURE_TYPE_B) |
|
break; |
|
} |
|
h->use_weight = h->use_weight || h->use_weight_chroma; |
|
return 0; |
|
} |
|
|
|
/** |
|
* Initialize implicit_weight table. |
|
* @param field 0/1 initialize the weight for interlaced MBAFF |
|
* -1 initializes the rest |
|
*/ |
|
static void implicit_weight_table(H264Context *h, int field) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; |
|
|
|
for (i = 0; i < 2; i++) { |
|
h->luma_weight_flag[i] = 0; |
|
h->chroma_weight_flag[i] = 0; |
|
} |
|
|
|
if (field < 0) { |
|
if (s->picture_structure == PICT_FRAME) { |
|
cur_poc = s->current_picture_ptr->poc; |
|
} else { |
|
cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1]; |
|
} |
|
if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF && |
|
h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) { |
|
h->use_weight = 0; |
|
h->use_weight_chroma = 0; |
|
return; |
|
} |
|
ref_start = 0; |
|
ref_count0 = h->ref_count[0]; |
|
ref_count1 = h->ref_count[1]; |
|
} else { |
|
cur_poc = s->current_picture_ptr->field_poc[field]; |
|
ref_start = 16; |
|
ref_count0 = 16 + 2 * h->ref_count[0]; |
|
ref_count1 = 16 + 2 * h->ref_count[1]; |
|
} |
|
|
|
h->use_weight = 2; |
|
h->use_weight_chroma = 2; |
|
h->luma_log2_weight_denom = 5; |
|
h->chroma_log2_weight_denom = 5; |
|
|
|
for (ref0 = ref_start; ref0 < ref_count0; ref0++) { |
|
int poc0 = h->ref_list[0][ref0].poc; |
|
for (ref1 = ref_start; ref1 < ref_count1; ref1++) { |
|
int w = 32; |
|
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) { |
|
int poc1 = h->ref_list[1][ref1].poc; |
|
int td = av_clip(poc1 - poc0, -128, 127); |
|
if (td) { |
|
int tb = av_clip(cur_poc - poc0, -128, 127); |
|
int tx = (16384 + (FFABS(td) >> 1)) / td; |
|
int dist_scale_factor = (tb * tx + 32) >> 8; |
|
if (dist_scale_factor >= -64 && dist_scale_factor <= 128) |
|
w = 64 - dist_scale_factor; |
|
} |
|
} |
|
if (field < 0) { |
|
h->implicit_weight[ref0][ref1][0] = |
|
h->implicit_weight[ref0][ref1][1] = w; |
|
} else { |
|
h->implicit_weight[ref0][ref1][field] = w; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* instantaneous decoder refresh. |
|
*/ |
|
static void idr(H264Context *h) |
|
{ |
|
int i; |
|
ff_h264_remove_all_refs(h); |
|
h->prev_frame_num = 0; |
|
h->prev_frame_num_offset = 0; |
|
h->prev_poc_msb = 1<<16; |
|
h->prev_poc_lsb = 0; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
} |
|
|
|
/* forget old pics after a seek */ |
|
static void flush_dpb(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int i; |
|
for (i=0; i<=MAX_DELAYED_PIC_COUNT; i++) { |
|
if (h->delayed_pic[i]) |
|
h->delayed_pic[i]->f.reference = 0; |
|
h->delayed_pic[i] = NULL; |
|
} |
|
h->outputed_poc = h->next_outputed_poc = INT_MIN; |
|
h->prev_interlaced_frame = 1; |
|
idr(h); |
|
h->prev_frame_num = -1; |
|
if (h->s.current_picture_ptr) |
|
h->s.current_picture_ptr->f.reference = 0; |
|
h->s.first_field = 0; |
|
ff_h264_reset_sei(h); |
|
ff_mpeg_flush(avctx); |
|
h->recovery_frame= -1; |
|
h->sync= 0; |
|
} |
|
|
|
static int init_poc(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int max_frame_num = 1 << h->sps.log2_max_frame_num; |
|
int field_poc[2]; |
|
Picture *cur = s->current_picture_ptr; |
|
|
|
h->frame_num_offset = h->prev_frame_num_offset; |
|
if (h->frame_num < h->prev_frame_num) |
|
h->frame_num_offset += max_frame_num; |
|
|
|
if (h->sps.poc_type == 0) { |
|
const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb; |
|
|
|
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2) |
|
h->poc_msb = h->prev_poc_msb + max_poc_lsb; |
|
else if (h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2) |
|
h->poc_msb = h->prev_poc_msb - max_poc_lsb; |
|
else |
|
h->poc_msb = h->prev_poc_msb; |
|
// printf("poc: %d %d\n", h->poc_msb, h->poc_lsb); |
|
field_poc[0] = |
|
field_poc[1] = h->poc_msb + h->poc_lsb; |
|
if (s->picture_structure == PICT_FRAME) |
|
field_poc[1] += h->delta_poc_bottom; |
|
} else if (h->sps.poc_type == 1) { |
|
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; |
|
int i; |
|
|
|
if (h->sps.poc_cycle_length != 0) |
|
abs_frame_num = h->frame_num_offset + h->frame_num; |
|
else |
|
abs_frame_num = 0; |
|
|
|
if (h->nal_ref_idc == 0 && abs_frame_num > 0) |
|
abs_frame_num--; |
|
|
|
expected_delta_per_poc_cycle = 0; |
|
for (i = 0; i < h->sps.poc_cycle_length; i++) |
|
// FIXME integrate during sps parse |
|
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i]; |
|
|
|
if (abs_frame_num > 0) { |
|
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; |
|
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; |
|
|
|
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; |
|
for (i = 0; i <= frame_num_in_poc_cycle; i++) |
|
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i]; |
|
} else |
|
expectedpoc = 0; |
|
|
|
if (h->nal_ref_idc == 0) |
|
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; |
|
|
|
field_poc[0] = expectedpoc + h->delta_poc[0]; |
|
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; |
|
|
|
if (s->picture_structure == PICT_FRAME) |
|
field_poc[1] += h->delta_poc[1]; |
|
} else { |
|
int poc = 2 * (h->frame_num_offset + h->frame_num); |
|
|
|
if (!h->nal_ref_idc) |
|
poc--; |
|
|
|
field_poc[0] = poc; |
|
field_poc[1] = poc; |
|
} |
|
|
|
if (s->picture_structure != PICT_BOTTOM_FIELD) |
|
s->current_picture_ptr->field_poc[0] = field_poc[0]; |
|
if (s->picture_structure != PICT_TOP_FIELD) |
|
s->current_picture_ptr->field_poc[1] = field_poc[1]; |
|
cur->poc = FFMIN(cur->field_poc[0], cur->field_poc[1]); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* initialize scan tables |
|
*/ |
|
static void init_scan_tables(H264Context *h) |
|
{ |
|
int i; |
|
for (i = 0; i < 16; i++) { |
|
#define T(x) (x >> 2) | ((x << 2) & 0xF) |
|
h->zigzag_scan[i] = T(zigzag_scan[i]); |
|
h->field_scan[i] = T(field_scan[i]); |
|
#undef T |
|
} |
|
for (i = 0; i < 64; i++) { |
|
#define T(x) (x >> 3) | ((x & 7) << 3) |
|
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]); |
|
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); |
|
h->field_scan8x8[i] = T(field_scan8x8[i]); |
|
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); |
|
#undef T |
|
} |
|
if (h->sps.transform_bypass) { // FIXME same ugly |
|
memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 )); |
|
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 )); |
|
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); |
|
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 )); |
|
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 )); |
|
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); |
|
} else { |
|
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 )); |
|
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 )); |
|
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); |
|
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 )); |
|
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 )); |
|
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); |
|
} |
|
} |
|
|
|
static int field_end(H264Context *h, int in_setup) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
AVCodecContext *const avctx = s->avctx; |
|
int err = 0; |
|
s->mb_y = 0; |
|
|
|
if (!in_setup && !s->dropable) |
|
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, |
|
s->picture_structure == PICT_BOTTOM_FIELD); |
|
|
|
if (CONFIG_H264_VDPAU_DECODER && |
|
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_set_reference_frames(s); |
|
|
|
if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) { |
|
if (!s->dropable) { |
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); |
|
h->prev_poc_msb = h->poc_msb; |
|
h->prev_poc_lsb = h->poc_lsb; |
|
} |
|
h->prev_frame_num_offset = h->frame_num_offset; |
|
h->prev_frame_num = h->frame_num; |
|
h->outputed_poc = h->next_outputed_poc; |
|
} |
|
|
|
if (avctx->hwaccel) { |
|
if (avctx->hwaccel->end_frame(avctx) < 0) |
|
av_log(avctx, AV_LOG_ERROR, |
|
"hardware accelerator failed to decode picture\n"); |
|
} |
|
|
|
if (CONFIG_H264_VDPAU_DECODER && |
|
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_picture_complete(s); |
|
|
|
/* |
|
* FIXME: Error handling code does not seem to support interlaced |
|
* when slices span multiple rows |
|
* The ff_er_add_slice calls don't work right for bottom |
|
* fields; they cause massive erroneous error concealing |
|
* Error marking covers both fields (top and bottom). |
|
* This causes a mismatched s->error_count |
|
* and a bad error table. Further, the error count goes to |
|
* INT_MAX when called for bottom field, because mb_y is |
|
* past end by one (callers fault) and resync_mb_y != 0 |
|
* causes problems for the first MB line, too. |
|
*/ |
|
if (!FIELD_PICTURE) |
|
ff_er_frame_end(s); |
|
|
|
ff_MPV_frame_end(s); |
|
|
|
h->current_slice = 0; |
|
|
|
return err; |
|
} |
|
|
|
/** |
|
