mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
366 lines
9.1 KiB
366 lines
9.1 KiB
/* |
|
* FFT/IFFT transforms |
|
* Copyright (c) 2008 Loren Merritt |
|
* Copyright (c) 2002 Fabrice Bellard |
|
* Partly based on libdjbfft by D. J. Bernstein |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/fft.c |
|
* FFT/IFFT transforms. |
|
*/ |
|
|
|
#include "libavutil/mathematics.h" |
|
#include "fft.h" |
|
|
|
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */ |
|
#if !CONFIG_HARDCODED_TABLES |
|
COSTABLE(16); |
|
COSTABLE(32); |
|
COSTABLE(64); |
|
COSTABLE(128); |
|
COSTABLE(256); |
|
COSTABLE(512); |
|
COSTABLE(1024); |
|
COSTABLE(2048); |
|
COSTABLE(4096); |
|
COSTABLE(8192); |
|
COSTABLE(16384); |
|
COSTABLE(32768); |
|
COSTABLE(65536); |
|
#endif |
|
COSTABLE_CONST FFTSample * const ff_cos_tabs[] = { |
|
NULL, NULL, NULL, NULL, |
|
ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024, |
|
ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536, |
|
}; |
|
|
|
static int split_radix_permutation(int i, int n, int inverse) |
|
{ |
|
int m; |
|
if(n <= 2) return i&1; |
|
m = n >> 1; |
|
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; |
|
m >>= 1; |
|
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; |
|
else return split_radix_permutation(i, m, inverse)*4 - 1; |
|
} |
|
|
|
av_cold void ff_init_ff_cos_tabs(int index) |
|
{ |
|
#if !CONFIG_HARDCODED_TABLES |
|
int i; |
|
int m = 1<<index; |
|
double freq = 2*M_PI/m; |
|
FFTSample *tab = ff_cos_tabs[index]; |
|
for(i=0; i<=m/4; i++) |
|
tab[i] = cos(i*freq); |
|
for(i=1; i<m/4; i++) |
|
tab[m/2-i] = tab[i]; |
|
#endif |
|
} |
|
|
|
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse) |
|
{ |
|
int i, j, m, n; |
|
float alpha, c1, s1, s2; |
|
int av_unused has_vectors; |
|
|
|
if (nbits < 2 || nbits > 16) |
|
goto fail; |
|
s->nbits = nbits; |
|
n = 1 << nbits; |
|
|
|
s->tmp_buf = NULL; |
|
s->exptab = av_malloc((n / 2) * sizeof(FFTComplex)); |
|
if (!s->exptab) |
|
goto fail; |
|
s->revtab = av_malloc(n * sizeof(uint16_t)); |
|
if (!s->revtab) |
|
goto fail; |
|
s->inverse = inverse; |
|
|
|
s2 = inverse ? 1.0 : -1.0; |
|
|
|
s->fft_permute = ff_fft_permute_c; |
|
s->fft_calc = ff_fft_calc_c; |
|
#if CONFIG_MDCT |
|
s->imdct_calc = ff_imdct_calc_c; |
|
s->imdct_half = ff_imdct_half_c; |
|
s->mdct_calc = ff_mdct_calc_c; |
|
#endif |
|
s->exptab1 = NULL; |
|
s->split_radix = 1; |
|
|
|
if (ARCH_ARM) ff_fft_init_arm(s); |
|
if (HAVE_ALTIVEC) ff_fft_init_altivec(s); |
|
if (HAVE_MMX) ff_fft_init_mmx(s); |
|
|
|
if (s->split_radix) { |
|
for(j=4; j<=nbits; j++) { |
|
ff_init_ff_cos_tabs(j); |
|
} |
|
for(i=0; i<n; i++) |
|
s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i; |
|
s->tmp_buf = av_malloc(n * sizeof(FFTComplex)); |
|
} else { |
|
int np, nblocks, np2, l; |
|
FFTComplex *q; |
|
|
|
for(i=0; i<(n/2); i++) { |
|
alpha = 2 * M_PI * (float)i / (float)n; |
|
c1 = cos(alpha); |
