mirror of https://github.com/FFmpeg/FFmpeg.git
129 lines
3.7 KiB
129 lines
3.7 KiB
/* |
|
* rational numbers |
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavutil/rational.c |
|
* rational numbers |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#include <assert.h> |
|
//#include <math.h> |
|
#include <limits.h> |
|
|
|
#include "common.h" |
|
#include "mathematics.h" |
|
#include "rational.h" |
|
|
|
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){ |
|
AVRational a0={0,1}, a1={1,0}; |
|
int sign= (num<0) ^ (den<0); |
|
int64_t gcd= av_gcd(FFABS(num), FFABS(den)); |
|
|
|
if(gcd){ |
|
num = FFABS(num)/gcd; |
|
den = FFABS(den)/gcd; |
|
} |
|
if(num<=max && den<=max){ |
|
a1= (AVRational){num, den}; |
|
den=0; |
|
} |
|
|
|
while(den){ |
|
uint64_t x = num / den; |
|
int64_t next_den= num - den*x; |
|
int64_t a2n= x*a1.num + a0.num; |
|
int64_t a2d= x*a1.den + a0.den; |
|
|
|
if(a2n > max || a2d > max){ |
|
if(a1.num) x= (max - a0.num) / a1.num; |
|
if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den); |
|
|
|
if (den*(2*x*a1.den + a0.den) > num*a1.den) |
|
a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den}; |
|
break; |
|
} |
|
|
|
a0= a1; |
|
a1= (AVRational){a2n, a2d}; |
|
num= den; |
|
den= next_den; |
|
} |
|
assert(av_gcd(a1.num, a1.den) <= 1U); |
|
|
|
*dst_num = sign ? -a1.num : a1.num; |
|
*dst_den = a1.den; |
|
|
|
return den==0; |
|
} |
|
|
|
AVRational av_mul_q(AVRational b, AVRational c){ |
|
av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX); |
|
return b; |
|
} |
|
|
|
AVRational av_div_q(AVRational b, AVRational c){ |
|
return av_mul_q(b, (AVRational){c.den, c.num}); |
|
} |
|
|
|
AVRational av_add_q(AVRational b, AVRational c){ |
|
av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX); |
|
return b; |
|
} |
|
|
|
AVRational av_sub_q(AVRational b, AVRational c){ |
|
return av_add_q(b, (AVRational){-c.num, c.den}); |
|
} |
|
|
|
AVRational av_d2q(double d, int max){ |
|
AVRational a; |
|
#define LOG2 0.69314718055994530941723212145817656807550013436025 |
|
int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0); |
|
int64_t den= 1LL << (61 - exponent); |
|
av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max); |
|
|
|
return a; |
|
} |
|
|
|
int av_nearer_q(AVRational q, AVRational q1, AVRational q2) |
|
{ |
|
/* n/d is q, a/b is the median between q1 and q2 */ |
|
int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den; |
|
int64_t b = 2 * (int64_t)q1.den * q2.den; |
|
|
|
/* rnd_up(a*d/b) > n => a*d/b > n */ |
|
int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP); |
|
|
|
/* rnd_down(a*d/b) < n => a*d/b < n */ |
|
int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN); |
|
|
|
return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1); |
|
} |
|
|
|
int av_find_nearest_q_idx(AVRational q, const AVRational* q_list) |
|
{ |
|
int i, nearest_q_idx = 0; |
|
for(i=0; q_list[i].den; i++) |
|
if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0) |
|
nearest_q_idx = i; |
|
|
|
return nearest_q_idx; |
|
}
|
|
|