* Replicate H264 "master" context to thread contexts. |
|
*/ |
|
static void clone_slice(H264Context *dst, H264Context *src) |
|
{ |
|
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); |
|
dst->s.current_picture_ptr = src->s.current_picture_ptr; |
|
dst->s.current_picture = src->s.current_picture; |
|
dst->s.linesize = src->s.linesize; |
|
dst->s.uvlinesize = src->s.uvlinesize; |
|
dst->s.first_field = src->s.first_field; |
|
|
|
dst->prev_poc_msb = src->prev_poc_msb; |
|
dst->prev_poc_lsb = src->prev_poc_lsb; |
|
dst->prev_frame_num_offset = src->prev_frame_num_offset; |
|
dst->prev_frame_num = src->prev_frame_num; |
|
dst->short_ref_count = src->short_ref_count; |
|
|
|
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); |
|
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); |
|
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); |
|
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list)); |
|
|
|
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); |
|
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); |
|
} |
|
|
|
/** |
|
* Compute profile from profile_idc and constraint_set?_flags. |
|
* |
|
* @param sps SPS |
|
* |
|
* @return profile as defined by FF_PROFILE_H264_* |
|
*/ |
|
int ff_h264_get_profile(SPS *sps) |
|
{ |
|
int profile = sps->profile_idc; |
|
|
|
switch (sps->profile_idc) { |
|
case FF_PROFILE_H264_BASELINE: |
|
// constraint_set1_flag set to 1 |
|
profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0; |
|
break; |
|
case FF_PROFILE_H264_HIGH_10: |
|
case FF_PROFILE_H264_HIGH_422: |
|
case FF_PROFILE_H264_HIGH_444_PREDICTIVE: |
|
// constraint_set3_flag set to 1 |
|
profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0; |
|
break; |
|
} |
|
|
|
return profile; |
|
} |
|
|
|
/** |
|
* Decode a slice header. |
|
* This will also call ff_MPV_common_init() and frame_start() as needed. |
|
* |
|
* @param h h264context |
|
* @param h0 h264 master context (differs from 'h' when doing sliced based |
|
* parallel decoding) |
|
* |
|
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded |
|
*/ |
|
static int decode_slice_header(H264Context *h, H264Context *h0) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
MpegEncContext *const s0 = &h0->s; |
|
unsigned int first_mb_in_slice; |
|
unsigned int pps_id; |
|
int num_ref_idx_active_override_flag; |
|
unsigned int slice_type, tmp, i, j; |
|
int default_ref_list_done = 0; |
|
int last_pic_structure, last_pic_dropable; |
|
int must_reinit; |
|
|
|
/* FIXME: 2tap qpel isn't implemented for high bit depth. */ |
|
if ((s->avctx->flags2 & CODEC_FLAG2_FAST) && |
|
!h->nal_ref_idc && !h->pixel_shift) { |
|
s->me.qpel_put = s->dsp.put_2tap_qpel_pixels_tab; |
|
s->me.qpel_avg = s->dsp.avg_2tap_qpel_pixels_tab; |
|
} else { |
|
s->me.qpel_put = s->dsp.put_h264_qpel_pixels_tab; |
|
s->me.qpel_avg = s->dsp.avg_h264_qpel_pixels_tab; |
|
} |
|
|
|
first_mb_in_slice = get_ue_golomb_long(&s->gb); |
|
|
|
if (first_mb_in_slice == 0) { // FIXME better field boundary detection |
|
if (h0->current_slice && FIELD_PICTURE) { |
|
field_end(h, 1); |
|
} |
|
|
|
h0->current_slice = 0; |
|
if (!s0->first_field) { |
|
if (s->current_picture_ptr && !s->dropable && |
|
s->current_picture_ptr->owner2 == s) { |
|
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, |
|
s->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
s->current_picture_ptr = NULL; |
|
} |
|
} |
|
|
|
slice_type = get_ue_golomb_31(&s->gb); |
|
if (slice_type > 9) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"slice type too large (%d) at %d %d\n", |
|
h->slice_type, s->mb_x, s->mb_y); |
|
return -1; |
|
} |
|
if (slice_type > 4) { |
|
slice_type -= 5; |
|
h->slice_type_fixed = 1; |
|
} else |
|
h->slice_type_fixed = 0; |
|
|
|
slice_type = golomb_to_pict_type[slice_type]; |
|
if (slice_type == AV_PICTURE_TYPE_I || |
|
(h0->current_slice != 0 && slice_type == h0->last_slice_type)) { |
|
default_ref_list_done = 1; |
|
} |
|
h->slice_type = slice_type; |
|
h->slice_type_nos = slice_type & 3; |
|
|
|
// to make a few old functions happy, it's wrong though |
|
s->pict_type = h->slice_type; |
|
|
|
pps_id = get_ue_golomb(&s->gb); |
|
if (pps_id >= MAX_PPS_COUNT) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id %d out of range\n", pps_id); |
|
return -1; |
|
} |
|
if (!h0->pps_buffers[pps_id]) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"non-existing PPS %u referenced\n", |
|
pps_id); |
|
return -1; |
|
} |
|
h->pps = *h0->pps_buffers[pps_id]; |
|
|
|
if (!h0->sps_buffers[h->pps.sps_id]) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"non-existing SPS %u referenced\n", |
|
h->pps.sps_id); |
|
return -1; |
|
} |
|
h->sps = *h0->sps_buffers[h->pps.sps_id]; |
|
|
|
s->avctx->profile = ff_h264_get_profile(&h->sps); |
|
s->avctx->level = h->sps.level_idc; |
|
s->avctx->refs = h->sps.ref_frame_count; |
|
|
|
must_reinit = (s->context_initialized && |
|
( 16*h->sps.mb_width != s->avctx->coded_width |
|
|| 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != s->avctx->coded_height |
|
|| s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma |
|
|| h->cur_chroma_format_idc != h->sps.chroma_format_idc |
|
|| av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))); |
|
|
|
if(must_reinit && (h != h0 || (s->avctx->active_thread_type & FF_THREAD_FRAME))) { |
|
av_log_missing_feature(s->avctx, |
|
"Width/height/bit depth/chroma idc changing with threads is", 0); |
|
return AVERROR_PATCHWELCOME; // width / height changed during parallelized decoding |
|
} |
|
|
|
s->mb_width = h->sps.mb_width; |
|
s->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); |
|
|
|
h->b_stride = s->mb_width * 4; |
|
|
|
s->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p |
|
|
|
s->width = 16 * s->mb_width; |
|
s->height = 16 * s->mb_height; |
|
|
|
if(must_reinit) { |
|
free_tables(h, 0); |
|
flush_dpb(s->avctx); |
|
ff_MPV_common_end(s); |
|
h->list_count = 0; |
|
h->current_slice = 0; |
|
} |
|
if (!s->context_initialized) { |
|
if (h != h0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"Cannot (re-)initialize context during parallel decoding.\n"); |
|
return -1; |
|
} |
|
if( FFALIGN(s->avctx->width , 16 ) == s->width |
|
&& FFALIGN(s->avctx->height, 16*(2 - h->sps.frame_mbs_only_flag)) == s->height |
|
&& !h->sps.crop_right && !h->sps.crop_bottom |
|
&& (s->avctx->width != s->width || s->avctx->height && s->height) |
|
) { |
|
av_log(h->s.avctx, AV_LOG_DEBUG, "Using externally provided dimensions\n"); |
|
s->avctx->coded_width = s->width; |
|
s->avctx->coded_height = s->height; |
|
} else{ |
|
avcodec_set_dimensions(s->avctx, s->width, s->height); |
|
s->avctx->width -= (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1); |
|
s->avctx->height -= (1<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1) * (2 - h->sps.frame_mbs_only_flag); |
|
} |
|
s->avctx->sample_aspect_ratio = h->sps.sar; |
|
av_assert0(s->avctx->sample_aspect_ratio.den); |
|
|
|
if (s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || |
|
h->cur_chroma_format_idc != h->sps.chroma_format_idc) { |
|
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 14 && h->sps.bit_depth_luma != 11 && h->sps.bit_depth_luma != 13 && |
|
(h->sps.bit_depth_luma != 9 || !CHROMA422)) { |
|
s->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; |
|
h->cur_chroma_format_idc = h->sps.chroma_format_idc; |
|
h->pixel_shift = h->sps.bit_depth_luma > 8; |
|
|
|
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc); |
|
ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc); |
|
s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16; |
|
ff_dsputil_init(&s->dsp, s->avctx); |
|
} else { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d chroma_idc: %d\n", |
|
h->sps.bit_depth_luma, h->sps.chroma_format_idc); |
|
return -1; |
|
} |
|
} |
|
|
|
if (h->sps.video_signal_type_present_flag) { |
|
s->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG |
|
: AVCOL_RANGE_MPEG; |
|
if (h->sps.colour_description_present_flag) { |
|
s->avctx->color_primaries = h->sps.color_primaries; |
|
s->avctx->color_trc = h->sps.color_trc; |
|
s->avctx->colorspace = h->sps.colorspace; |
|
} |
|
} |
|
|
|
if (h->sps.timing_info_present_flag) { |
|
int64_t den = h->sps.time_scale; |
|
if (h->x264_build < 44U) |
|
den *= 2; |
|
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, |
|
h->sps.num_units_in_tick, den, 1 << 30); |
|
} |
|
|
|
switch (h->sps.bit_depth_luma) { |
|
case 9: |
|
if (CHROMA444) { |
|
if (s->avctx->colorspace == AVCOL_SPC_RGB) { |
|
s->avctx->pix_fmt = PIX_FMT_GBRP9; |
|
} else |
|
s->avctx->pix_fmt = PIX_FMT_YUV444P9; |
|
} else if (CHROMA422) |
|
s->avctx->pix_fmt = PIX_FMT_YUV422P9; |
|
else |
|
s->avctx->pix_fmt = PIX_FMT_YUV420P9; |
|
break; |
|
case 10: |
|
if (CHROMA444) { |
|
if (s->avctx->colorspace == AVCOL_SPC_RGB) { |
|