|
s1 = sin(alpha) * s2; |
|
s->exptab[i].re = c1; |
|
s->exptab[i].im = s1; |
|
} |
|
|
|
np = 1 << nbits; |
|
nblocks = np >> 3; |
|
np2 = np >> 1; |
|
s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex)); |
|
if (!s->exptab1) |
|
goto fail; |
|
q = s->exptab1; |
|
do { |
|
for(l = 0; l < np2; l += 2 * nblocks) { |
|
*q++ = s->exptab[l]; |
|
*q++ = s->exptab[l + nblocks]; |
|
|
|
q->re = -s->exptab[l].im; |
|
q->im = s->exptab[l].re; |
|
q++; |
|
q->re = -s->exptab[l + nblocks].im; |
|
q->im = s->exptab[l + nblocks].re; |
|
q++; |
|
} |
|
nblocks = nblocks >> 1; |
|
} while (nblocks != 0); |
|
av_freep(&s->exptab); |
|
|
|
/* compute bit reverse table */ |
|
for(i=0;i<n;i++) { |
|
m=0; |
|
for(j=0;j<nbits;j++) { |
|
m |= ((i >> j) & 1) << (nbits-j-1); |
|
} |
|
s->revtab[i]=m; |
|
} |
|
} |
|
|
|
return 0; |
|
fail: |
|
av_freep(&s->revtab); |
|
av_freep(&s->exptab); |
|
av_freep(&s->exptab1); |
|
av_freep(&s->tmp_buf); |
|
return -1; |
|
} |
|
|
|
void ff_fft_permute_c(FFTContext *s, FFTComplex *z) |
|
{ |
|
int j, k, np; |
|
FFTComplex tmp; |
|
const uint16_t *revtab = s->revtab; |
|
np = 1 << s->nbits; |
|
|
|
if (s->tmp_buf) { |
|
/* TODO: handle split-radix permute in a more optimal way, probably in-place */ |
|
for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j]; |
|
memcpy(z, s->tmp_buf, np * sizeof(FFTComplex)); |
|
return; |
|
} |
|
|
|
/* reverse */ |
|
for(j=0;j<np;j++) { |
|
k = revtab[j]; |
|
if (k < j) { |
|
tmp = z[k]; |
|
z[k] = z[j]; |
|
z[j] = tmp; |
|
} |
|
} |
|
} |
|
|
|
av_cold void ff_fft_end(FFTContext *s) |
|
{ |
|
av_freep(&s->revtab); |
|
av_freep(&s->exptab); |
|
av_freep(&s->exptab1); |
|
av_freep(&s->tmp_buf); |
|
} |
|
|
|
#define sqrthalf (float)M_SQRT1_2 |
|
|
|
#define BF(x,y,a,b) {\ |
|
x = a - b;\ |
|
y = a + b;\ |
|
} |
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) {\ |
|
BF(t3, t5, t5, t1);\ |
|
BF(a2.re, a0.re, a0.re, t5);\ |
|
BF(a3.im, a1.im, a1.im, t3);\ |
|
BF(t4, t6, t2, t6);\ |
|
BF(a3.re, a1.re, a1.re, t4);\ |
|
BF(a2.im, a0.im, a0.im, t6);\ |
|
} |
|
|
|
// force loading all the inputs before storing any. |
|
// this is slightly slower for small data, but avoids store->load aliasing |
|
// for addresses separated by large powers of 2. |
|
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ |
|
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ |
|
BF(t3, t5, t5, t1);\ |
|
BF(a2.re, a0.re, r0, t5);\ |
|
BF(a3.im, a1.im, i1, t3);\ |
|
BF(t4, t6, t2, t6);\ |
|
BF(a3.re, a1.re, r1, t4);\ |
|
BF(a2.im, a0.im, i0, t6);\ |
|
} |
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ |
|
t1 = a2.re * wre + a2.im * wim;\ |
|
t2 = a2.im * wre - a2.re * wim;\ |
|
t5 = a3.re * wre - a3.im * wim;\ |
|
t6 = a3.im * wre + a3.re * wim;\ |
|
BUTTERFLIES(a0,a1,a2,a3)\ |
|
} |
|
|
|
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\ |
|
t1 = a2.re;\ |
|
t2 = a2.im;\ |
|
t5 = a3.re;\ |
|
t6 = a3.im;\ |
|