s->avctx->pix_fmt = PIX_FMT_GBRP10; |
|
} else |
|
s->avctx->pix_fmt = PIX_FMT_YUV444P10; |
|
} else if (CHROMA422) |
|
s->avctx->pix_fmt = PIX_FMT_YUV422P10; |
|
else |
|
s->avctx->pix_fmt = PIX_FMT_YUV420P10; |
|
break; |
|
case 12: |
|
if (CHROMA444) { |
|
if (s->avctx->colorspace == AVCOL_SPC_RGB) { |
|
s->avctx->pix_fmt = PIX_FMT_GBRP12; |
|
} else |
|
s->avctx->pix_fmt = PIX_FMT_YUV444P12; |
|
} else if (CHROMA422) |
|
s->avctx->pix_fmt = PIX_FMT_YUV422P12; |
|
else |
|
s->avctx->pix_fmt = PIX_FMT_YUV420P12; |
|
break; |
|
case 14: |
|
if (CHROMA444) { |
|
if (s->avctx->colorspace == AVCOL_SPC_RGB) { |
|
s->avctx->pix_fmt = PIX_FMT_GBRP14; |
|
} else |
|
s->avctx->pix_fmt = PIX_FMT_YUV444P14; |
|
} else if (CHROMA422) |
|
s->avctx->pix_fmt = PIX_FMT_YUV422P14; |
|
else |
|
s->avctx->pix_fmt = PIX_FMT_YUV420P14; |
|
break; |
|
case 8: |
|
if (CHROMA444) { |
|
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P |
|
: PIX_FMT_YUV444P; |
|
if (s->avctx->colorspace == AVCOL_SPC_RGB) { |
|
s->avctx->pix_fmt = PIX_FMT_GBR24P; |
|
av_log(h->s.avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n"); |
|
} else if (s->avctx->colorspace == AVCOL_SPC_YCGCO) { |
|
av_log(h->s.avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n"); |
|
} |
|
} else if (CHROMA422) { |
|
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ422P |
|
: PIX_FMT_YUV422P; |
|
} else { |
|
s->avctx->pix_fmt = s->avctx->get_format(s->avctx, |
|
s->avctx->codec->pix_fmts ? |
|
s->avctx->codec->pix_fmts : |
|
s->avctx->color_range == AVCOL_RANGE_JPEG ? |
|
hwaccel_pixfmt_list_h264_jpeg_420 : |
|
ff_hwaccel_pixfmt_list_420); |
|
} |
|
break; |
|
default: |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Unsupported bit depth: %d\n", h->sps.bit_depth_luma); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, |
|
s->avctx->pix_fmt); |
|
|
|
if (ff_MPV_common_init(s) < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, "ff_MPV_common_init() failed.\n"); |
|
return -1; |
|
} |
|
s->first_field = 0; |
|
h->prev_interlaced_frame = 1; |
|
|
|
init_scan_tables(h); |
|
if (ff_h264_alloc_tables(h) < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"Could not allocate memory for h264\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_SLICE)) { |
|
if (context_init(h) < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n"); |
|
return -1; |
|
} |
|
} else { |
|
for (i = 1; i < s->slice_context_count; i++) { |
|
H264Context *c; |
|
c = h->thread_context[i] = av_malloc(sizeof(H264Context)); |
|
memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext)); |
|
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext)); |
|
c->h264dsp = h->h264dsp; |
|
c->sps = h->sps; |
|
c->pps = h->pps; |
|
c->pixel_shift = h->pixel_shift; |
|
c->cur_chroma_format_idc = h->cur_chroma_format_idc; |
|
init_scan_tables(c); |
|
clone_tables(c, h, i); |
|
} |
|
|
|
for (i = 0; i < s->slice_context_count; i++) |
|
if (context_init(h->thread_context[i]) < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"context_init() failed.\n"); |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
if (h == h0 && h->dequant_coeff_pps != pps_id) { |
|
h->dequant_coeff_pps = pps_id; |
|
init_dequant_tables(h); |
|
} |
|
|
|
h->frame_num = get_bits(&s->gb, h->sps.log2_max_frame_num); |
|
|
|
h->mb_mbaff = 0; |
|
h->mb_aff_frame = 0; |
|
last_pic_structure = s0->picture_structure; |
|
last_pic_dropable = s->dropable; |
|
s->dropable = h->nal_ref_idc == 0; |
|
if (h->sps.frame_mbs_only_flag) { |
|
s->picture_structure = PICT_FRAME; |
|
} else { |
|
if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); |
|
return -1; |
|
} |
|
if (get_bits1(&s->gb)) { // field_pic_flag |
|
s->picture_structure = PICT_TOP_FIELD + get_bits1(&s->gb); // bottom_field_flag |
|
} else { |
|
s->picture_structure = PICT_FRAME; |
|
h->mb_aff_frame = h->sps.mb_aff; |
|
} |
|
} |
|
h->mb_field_decoding_flag = s->picture_structure != PICT_FRAME; |
|
|
|
if (h0->current_slice != 0) { |
|
if (last_pic_structure != s->picture_structure || |
|
last_pic_dropable != s->dropable) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"Changing field mode (%d -> %d) between slices is not allowed\n", |
|
last_pic_structure, s->picture_structure); |
|
s->picture_structure = last_pic_structure; |
|
s->dropable = last_pic_dropable; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
/* Shorten frame num gaps so we don't have to allocate reference |
|
* frames just to throw them away */ |
|
if (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0) { |
|
int unwrap_prev_frame_num = h->prev_frame_num; |
|
int max_frame_num = 1 << h->sps.log2_max_frame_num; |
|
|
|
if (unwrap_prev_frame_num > h->frame_num) |
|
unwrap_prev_frame_num -= max_frame_num; |
|
|
|
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) { |
|
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1; |
|
if (unwrap_prev_frame_num < 0) |
|
unwrap_prev_frame_num += max_frame_num; |
|
|
|
h->prev_frame_num = unwrap_prev_frame_num; |
|
} |
|
} |
|
|
|
/* See if we have a decoded first field looking for a pair... |
|
* Here, we're using that to see if we should mark previously |
|
* decode frames as "finished". |
|
* We have to do that before the "dummy" in-between frame allocation, |
|
* since that can modify s->current_picture_ptr. */ |
|
if (s0->first_field) { |
|
assert(s0->current_picture_ptr); |
|
assert(s0->current_picture_ptr->f.data[0]); |
|
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF); |
|
|
|
/* Mark old field/frame as completed */ |
|
if (!last_pic_dropable && s0->current_picture_ptr->owner2 == s0) { |
|
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX, |
|
last_pic_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
/* figure out if we have a complementary field pair */ |
|
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) { |
|
/* Previous field is unmatched. Don't display it, but let it |
|
* remain for reference if marked as such. */ |
|
if (!last_pic_dropable && last_pic_structure != PICT_FRAME) { |
|
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX, |
|
last_pic_structure == PICT_TOP_FIELD); |
|
} |
|
} else { |
|
if (s0->current_picture_ptr->frame_num != h->frame_num) { |
|
/* This and previous field were reference, but had |
|
* different frame_nums. Consider this field first in |
|
* pair. Throw away previous field except for reference |
|
* purposes. */ |
|
if (!last_pic_dropable && last_pic_structure != PICT_FRAME) { |
|
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX, |
|
last_pic_structure == PICT_TOP_FIELD); |
|
} |
|
} else { |
|
/* Second field in complementary pair */ |
|
if (!((last_pic_structure == PICT_TOP_FIELD && |
|
s->picture_structure == PICT_BOTTOM_FIELD) || |
|
(last_pic_structure == PICT_BOTTOM_FIELD && |
|
s->picture_structure == PICT_TOP_FIELD))) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid field mode combination %d/%d\n", |
|
last_pic_structure, s->picture_structure); |
|
s->picture_structure = last_pic_structure; |
|
s->dropable = last_pic_dropable; |
|
return AVERROR_INVALIDDATA; |
|
} else if (last_pic_dropable != s->dropable) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Cannot combine reference and non-reference fields in the same frame\n"); |
|
av_log_ask_for_sample(s->avctx, NULL); |
|
s->picture_structure = last_pic_structure; |
|
s->dropable = last_pic_dropable; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* Take ownership of this buffer. Note that if another thread owned |
|
* the first field of this buffer, we're not operating on that pointer, |
|
* so the original thread is still responsible for reporting progress |
|
* on that first field (or if that was us, we just did that above). |
|
* By taking ownership, we assign responsibility to ourselves to |
|
* report progress on the second field. */ |
|
s0->current_picture_ptr->owner2 = s0; |
|
} |
|
} |
|
} |
|
|
|
while (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0 && |
|
h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) { |
|
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; |
|
av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", |
|
h->frame_num, h->prev_frame_num); |
|
if (ff_h264_frame_start(h) < 0) |
|
return -1; |
|
h->prev_frame_num++; |
|
h->prev_frame_num %= 1 << h->sps.log2_max_frame_num; |
|
s->current_picture_ptr->frame_num = h->prev_frame_num; |
|
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, 0); |
|
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, 1); |
|
ff_generate_sliding_window_mmcos(h); |
|
if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 && |
|
(s->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return AVERROR_INVALIDDATA; |
|
/* Error concealment: if a ref is missing, copy the previous ref in its place. |
|
* FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions |
|
* about there being no actual duplicates. |
|
* FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're |
|
* concealing a lost frame, this probably isn't noticeable by comparison, but it should |
|
* be fixed. */ |
|
if (h->short_ref_count) { |
|
if (prev) { |
|
av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize, |
|
(const uint8_t **)prev->f.data, prev->f.linesize, |
|
s->avctx->pix_fmt, s->mb_width * 16, s->mb_height * 16); |
|
h->short_ref[0]->poc = prev->poc + 2; |
|
} |
|
h->short_ref[0]->frame_num = h->prev_frame_num; |
|
} |
|
} |
|
|
|
/* See if we have a decoded first field looking for a pair... |
|
* We're using that to see whether to continue decoding in that |
|
* frame, or to allocate a new one. */ |
|
if (s0->first_field) { |
|
assert(s0->current_picture_ptr); |
|
assert(s0->current_picture_ptr->f.data[0]); |
|
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF); |
|
|
|
/* figure out if we have a complementary field pair */ |
|
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) { |
|
/* Previous field is unmatched. Don't display it, but let it |
|
* remain for reference if marked as such. */ |
|
s0->current_picture_ptr = NULL; |
|
s0->first_field = FIELD_PICTURE; |
|
} else { |
|
if (s0->current_picture_ptr->frame_num != h->frame_num) { |
|
ff_thread_report_progress((AVFrame*)s0->current_picture_ptr, INT_MAX, |
|
s0->picture_structure==PICT_BOTTOM_FIELD); |
|
/* This and the previous field had different frame_nums. |
|
* Consider this field first in pair. Throw away previous |
|
* one except for reference purposes. */ |
|
s0->first_field = 1; |
|
s0->current_picture_ptr = NULL; |
|
} else { |
|
/* Second field in complementary pair */ |
|
s0->first_field = 0; |
|
} |
|
} |
|
} else { |
|
/* Frame or first field in a potentially complementary pair */ |
|
assert(!s0->current_picture_ptr); |
|
s0->first_field = FIELD_PICTURE; |
|
} |
|
|
|
if (!FIELD_PICTURE || s0->first_field) { |
|
if (ff_h264_frame_start(h) < 0) { |
|
s0->first_field = 0; |
|
return -1; |
|
} |
|
} else { |
|
ff_release_unused_pictures(s, 0); |
|
} |
|
} |
|
if (h != h0) |
|
clone_slice(h, h0); |
|
|
|
s->current_picture_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup |
|
|
|
assert(s->mb_num == s->mb_width * s->mb_height); |
|
if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num || |
|
first_mb_in_slice >= s->mb_num) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); |
|
return -1; |
|
} |
|
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width; |
|
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE; |
|
if (s->picture_structure == PICT_BOTTOM_FIELD) |
|
s->resync_mb_y = s->mb_y = s->mb_y + 1; |
|
assert(s->mb_y < s->mb_height); |
|
|
|
if (s->picture_structure == PICT_FRAME) { |
|
h->curr_pic_num = h->frame_num; |
|
h->max_pic_num = 1 << h->sps.log2_max_frame_num; |
|
} else { |
|
h->curr_pic_num = 2 * h->frame_num + 1; |
|
h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1); |
|
} |
|
|
|
if (h->nal_unit_type == NAL_IDR_SLICE) |
|
get_ue_golomb(&s->gb); /* idr_pic_id */ |
|
|
|
if (h->sps.poc_type == 0) { |
|
h->poc_lsb = get_bits(&s->gb, h->sps.log2_max_poc_lsb); |
|
|
|
if (h->pps.pic_order_present == 1 && s->picture_structure == PICT_FRAME) |
|
h->delta_poc_bottom = get_se_golomb(&s->gb); |
|
} |
|
|
|
if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) { |
|
h->delta_poc[0] = get_se_golomb(&s->gb); |
|
|
|
if (h->pps.pic_order_present == 1 && s->picture_structure == PICT_FRAME) |
|
h->delta_poc[1] = get_se_golomb(&s->gb); |
|
} |
|
|
|
init_poc(h); |
|
|
|
if (h->pps.redundant_pic_cnt_present) |
|
h->redundant_pic_count = get_ue_golomb(&s->gb); |
|
|
|
// set defaults, might be overridden a few lines later |
|
h->ref_count[0] = h->pps.ref_count[0]; |
|
h->ref_count[1] = h->pps.ref_count[1]; |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I) { |
|
unsigned max[2]; |
|
max[0] = max[1] = s->picture_structure == PICT_FRAME ? 15 : 31; |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) |
|
h->direct_spatial_mv_pred = get_bits1(&s->gb); |
|
num_ref_idx_active_override_flag = get_bits1(&s->gb); |
|
|
|
if (num_ref_idx_active_override_flag) { |
|
h->ref_count[0] = get_ue_golomb(&s->gb) + 1; |
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) |
|
h->ref_count[1] = get_ue_golomb(&s->gb) + 1; |
|
else |
|
// full range is spec-ok in this case, even for frames |
|
max[1] = 31; |
|
} |
|
|
|
if (h->ref_count[0]-1 > max[0] || h->ref_count[1]-1 > max[1]){ |
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", h->ref_count[0]-1, max[0], h->ref_count[1]-1, max[1]); |
|
h->ref_count[0] = h->ref_count[1] = 1; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) |
|
h->list_count = 2; |
|
else |
|
h->list_count = 1; |
|
} else |
|
h->ref_count[1]= h->ref_count[0]= h->list_count= 0; |
|
|
|
if (!default_ref_list_done) |
|
ff_h264_fill_default_ref_list(h); |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I && |
|
ff_h264_decode_ref_pic_list_reordering(h) < 0) { |
|
h->ref_count[1] = h->ref_count[0] = 0; |
|
return -1; |
|
} |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I) { |
|
s->last_picture_ptr = &h->ref_list[0][0]; |
|
ff_copy_picture(&s->last_picture, s->last_picture_ptr); |
|
} |
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
s->next_picture_ptr = &h->ref_list[1][0]; |
|
ff_copy_picture(&s->next_picture, s->next_picture_ptr); |
|
} |
|
|
|
if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) || |
|
(h->pps.weighted_bipred_idc == 1 && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B)) |
|
pred_weight_table(h); |
|
else if (h->pps.weighted_bipred_idc == 2 && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
implicit_weight_table(h, -1); |
|
} else { |
|
h->use_weight = 0; |
|
for (i = 0; i < 2; i++) { |
|
h->luma_weight_flag[i] = 0; |
|
h->chroma_weight_flag[i] = 0; |
|
} |
|
} |
|
|
|
if (h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 && |
|
(s->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (FRAME_MBAFF) { |
|
ff_h264_fill_mbaff_ref_list(h); |
|
|
|
if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
implicit_weight_table(h, 0); |
|
implicit_weight_table(h, 1); |
|
} |
|
} |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred) |
|
ff_h264_direct_dist_scale_factor(h); |
|
ff_h264_direct_ref_list_init(h); |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) { |
|
tmp = get_ue_golomb_31(&s->gb); |
|
if (tmp > 2) { |
|
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); |
|
return -1; |
|
} |
|
h->cabac_init_idc = tmp; |
|
} |
|
|
|
h->last_qscale_diff = 0; |
|
tmp = h->pps.init_qp + get_se_golomb(&s->gb); |
|
if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); |
|
return -1; |
|
} |
|
s->qscale = tmp; |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); |
|
// FIXME qscale / qp ... stuff |
|
if (h->slice_type == AV_PICTURE_TYPE_SP) |
|
get_bits1(&s->gb); /* sp_for_switch_flag */ |
|
if (h->slice_type == AV_PICTURE_TYPE_SP || |
|
h->slice_type == AV_PICTURE_TYPE_SI) |
|
get_se_golomb(&s->gb); /* slice_qs_delta */ |
|
|
|
h->deblocking_filter = 1; |
|
h->slice_alpha_c0_offset = 52; |
|
h->slice_beta_offset = 52; |
|
if (h->pps.deblocking_filter_parameters_present) { |
|
tmp = get_ue_golomb_31(&s->gb); |
|
if (tmp > 2) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"deblocking_filter_idc %u out of range\n", tmp); |
|
return -1; |
|
} |
|
h->deblocking_filter = tmp; |
|
if (h->deblocking_filter < 2) |
|
h->deblocking_filter ^= 1; // 1<->0 |
|
|
|
if (h->deblocking_filter) { |
|
h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1; |
|
h->slice_beta_offset += get_se_golomb(&s->gb) << 1; |
|
if (h->slice_alpha_c0_offset > 104U || |
|
h->slice_beta_offset > 104U) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"deblocking filter parameters %d %d out of range\n", |
|
h->slice_alpha_c0_offset, h->slice_beta_offset); |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
if (s->avctx->skip_loop_filter >= AVDISCARD_ALL || |
|
(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && |
|
h->slice_type_nos != AV_PICTURE_TYPE_I) || |
|
(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B) || |
|
(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && |
|
h->nal_ref_idc == 0)) |
|
h->deblocking_filter = 0; |
|
|
|
if (h->deblocking_filter == 1 && h0->max_contexts > 1) { |
|
if (s->avctx->flags2 & CODEC_FLAG2_FAST) { |
|
/* Cheat slightly for speed: |
|
* Do not bother to deblock across slices. */ |
|
h->deblocking_filter = 2; |
|
} else { |
|
h0->max_contexts = 1; |
|
if (!h0->single_decode_warning) { |
|
av_log(s->avctx, AV_LOG_INFO, |
|
"Cannot parallelize deblocking type 1, decoding such frames in sequential order\n"); |
|
h0->single_decode_warning = 1; |
|
} |
|
if (h != h0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"Deblocking switched inside frame.\n"); |