BUTTERFLIES(a0,a1,a2,a3)\ |
|
} |
|
|
|
/* z[0...8n-1], w[1...2n-1] */ |
|
#define PASS(name)\ |
|
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ |
|
{\ |
|
FFTSample t1, t2, t3, t4, t5, t6;\ |
|
int o1 = 2*n;\ |
|
int o2 = 4*n;\ |
|
int o3 = 6*n;\ |
|
const FFTSample *wim = wre+o1;\ |
|
n--;\ |
|
\ |
|
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ |
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
|
do {\ |
|
z += 2;\ |
|
wre += 2;\ |
|
wim -= 2;\ |
|
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ |
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
|
} while(--n);\ |
|
} |
|
|
|
PASS(pass) |
|
#undef BUTTERFLIES |
|
#define BUTTERFLIES BUTTERFLIES_BIG |
|
PASS(pass_big) |
|
|
|
#define DECL_FFT(n,n2,n4)\ |
|
static void fft##n(FFTComplex *z)\ |
|
{\ |
|
fft##n2(z);\ |
|
fft##n4(z+n4*2);\ |
|
fft##n4(z+n4*3);\ |
|
pass(z,ff_cos_##n,n4/2);\ |
|
} |
|
|
|
static void fft4(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8; |
|
|
|
BF(t3, t1, z[0].re, z[1].re); |
|
BF(t8, t6, z[3].re, z[2].re); |
|
BF(z[2].re, z[0].re, t1, t6); |
|
BF(t4, t2, z[0].im, z[1].im); |
|
BF(t7, t5, z[2].im, z[3].im); |
|
BF(z[3].im, z[1].im, t4, t8); |
|
BF(z[3].re, z[1].re, t3, t7); |
|
BF(z[2].im, z[0].im, t2, t5); |
|
} |
|
|
|
static void fft8(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8; |
|
|
|
fft4(z); |
|
|
|
BF(t1, z[5].re, z[4].re, -z[5].re); |
|
BF(t2, z[5].im, z[4].im, -z[5].im); |
|
BF(t3, z[7].re, z[6].re, -z[7].re); |
|
BF(t4, z[7].im, z[6].im, -z[7].im); |
|
BF(t8, t1, t3, t1); |
|
BF(t7, t2, t2, t4); |
|
BF(z[4].re, z[0].re, z[0].re, t1); |
|
BF(z[4].im, z[0].im, z[0].im, t2); |
|
BF(z[6].re, z[2].re, z[2].re, t7); |
|
BF(z[6].im, z[2].im, z[2].im, t8); |
|
|
|
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); |
|
} |
|
|
|
#if !CONFIG_SMALL |
|
static void fft16(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6; |
|
|
|
fft8(z); |
|
fft4(z+8); |
|
fft4(z+12); |
|
|
|
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); |
|
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); |
|
TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]); |
|
TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]); |
|
} |
|
#else |
|
DECL_FFT(16,8,4) |
|
#endif |
|
DECL_FFT(32,16,8) |
|
DECL_FFT(64,32,16) |
|
DECL_FFT(128,64,32) |
|
DECL_FFT(256,128,64) |
|
DECL_FFT(512,256,128) |
|
#if !CONFIG_SMALL |
|
#define pass pass_big |
|
#endif |
|
DECL_FFT(1024,512,256) |
|
DECL_FFT(2048,1024,512) |
|
DECL_FFT(4096,2048,1024) |
|
DECL_FFT(8192,4096,2048) |
|
DECL_FFT(16384,8192,4096) |
|
DECL_FFT(32768,16384,8192) |
|
DECL_FFT(65536,32768,16384) |
|
|
|
static void (* const fft_dispatch[])(FFTComplex*) = { |
|
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, |
|
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, |
|
}; |
|
|
|
void ff_fft_calc_c(FFTContext *s, FFTComplex *z) |
|
{ |
|
fft_dispatch[s->nbits-2](z); |
|
} |
|
|
|
|