|
return 1; |
|
} |
|
} |
|
} |
|
h->qp_thresh = 15 + 52 - |
|
FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - |
|
FFMAX3(0, |
|
h->pps.chroma_qp_index_offset[0], |
|
h->pps.chroma_qp_index_offset[1]) + |
|
6 * (h->sps.bit_depth_luma - 8); |
|
|
|
h0->last_slice_type = slice_type; |
|
h->slice_num = ++h0->current_slice; |
|
|
|
if (h->slice_num) |
|
h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= s->resync_mb_y; |
|
if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= s->resync_mb_y |
|
&& h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= s->resync_mb_y |
|
&& h->slice_num >= MAX_SLICES) { |
|
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case |
|
av_log(s->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES); |
|
} |
|
|
|
for (j = 0; j < 2; j++) { |
|
int id_list[16]; |
|
int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j]; |
|
for (i = 0; i < 16; i++) { |
|
id_list[i] = 60; |
|
if (h->ref_list[j][i].f.data[0]) { |
|
int k; |
|
uint8_t *base = h->ref_list[j][i].f.base[0]; |
|
for (k = 0; k < h->short_ref_count; k++) |
|
if (h->short_ref[k]->f.base[0] == base) { |
|
id_list[i] = k; |
|
break; |
|
} |
|
for (k = 0; k < h->long_ref_count; k++) |
|
if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) { |
|
id_list[i] = h->short_ref_count + k; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
ref2frm[0] = |
|
ref2frm[1] = -1; |
|
for (i = 0; i < 16; i++) |
|
ref2frm[i + 2] = 4 * id_list[i] + |
|
(h->ref_list[j][i].f.reference & 3); |
|
ref2frm[18 + 0] = |
|
ref2frm[18 + 1] = -1; |
|
for (i = 16; i < 48; i++) |
|
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + |
|
(h->ref_list[j][i].f.reference & 3); |
|
} |
|
|
|
// FIXME: fix draw_edges + PAFF + frame threads |
|
h->emu_edge_width = (s->flags & CODEC_FLAG_EMU_EDGE || |
|
(!h->sps.frame_mbs_only_flag && |
|
s->avctx->active_thread_type)) |
|
? 0 : 16; |
|
h->emu_edge_height = (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width; |
|
|
|
if (s->avctx->debug & FF_DEBUG_PICT_INFO) { |
|
av_log(h->s.avctx, AV_LOG_DEBUG, |
|
"slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", |
|
h->slice_num, |
|
(s->picture_structure == PICT_FRAME ? "F" : s->picture_structure == PICT_TOP_FIELD ? "T" : "B"), |
|
first_mb_in_slice, |
|
av_get_picture_type_char(h->slice_type), |
|
h->slice_type_fixed ? " fix" : "", |
|
h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", |
|
pps_id, h->frame_num, |
|
s->current_picture_ptr->field_poc[0], |
|
s->current_picture_ptr->field_poc[1], |
|
h->ref_count[0], h->ref_count[1], |
|
s->qscale, |
|
h->deblocking_filter, |
|
h->slice_alpha_c0_offset / 2 - 26, h->slice_beta_offset / 2 - 26, |
|
h->use_weight, |
|
h->use_weight == 1 && h->use_weight_chroma ? "c" : "", |
|
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_h264_get_slice_type(const H264Context *h) |
|
{ |
|
switch (h->slice_type) { |
|
case AV_PICTURE_TYPE_P: |
|
return 0; |
|
case AV_PICTURE_TYPE_B: |
|
return 1; |
|
case AV_PICTURE_TYPE_I: |
|
return 2; |
|
case AV_PICTURE_TYPE_SP: |
|
return 3; |
|
case AV_PICTURE_TYPE_SI: |
|
return 4; |
|
default: |
|
return -1; |
|
} |
|
} |
|
|
|
static av_always_inline void fill_filter_caches_inter(H264Context *h, |
|
MpegEncContext *const s, |
|
int mb_type, int top_xy, |
|
int left_xy[LEFT_MBS], |
|
int top_type, |
|
int left_type[LEFT_MBS], |
|
int mb_xy, int list) |
|
{ |
|
int b_stride = h->b_stride; |
|
int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]]; |
|
int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; |
|
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) { |
|
if (USES_LIST(top_type, list)) { |
|
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; |
|
const int b8_xy = 4 * top_xy + 2; |
|
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); |
|
AV_COPY128(mv_dst - 1 * 8, s->current_picture.f.motion_val[list][b_xy + 0]); |
|
ref_cache[0 - 1 * 8] = |
|
ref_cache[1 - 1 * 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]]; |
|
ref_cache[2 - 1 * 8] = |
|
ref_cache[3 - 1 * 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]]; |
|
} else { |
|
AV_ZERO128(mv_dst - 1 * 8); |
|
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
} |
|
|
|
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) { |
|
if (USES_LIST(left_type[LTOP], list)) { |
|
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; |
|
const int b8_xy = 4 * left_xy[LTOP] + 1; |
|
int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); |
|
AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride * 0]); |
|
AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride * 1]); |
|
AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride * 2]); |
|
AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride * 3]); |
|
ref_cache[-1 + 0] = |
|
ref_cache[-1 + 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2 * 0]]; |
|
ref_cache[-1 + 16] = |
|
ref_cache[-1 + 24] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2 * 1]]; |
|
} else { |
|
AV_ZERO32(mv_dst - 1 + 0); |
|
AV_ZERO32(mv_dst - 1 + 8); |
|
AV_ZERO32(mv_dst - 1 + 16); |
|
AV_ZERO32(mv_dst - 1 + 24); |
|
ref_cache[-1 + 0] = |
|
ref_cache[-1 + 8] = |
|
ref_cache[-1 + 16] = |
|
ref_cache[-1 + 24] = LIST_NOT_USED; |
|
} |
|
} |
|
} |
|
|
|
if (!USES_LIST(mb_type, list)) { |
|
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4); |
|
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
return; |
|
} |
|
|
|
{ |
|
int8_t *ref = &s->current_picture.f.ref_index[list][4 * mb_xy]; |
|
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); |
|
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101; |
|
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101; |
|
AV_WN32A(&ref_cache[0 * 8], ref01); |
|
AV_WN32A(&ref_cache[1 * 8], ref01); |
|
AV_WN32A(&ref_cache[2 * 8], ref23); |
|
AV_WN32A(&ref_cache[3 * 8], ref23); |
|
} |
|
|
|
{ |
|
int16_t(*mv_src)[2] = &s->current_picture.f.motion_val[list][4 * s->mb_x + 4 * s->mb_y * b_stride]; |
|
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride); |
|
} |
|
} |
|
|
|
/** |
|
* |
|
* @return non zero if the loop filter can be skipped |
|
*/ |
|
static int fill_filter_caches(H264Context *h, int mb_type) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int mb_xy = h->mb_xy; |
|
int top_xy, left_xy[LEFT_MBS]; |
|
int top_type, left_type[LEFT_MBS]; |
|
uint8_t *nnz; |
|
uint8_t *nnz_cache; |
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra |
|
* stuff, I can't imagine that these complex rules are worth it. */ |
|
|
|
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; |
|
if (FRAME_MBAFF) { |
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]); |
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
|
if (s->mb_y & 1) { |
|
if (left_mb_field_flag != curr_mb_field_flag) |
|
left_xy[LTOP] -= s->mb_stride; |
|
} else { |
|
if (curr_mb_field_flag) |
|
top_xy += s->mb_stride & |
|
(((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1); |
|
if (left_mb_field_flag != curr_mb_field_flag) |
|
left_xy[LBOT] += s->mb_stride; |
|
} |
|
} |
|
|
|
h->top_mb_xy = top_xy; |
|
h->left_mb_xy[LTOP] = left_xy[LTOP]; |
|
h->left_mb_xy[LBOT] = left_xy[LBOT]; |
|
{ |
|
/* For sufficiently low qp, filtering wouldn't do anything. |
|
* This is a conservative estimate: could also check beta_offset |
|
* and more accurate chroma_qp. */ |
|
int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice |
|
int qp = s->current_picture.f.qscale_table[mb_xy]; |
|
if (qp <= qp_thresh && |
|
(left_xy[LTOP] < 0 || |
|
((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) && |
|
(top_xy < 0 || |
|
((qp + s->current_picture.f.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) { |
|
if (!FRAME_MBAFF) |
|
return 1; |
|
if ((left_xy[LTOP] < 0 || |
|
((qp + s->current_picture.f.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) && |
|
(top_xy < s->mb_stride || |
|
((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh)) |
|
return 1; |
|
} |
|
} |
|
|
|
top_type = s->current_picture.f.mb_type[top_xy]; |
|
left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]]; |
|
left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]]; |
|
if (h->deblocking_filter == 2) { |
|
if (h->slice_table[top_xy] != h->slice_num) |
|
top_type = 0; |
|
if (h->slice_table[left_xy[LBOT]] != h->slice_num) |
|
left_type[LTOP] = left_type[LBOT] = 0; |
|
} else { |
|
if (h->slice_table[top_xy] == 0xFFFF) |
|
top_type = 0; |
|
if (h->slice_table[left_xy[LBOT]] == 0xFFFF) |
|
left_type[LTOP] = left_type[LBOT] = 0; |
|
} |
|
h->top_type = top_type; |
|
h->left_type[LTOP] = left_type[LTOP]; |
|
h->left_type[LBOT] = left_type[LBOT]; |
|
|
|
if (IS_INTRA(mb_type)) |
|
return 0; |
|
|
|
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, |
|
top_type, left_type, mb_xy, 0); |
|
if (h->list_count == 2) |
|
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, |
|
top_type, left_type, mb_xy, 1); |
|
|
|
nnz = h->non_zero_count[mb_xy]; |
|
nnz_cache = h->non_zero_count_cache; |
|
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]); |
|
h->cbp = h->cbp_table[mb_xy]; |
|
|
|
if (top_type) { |
|
nnz = h->non_zero_count[top_xy]; |
|
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]); |
|
} |
|
|
|
if (left_type[LTOP]) { |
|
nnz = h->non_zero_count[left_xy[LTOP]]; |
|
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4]; |
|
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4]; |
|
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4]; |
|
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4]; |
|
} |
|
|
|
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ |
|
* from what the loop filter needs */ |
|
if (!CABAC && h->pps.transform_8x8_mode) { |
|
if (IS_8x8DCT(top_type)) { |
|
nnz_cache[4 + 8 * 0] = |
|
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12; |
|
nnz_cache[6 + 8 * 0] = |
|
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12; |
|
} |
|
if (IS_8x8DCT(left_type[LTOP])) { |
|
nnz_cache[3 + 8 * 1] = |
|
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF |
|
} |
|
if (IS_8x8DCT(left_type[LBOT])) { |
|
nnz_cache[3 + 8 * 3] = |
|
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF |
|
} |
|
|
|
if (IS_8x8DCT(mb_type)) { |
|
nnz_cache[scan8[0]] = |
|
nnz_cache[scan8[1]] = |
|
nnz_cache[scan8[2]] = |
|
nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 4]] = |
|
nnz_cache[scan8[1 + 4]] = |
|
nnz_cache[scan8[2 + 4]] = |
|
nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 8]] = |
|
nnz_cache[scan8[1 + 8]] = |
|
nnz_cache[scan8[2 + 8]] = |
|
nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 12]] = |
|
nnz_cache[scan8[1 + 12]] = |
|
nnz_cache[scan8[2 + 12]] = |
|
nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void loop_filter(H264Context *h, int start_x, int end_x) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
uint8_t *dest_y, *dest_cb, *dest_cr; |
|
int linesize, uvlinesize, mb_x, mb_y; |
|
const int end_mb_y = s->mb_y + FRAME_MBAFF; |
|
const int old_slice_type = h->slice_type; |
|
const int pixel_shift = h->pixel_shift; |
|
const int block_h = 16 >> s->chroma_y_shift; |
|
|
|
if (h->deblocking_filter) { |
|
for (mb_x = start_x; mb_x < end_x; mb_x++) |
|
for (mb_y = end_mb_y - FRAME_MBAFF; mb_y <= end_mb_y; mb_y++) { |
|
int mb_xy, mb_type; |
|
mb_xy = h->mb_xy = mb_x + mb_y * s->mb_stride; |
|
h->slice_num = h->slice_table[mb_xy]; |
|
mb_type = s->current_picture.f.mb_type[mb_xy]; |
|
h->list_count = h->list_counts[mb_xy]; |
|
|
|
if (FRAME_MBAFF) |
|
h->mb_mbaff = |
|
h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); |
|
|
|
s->mb_x = mb_x; |
|
s->mb_y = mb_y; |
|
dest_y = s->current_picture.f.data[0] + |
|
((mb_x << pixel_shift) + mb_y * s->linesize) * 16; |
|
dest_cb = s->current_picture.f.data[1] + |
|
(mb_x << pixel_shift) * (8 << CHROMA444) + |
|
mb_y * s->uvlinesize * block_h; |
|
dest_cr = s->current_picture.f.data[2] + |
|
(mb_x << pixel_shift) * (8 << CHROMA444) + |
|
mb_y * s->uvlinesize * block_h; |
|
// FIXME simplify above |
|
|
|
if (MB_FIELD) { |
|
linesize = h->mb_linesize = s->linesize * 2; |
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; |
|
if (mb_y & 1) { // FIXME move out of this function? |
|
dest_y -= s->linesize * 15; |
|
dest_cb -= s->uvlinesize * (block_h - 1); |
|
dest_cr -= s->uvlinesize * (block_h - 1); |
|
} |
|
} else { |
|
linesize = h->mb_linesize = s->linesize; |
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize; |
|
} |
|
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, |
|
uvlinesize, 0); |
|
if (fill_filter_caches(h, mb_type)) |
|
continue; |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]); |
|
|
|
if (FRAME_MBAFF) { |
|
ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, |
|
linesize, uvlinesize); |
|
} else { |
|
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, |
|
dest_cr, linesize, uvlinesize); |
|
} |
|
} |
|
} |
|
h->slice_type = old_slice_type; |
|
s->mb_x = end_x; |
|
s->mb_y = end_mb_y - FRAME_MBAFF; |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); |
|
} |
|
|
|
static void predict_field_decoding_flag(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
const int mb_xy = s->mb_x + s->mb_y * s->mb_stride; |
|
int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ? |
|
s->current_picture.f.mb_type[mb_xy - 1] : |
|
(h->slice_table[mb_xy - s->mb_stride] == h->slice_num) ? |
|
s->current_picture.f.mb_type[mb_xy - s->mb_stride] : 0; |
|
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; |
|
} |
|
|
|
/** |
|
* Draw edges and report progress for the last MB row. |
|
*/ |
|
static void decode_finish_row(H264Context *h) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
int top = 16 * (s->mb_y >> FIELD_PICTURE); |
|
int pic_height = 16 * s->mb_height >> FIELD_PICTURE; |
|
int height = 16 << FRAME_MBAFF; |
|
int deblock_border = (16 + 4) << FRAME_MBAFF; |
|
|
|
if (h->deblocking_filter) { |
|
if ((top + height) >= pic_height) |
|
height += deblock_border; |
|
top -= deblock_border; |
|
} |
|
|
|
if (top >= pic_height || (top + height) < h->emu_edge_height) |
|
return; |
|
|
|
height = FFMIN(height, pic_height - top); |
|
if (top < h->emu_edge_height) { |
|
height = top + height; |
|
top = 0; |
|
} |
|
|
|
ff_draw_horiz_band(s, top, height); |
|
|
|
if (s->dropable) |
|
return; |
|
|
|
ff_thread_report_progress(&s->current_picture_ptr->f, top + height - 1, |
|
s->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
static int decode_slice(struct AVCodecContext *avctx, void *arg) |
|
{ |
|
H264Context *h = *(void **)arg; |
|
MpegEncContext *const s = &h->s; |
|
const int part_mask = s->partitioned_frame ? (ER_AC_END | ER_AC_ERROR) |
|
: 0x7F; |
|
int lf_x_start = s->mb_x; |
|
|
|
s->mb_skip_run = -1; |
|
|
|
h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || |
|
s->codec_id != CODEC_ID_H264 || |
|
(CONFIG_GRAY && (s->flags & CODEC_FLAG_GRAY)); |
|
|
|
if (h->pps.cabac) { |
|
/* realign */ |
|
align_get_bits(&s->gb); |
|
|
|
/* init cabac */ |
|
ff_init_cabac_states(&h->cabac); |
|
ff_init_cabac_decoder(&h->cabac, |
|
s->gb.buffer + get_bits_count(&s->gb) / 8, |
|
(get_bits_left(&s->gb) + 7) / 8); |
|
|
|
ff_h264_init_cabac_states(h); |
|
|
|
for (;;) { |
|
// START_TIMER |
|
int ret = ff_h264_decode_mb_cabac(h); |
|
int eos; |
|
// STOP_TIMER("decode_mb_cabac") |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
|
|
// FIXME optimal? or let mb_decode decode 16x32 ? |
|
if (ret >= 0 && FRAME_MBAFF) { |
|
s->mb_y++; |
|
|
|
ret = ff_h264_decode_mb_cabac(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
s->mb_y--; |
|
} |
|
eos = get_cabac_terminate(&h->cabac); |
|
|
|
if ((s->workaround_bugs & FF_BUG_TRUNCATED) && |
|
h->cabac.bytestream > h->cabac.bytestream_end + 2) { |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x - 1, |
|
s->mb_y, ER_MB_END & part_mask); |
|
if (s->mb_x >= lf_x_start) |
|
loop_filter(h, lf_x_start, s->mb_x + 1); |
|
return 0; |
|
} |
|
if (h->cabac.bytestream > h->cabac.bytestream_end + 2 ) |
|
av_log(h->s.avctx, AV_LOG_DEBUG, "bytestream overread %td\n", h->cabac.bytestream_end - h->cabac.bytestream); |
|
if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"error while decoding MB %d %d, bytestream (%td)\n", |
|
s->mb_x, s->mb_y, |
|
h->cabac.bytestream_end - h->cabac.bytestream); |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, |
|
s->mb_y, ER_MB_ERROR & part_mask); |
|
return -1; |
|
} |
|
|
|
if (++s->mb_x >= s->mb_width) { |
|
loop_filter(h, lf_x_start, s->mb_x); |
|
s->mb_x = lf_x_start = 0; |
|
decode_finish_row(h); |
|
++s->mb_y; |
|
if (FIELD_OR_MBAFF_PICTURE) { |
|
++s->mb_y; |
|
if (FRAME_MBAFF && s->mb_y < s->mb_height) |
|
predict_field_decoding_flag(h); |
|
} |
|
} |
|
|
|
if (eos || s->mb_y >= s->mb_height) { |
|
tprintf(s->avctx, "slice end %d %d\n", |
|
get_bits_count(&s->gb), s->gb.size_in_bits); |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x - 1, |
|
s->mb_y, ER_MB_END & part_mask); |
|
if (s->mb_x > lf_x_start) |
|
loop_filter(h, lf_x_start, s->mb_x); |
|
return 0; |
|
} |
|
} |
|
} else { |
|
for (;;) { |
|
int ret = ff_h264_decode_mb_cavlc(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
|
|
// FIXME optimal? or let mb_decode decode 16x32 ? |
|
if (ret >= 0 && FRAME_MBAFF) { |
|
s->mb_y++; |
|
ret = ff_h264_decode_mb_cavlc(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
s->mb_y--; |
|
} |
|
|
|
if (ret < 0) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"error while decoding MB %d %d\n", s->mb_x, s->mb_y); |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, |
|
s->mb_y, ER_MB_ERROR & part_mask); |
|
return -1; |
|
} |
|
|
|
if (++s->mb_x >= s->mb_width) { |
|
loop_filter(h, lf_x_start, s->mb_x); |
|
s->mb_x = lf_x_start = 0; |
|
decode_finish_row(h); |
|
++s->mb_y; |
|
if (FIELD_OR_MBAFF_PICTURE) { |
|
++s->mb_y; |
|
if (FRAME_MBAFF && s->mb_y < s->mb_height) |
|
predict_field_decoding_flag(h); |
|
} |
|
if (s->mb_y >= s->mb_height) { |
|
tprintf(s->avctx, "slice end %d %d\n", |
|
get_bits_count(&s->gb), s->gb.size_in_bits); |
|
|
|
if ( get_bits_left(&s->gb) == 0 |
|
|| get_bits_left(&s->gb) > 0 && !(s->avctx->err_recognition & AV_EF_AGGRESSIVE)) { |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, |
|
s->mb_x - 1, s->mb_y, |
|
ER_MB_END & part_mask); |
|
|
|
return 0; |
|
} else { |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, |
|
s->mb_x, s->mb_y, |
|
ER_MB_END & part_mask); |
|
|
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
if (get_bits_left(&s->gb) <= 0 && s->mb_skip_run <= 0) { |
|
tprintf(s->avctx, "slice end %d %d\n", |
|
get_bits_count(&s->gb), s->gb.size_in_bits); |
|
if (get_bits_left(&s->gb) == 0) { |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, |
|
s->mb_x - 1, s->mb_y, |
|
ER_MB_END & part_mask); |
|
if (s->mb_x > lf_x_start) |
|
loop_filter(h, lf_x_start, s->mb_x); |
|
|
|
return 0; |
|
} else { |
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, |
|
s->mb_y, ER_MB_ERROR & part_mask); |
|
|
|
return -1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Call decode_slice() for each context. |
|
* |
|
* @param h h264 master context |
|
* @param context_count number of contexts to execute |
|
*/ |
|
static int execute_decode_slices(H264Context *h, int context_count) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
AVCodecContext *const avctx = s->avctx; |
|
H264Context *hx; |
|
int i; |
|
|
|
if (s->avctx->hwaccel || |
|
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
return 0; |
|
if (context_count == 1) { |
|
return decode_slice(avctx, &h); |
|
} else { |
|
for (i = 1; i < context_count; i++) { |
|
hx = h->thread_context[i]; |
|
hx->s.err_recognition = avctx->err_recognition; |
|
hx->s.error_count = 0; |
|
hx->x264_build = h->x264_build; |
|
} |
|
|
|
avctx->execute(avctx, decode_slice, h->thread_context, |
|
NULL, context_count, sizeof(void *)); |
|
|
|
/* pull back stuff from slices to master context */ |
|
hx = h->thread_context[context_count - 1]; |
|
s->mb_x = hx->s.mb_x; |
|
s->mb_y = hx->s.mb_y; |
|
s->dropable = hx->s.dropable; |
|
s->picture_structure = hx->s.picture_structure; |
|
for (i = 1; i < context_count; i++) |
|
h->s.error_count += h->thread_context[i]->s.error_count; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size) |
|
{ |
|
MpegEncContext *const s = &h->s; |
|
AVCodecContext *const avctx = s->avctx; |
|
H264Context *hx; ///< thread context |
|
int buf_index; |
|
int context_count; |
|
int next_avc; |
|
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME); |
|
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts |
|
int nal_index; |
|
|
|
h->nal_unit_type= 0; |
|
|
|
if(!s->slice_context_count) |
|
s->slice_context_count= 1; |
|
h->max_contexts = s->slice_context_count; |
|
if (!(s->flags2 & CODEC_FLAG2_CHUNKS)) { |
|
h->current_slice = 0; |
|
if (!s->first_field) |
|
s->current_picture_ptr = NULL; |
|
ff_h264_reset_sei(h); |
|
} |
|
|
|
for (; pass <= 1; pass++) { |
|
buf_index = 0; |
|
context_count = 0; |
|
next_avc = h->is_avc ? 0 : buf_size; |
|
nal_index = 0; |
|
for (;;) { |
|
int consumed; |
|
int dst_length; |
|
int bit_length; |
|
const uint8_t *ptr; |
|
int i, nalsize = 0; |
|
int err; |
|
|
|
if (buf_index >= next_avc) { |
|
if (buf_index >= buf_size - h->nal_length_size) |
|
break; |
|
nalsize = 0; |
|
for (i = 0; i < h->nal_length_size; i++) |
|
nalsize = (nalsize << 8) | buf[buf_index++]; |
|
if (nalsize <= 0 || nalsize > buf_size - buf_index) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"AVC: nal size %d\n", nalsize); |
|
break; |
|
} |
|
next_avc = buf_index + nalsize; |
|
} else { |
|
// start code prefix search |
|
for (; buf_index + 3 < next_avc; buf_index++) |
|
// This should always succeed in the first iteration. |
|
if (buf[buf_index] == 0 && |
|
buf[buf_index + 1] == 0 && |
|
buf[buf_index + 2] == 1) |
|
break; |
|
|
|
if (buf_index + 3 >= buf_size) |
|
break; |
|
|
|
buf_index += 3; |
|
if (buf_index >= next_avc) |
|
continue; |
|
} |
|
|
|
hx = h->thread_context[context_count]; |
|
|
|
ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length, |
|
&consumed, next_avc - buf_index); |
|
if (ptr == NULL || dst_length < 0) { |
|
buf_index = -1; |
|
goto end; |
|
} |
|
i = buf_index + consumed; |
|
if ((s->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc && |
|
buf[i] == 0x00 && buf[i + 1] == 0x00 && |
|
buf[i + 2] == 0x01 && buf[i + 3] == 0xE0) |
|
s->workaround_bugs |= FF_BUG_TRUNCATED; |
|
|
|
if (!(s->workaround_bugs & FF_BUG_TRUNCATED)) |
|
while(dst_length > 0 && ptr[dst_length - 1] == 0) |
|
dst_length--; |
|
bit_length = !dst_length ? 0 |
|
: (8 * dst_length - |
|
decode_rbsp_trailing(h, ptr + dst_length - 1)); |
|
|
|
if (s->avctx->debug & FF_DEBUG_STARTCODE) |
|
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d pass %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length, pass); |
|
|
|
if (h->is_avc && (nalsize != consumed) && nalsize) |
|
av_log(h->s.avctx, AV_LOG_DEBUG, |
|
"AVC: Consumed only %d bytes instead of %d\n", |
|
consumed, nalsize); |
|
|
|
buf_index += consumed; |
|
nal_index++; |
|
|
|
if (pass == 0) { |
|
/* packets can sometimes contain multiple PPS/SPS, |
|
* e.g. two PAFF field pictures in one packet, or a demuxer |
|
* which splits NALs strangely if so, when frame threading we |
|
* can't start the next thread until we've read all of them */ |
|
switch (hx->nal_unit_type) { |
|
case NAL_SPS: |
|
case NAL_PPS: |
|
nals_needed = nal_index; |
|
break; |
|
case NAL_IDR_SLICE: |
|
case NAL_SLICE: |
|
init_get_bits(&hx->s.gb, ptr, bit_length); |
|
if (!get_ue_golomb(&hx->s.gb)) |
|
nals_needed = nal_index; |
|
} |
|
continue; |
|
} |
|
|
|
// FIXME do not discard SEI id |
|
if (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0) |
|
continue; |
|
|
|
again: |
|
err = 0; |
|
switch (hx->nal_unit_type) { |
|
case NAL_IDR_SLICE: |
|
if (h->nal_unit_type != NAL_IDR_SLICE) { |
|
av_log(h->s.avctx, AV_LOG_ERROR, |
|
"Invalid mix of idr and non-idr slices\n"); |
|
buf_index = -1; |
|
goto end; |
|
} |
|
idr(h); // FIXME ensure we don't lose some frames if there is reordering |
|
case NAL_SLICE: |
|
init_get_bits(&hx->s.gb, ptr, bit_length); |
|
hx->intra_gb_ptr = |
|
hx->inter_gb_ptr = &hx->s.gb; |
|
hx->s.data_partitioning = 0; |
|
|
|
if ((err = decode_slice_header(hx, h))) |
|
break; |
|
|
|
if ( h->sei_recovery_frame_cnt >= 0 |
|
&& ( h->recovery_frame<0 |
|
|| ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt)) { |
|
h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) % |
|
(1 << h->sps.log2_max_frame_num); |
|
} |
|
|
|
s->current_picture_ptr->f.key_frame |= |
|
(hx->nal_unit_type == NAL_IDR_SLICE); |
|
|
|
if (h->recovery_frame == h->frame_num) { |
|
s->current_picture_ptr->sync |= 1; |
|
h->recovery_frame = -1; |
|
} |
|
|
|
h->sync |= !!s->current_picture_ptr->f.key_frame; |
|
h->sync |= 3*!!(s->flags2 & CODEC_FLAG2_SHOW_ALL); |
|
s->current_picture_ptr->sync |= h->sync; |
|
|
|
if (h->current_slice == 1) { |
|
if (!(s->flags2 & CODEC_FLAG2_CHUNKS)) |
|
decode_postinit(h, nal_index >= nals_needed); |
|
|
|
if (s->avctx->hwaccel && |
|
s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0) |
|
return -1; |
|
if (CONFIG_H264_VDPAU_DECODER && |
|
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_picture_start(s); |
|
} |
|
|
|
if (hx->redundant_pic_count == 0 && |
|
(avctx->skip_frame < AVDISCARD_NONREF || |
|
hx->nal_ref_idc) && |
|
(avctx->skip_frame < AVDISCARD_BIDIR || |
|
hx->slice_type_nos != AV_PICTURE_TYPE_B) && |
|
(avctx->skip_frame < AVDISCARD_NONKEY || |
|
hx->slice_type_nos == AV_PICTURE_TYPE_I) && |
|
avctx->skip_frame < AVDISCARD_ALL) { |
|
if (avctx->hwaccel) { |
|
if (avctx->hwaccel->decode_slice(avctx, |
|
&buf[buf_index - consumed], |
|
consumed) < 0) |
|
return -1; |
|
} else if (CONFIG_H264_VDPAU_DECODER && |
|
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) { |
|
static const uint8_t start_code[] = { |
|
0x00, 0x00, 0x01 }; |
|
ff_vdpau_add_data_chunk(s, start_code, |
|
sizeof(start_code)); |
|
ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], |
|
consumed); |
|
} else |
|
context_count++; |
|
} |
|
break; |
|
case NAL_DPA: |
|
init_get_bits(&hx->s.gb, ptr, bit_length); |
|
hx->intra_gb_ptr = |
|
hx->inter_gb_ptr = NULL; |
|
|
|
if ((err = decode_slice_header(hx, h)) < 0) |
|
break; |
|
|
|
hx->s.data_partitioning = 1; |
|
break; |
|
case NAL_DPB: |
|
init_get_bits(&hx->intra_gb, ptr, bit_length); |
|
hx->intra_gb_ptr = &hx->intra_gb; |
|
break; |
|
case NAL_DPC: |
|
init_get_bits(&hx->inter_gb, ptr, bit_length); |
|
hx->inter_gb_ptr = &hx->inter_gb; |
|
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n"); |
|
return AVERROR_PATCHWELCOME; |
|
|
|
if (hx->redundant_pic_count == 0 && |
|
hx->intra_gb_ptr && |
|
hx->s.data_partitioning && |
|
s->context_initialized && |
|
(avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && |
|
(avctx->skip_frame < AVDISCARD_BIDIR || |
|
hx->slice_type_nos != AV_PICTURE_TYPE_B) && |
|
(avctx->skip_frame < AVDISCARD_NONKEY || |
|
hx->slice_type_nos == AV_PICTURE_TYPE_I) && |
|
avctx->skip_frame < AVDISCARD_ALL) |
|
context_count++; |
|
break; |
|
case NAL_SEI: |
|
init_get_bits(&s->gb, ptr, bit_length); |
|
ff_h264_decode_sei(h); |
|
break; |
|
case NAL_SPS: |
|
init_get_bits(&s->gb, ptr, bit_length); |
|
if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? (nalsize != consumed) && nalsize : 1)) { |
|
av_log(h->s.avctx, AV_LOG_DEBUG, |
|
"SPS decoding failure, trying again with the complete NAL\n"); |
|
if (h->is_avc) |
|
av_assert0(next_avc - buf_index + consumed == nalsize); |
|
init_get_bits(&s->gb, &buf[buf_index + 1 - consumed], |
|
8*(next_avc - buf_index + consumed - 1)); |
|
ff_h264_decode_seq_parameter_set(h); |
|
} |
|
|
|
if (s->flags & CODEC_FLAG_LOW_DELAY || |
|
(h->sps.bitstream_restriction_flag && |
|
!h->sps.num_reorder_frames)) |
|
s->low_delay = 1; |
|
if (avctx->has_b_frames < 2) |
|
avctx->has_b_frames = !s->low_delay; |
|
break; |
|
case NAL_PPS: |
|
init_get_bits(&s->gb, ptr, bit_length); |
|
ff_h264_decode_picture_parameter_set(h, bit_length); |
|
break; |
|
case NAL_AUD: |
|
case NAL_END_SEQUENCE: |
|
case NAL_END_STREAM: |
|
case NAL_FILLER_DATA: |
|
case NAL_SPS_EXT: |
|
case NAL_AUXILIARY_SLICE: |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", |
|
hx->nal_unit_type, bit_length); |
|
} |
|
|
|
if (context_count == h->max_contexts) { |
|
execute_decode_slices(h, context_count); |
|
context_count = 0; |
|
} |
|
|
|
if (err < 0) |
|
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); |
|
else if (err == 1) { |
|
/* Slice could not be decoded in parallel mode, copy down |
|
* NAL unit stuff to context 0 and restart. Note that |
|
* rbsp_buffer is not transferred, but since we no longer |
|
* run in parallel mode this should not be an issue. */ |
|
h->nal_unit_type = hx->nal_unit_type; |
|
h->nal_ref_idc = hx->nal_ref_idc; |
|
hx = h; |
|
goto again; |
|
} |
|
} |
|
} |
|
if (context_count) |
|
execute_decode_slices(h, context_count); |
|
|
|
end: |
|
/* clean up */ |
|
if (s->current_picture_ptr && s->current_picture_ptr->owner2 == s && |
|
!s->dropable) { |
|
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, |
|
s->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
return buf_index; |
|
} |
|
|
|
/** |
|
* Return the number of bytes consumed for building the current frame. |
|
*/ |
|
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size) |
|
{ |
|
if (pos == 0) |
|
pos = 1; // avoid infinite loops (i doubt that is needed but ...) |
|
if (pos + 10 > buf_size) |
|
pos = buf_size; // oops ;) |
|
|
|
return pos; |
|
} |
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, |
|
int *data_size, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
H264Context *h = avctx->priv_data; |
|
MpegEncContext *s = &h->s; |
|
AVFrame *pict = data; |
|
int buf_index = 0; |
|
Picture *out; |
|
int i, out_idx; |
|
|
|
s->flags = avctx->flags; |
|
s->flags2 = avctx->flags2; |
|
|
|
/* end of stream, output what is still in the buffers */ |
|
if (buf_size == 0) { |
|
out: |
|
|
|
s->current_picture_ptr = NULL; |
|
|
|
// FIXME factorize this with the output code below |
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; |
|
h->delayed_pic[i] && |
|
!h->delayed_pic[i]->f.key_frame && |
|
!h->delayed_pic[i]->mmco_reset; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
|
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
|
|
if (out) { |
|
*data_size = sizeof(AVFrame); |
|
*pict = out->f; |
|
} |
|
|
|
return buf_index; |
|
} |
|
if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){ |
|
int cnt= buf[5]&0x1f; |
|
const uint8_t *p= buf+6; |
|
while(cnt--){ |
|
int nalsize= AV_RB16(p) + 2; |
|
if(nalsize > buf_size - (p-buf) || p[2]!=0x67) |
|
goto not_extra; |
|
p += nalsize; |
|
} |
|
cnt = *(p++); |
|
if(!cnt) |
|
goto not_extra; |
|
while(cnt--){ |
|
int nalsize= AV_RB16(p) + 2; |
|
if(nalsize > buf_size - (p-buf) || p[2]!=0x68) |
|
goto not_extra; |
|
p += nalsize; |
|
} |
|
|
|
return ff_h264_decode_extradata(h, buf, buf_size); |
|
} |
|
not_extra: |
|
|
|
buf_index = decode_nal_units(h, buf, buf_size); |
|
if (buf_index < 0) |
|
return -1; |
|
|
|
if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { |
|
av_assert0(buf_index <= buf_size); |
|
goto out; |
|
} |
|
|
|
if (!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr) { |
|
if (avctx->skip_frame >= AVDISCARD_NONREF || |
|
buf_size >= 4 && !memcmp("Q264", buf, 4)) |
|
return buf_size; |
|
av_log(avctx, AV_LOG_ERROR, "no frame!\n"); |
|
return -1; |
|
} |
|
|
|
if (!(s->flags2 & CODEC_FLAG2_CHUNKS) || |
|
(s->mb_y >= s->mb_height && s->mb_height)) { |
|
if (s->flags2 & CODEC_FLAG2_CHUNKS) |
|
decode_postinit(h, 1); |
|
|
|
field_end(h, 0); |
|
|
|
/* Wait for second field. */ |
|
*data_size = 0; |
|
if (h->next_output_pic && (h->next_output_pic->sync || h->sync>1)) { |
|
*data_size = sizeof(AVFrame); |
|
*pict = h->next_output_pic->f; |
|
} |
|
} |
|
|
|
assert(pict->data[0] || !*data_size); |
|
ff_print_debug_info(s, pict); |
|
// printf("out %d\n", (int)pict->data[0]); |
|
|
|
return get_consumed_bytes(s, buf_index, buf_size); |
|
} |
|
|
|
av_cold void ff_h264_free_context(H264Context *h) |
|
{ |
|
int i; |
|
|
|
free_tables(h, 1); // FIXME cleanup init stuff perhaps |
|
|
|
for (i = 0; i < MAX_SPS_COUNT; i++) |
|
av_freep(h->sps_buffers + i); |
|
|
|
for (i = 0; i < MAX_PPS_COUNT; i++) |
|
av_freep(h->pps_buffers + i); |
|
} |
|
|
|
static av_cold int h264_decode_end(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
MpegEncContext *s = &h->s; |
|
|
|
ff_h264_remove_all_refs(h); |
|
ff_h264_free_context(h); |
|
|
|
ff_MPV_common_end(s); |
|
|
|
// memset(h, 0, sizeof(H264Context)); |
|
|
|
return 0; |
|
} |
|
|
|
static const AVProfile profiles[] = { |
|
{ FF_PROFILE_H264_BASELINE, "Baseline" }, |
|
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" }, |
|
{ FF_PROFILE_H264_MAIN, "Main" }, |
|
{ FF_PROFILE_H264_EXTENDED, "Extended" }, |
|
{ FF_PROFILE_H264_HIGH, "High" }, |
|
{ FF_PROFILE_H264_HIGH_10, "High 10" }, |
|
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" }, |
|
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" }, |
|
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" }, |
|
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" }, |
|
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" }, |
|
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" }, |
|
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" }, |
|
{ FF_PROFILE_UNKNOWN }, |
|
}; |
|
|
|
static const AVOption h264_options[] = { |
|
{"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, 0}, |
|
{"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 4, 0}, |
|
{NULL} |
|
}; |
|
|
|
static const AVClass h264_class = { |
|
"H264 Decoder", |
|
av_default_item_name, |
|
h264_options, |
|
LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static const AVClass h264_vdpau_class = { |
|
"H264 VDPAU Decoder", |
|
av_default_item_name, |
|
h264_options, |
|
LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_h264_decoder = { |
|
.name = "h264", |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = CODEC_ID_H264, |
|
.priv_data_size = sizeof(H264Context), |
|
.init = ff_h264_decode_init, |
|
.close = h264_decode_end, |
|
.decode = decode_frame, |
|
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | |
|
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | |
|
CODEC_CAP_FRAME_THREADS, |
|
.flush = flush_dpb, |
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), |
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), |
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context), |
|
.profiles = NULL_IF_CONFIG_SMALL(profiles), |
|
.priv_class = &h264_class, |
|
}; |
|
|
|
#if CONFIG_H264_VDPAU_DECODER |
|
AVCodec ff_h264_vdpau_decoder = { |
|
.name = "h264_vdpau", |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = CODEC_ID_H264, |
|
.priv_data_size = sizeof(H264Context), |
|
.init = ff_h264_decode_init, |
|
.close = h264_decode_end, |
|
.decode = decode_frame, |
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, |
|
.flush = flush_dpb, |
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), |
|
.pix_fmts = (const enum PixelFormat[]) { PIX_FMT_VDPAU_H264, |
|
PIX_FMT_NONE}, |
|
.profiles = NULL_IF_CONFIG_SMALL(profiles), |
|
.priv_class = &h264_vdpau_class, |
|
}; |
|
#endif
|
|
|