mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
9.3 KiB
274 lines
9.3 KiB
/* |
|
* audio resampling |
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
* |
|
*/ |
|
|
|
/** |
|
* @file resample2.c |
|
* audio resampling |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "common.h" |
|
#include "dsputil.h" |
|
|
|
#if 1 |
|
#define FILTER_SHIFT 15 |
|
|
|
#define FELEM int16_t |
|
#define FELEM2 int32_t |
|
#define FELEM_MAX INT16_MAX |
|
#define FELEM_MIN INT16_MIN |
|
#else |
|
#define FILTER_SHIFT 22 |
|
|
|
#define FELEM int32_t |
|
#define FELEM2 int64_t |
|
#define FELEM_MAX INT32_MAX |
|
#define FELEM_MIN INT32_MIN |
|
#endif |
|
|
|
|
|
typedef struct AVResampleContext{ |
|
FELEM *filter_bank; |
|
int filter_length; |
|
int ideal_dst_incr; |
|
int dst_incr; |
|
int index; |
|
int frac; |
|
int src_incr; |
|
int compensation_distance; |
|
int phase_shift; |
|
int phase_mask; |
|
int linear; |
|
}AVResampleContext; |
|
|
|
/** |
|
* 0th order modified bessel function of the first kind. |
|
*/ |
|
double bessel(double x){ |
|
double v=1; |
|
double t=1; |
|
int i; |
|
|
|
for(i=1; i<50; i++){ |
|
t *= i; |
|
v += pow(x*x/4, i)/(t*t); |
|
} |
|
return v; |
|
} |
|
|
|
/** |
|
* builds a polyphase filterbank. |
|
* @param factor resampling factor |
|
* @param scale wanted sum of coefficients for each filter |
|
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16 |
|
*/ |
|
void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){ |
|
int ph, i, v; |
|
double x, y, w, tab[tap_count]; |
|
const int center= (tap_count-1)/2; |
|
|
|
/* if upsampling, only need to interpolate, no filter */ |
|
if (factor > 1.0) |
|
factor = 1.0; |
|
|
|
for(ph=0;ph<phase_count;ph++) { |
|
double norm = 0; |
|
double e= 0; |
|
for(i=0;i<tap_count;i++) { |
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; |
|
if (x == 0) y = 1.0; |
|
else y = sin(x) / x; |
|
switch(type){ |
|
case 0:{ |
|
const float d= -0.5; //first order derivative = -0.5 |
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); |
|
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); |
|
else y= d*(-4 + 8*x - 5*x*x + x*x*x); |
|
break;} |
|
case 1: |
|
w = 2.0*x / (factor*tap_count) + M_PI; |
|
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); |
|
break; |
|
case 2: |
|
w = 2.0*x / (factor*tap_count*M_PI); |
|
y *= bessel(16*sqrt(FFMAX(1-w*w, 0))); |
|
break; |
|
} |
|
|
|
tab[i] = y; |
|
norm += y; |
|
} |
|
|
|
/* normalize so that an uniform color remains the same */ |
|
for(i=0;i<tap_count;i++) { |
|
v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX); |
|
filter[ph * tap_count + i] = v; |
|
e += tab[i] * scale / norm - v; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* initalizes a audio resampler. |
|
* note, if either rate is not a integer then simply scale both rates up so they are |
|
*/ |
|
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){ |
|
AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); |
|
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0); |
|
int phase_count= 1<<phase_shift; |
|
|
|
memset(c, 0, sizeof(AVResampleContext)); |
|
|
|
c->phase_shift= phase_shift; |
|
c->phase_mask= phase_count-1; |
|
c->linear= linear; |
|
|
|
c->filter_length= FFMAX(ceil(filter_size/factor), 1); |
|
c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM)); |
|
av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1); |
|
memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM)); |
|
c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1]; |
|
|
|
c->src_incr= out_rate; |
|
c->ideal_dst_incr= c->dst_incr= in_rate * phase_count; |
|
c->index= -phase_count*((c->filter_length-1)/2); |
|
|
|
return c; |
|
} |
|
|
|
void av_resample_close(AVResampleContext *c){ |
|
av_freep(&c->filter_bank); |
|
av_freep(&c); |
|
} |
|
|
|
/** |
|
* Compensates samplerate/timestamp drift. The compensation is done by changing |
|
* the resampler parameters, so no audible clicks or similar distortions ocur |
|
* @param compensation_distance distance in output samples over which the compensation should be performed |
|
* @param sample_delta number of output samples which should be output less |
|
* |
|
* example: av_resample_compensate(c, 10, 500) |
|
* here instead of 510 samples only 500 samples would be output |
|
* |
|
* note, due to rounding the actual compensation might be slightly different, |
|
* especially if the compensation_distance is large and the in_rate used during init is small |
|
*/ |
|
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ |
|
// sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr; |
|
c->compensation_distance= compensation_distance; |
|
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance; |
|
} |
|
|
|
/** |
|
* resamples. |
|
* @param src an array of unconsumed samples |
|
* @param consumed the number of samples of src which have been consumed are returned here |
|
* @param src_size the number of unconsumed samples available |
|
* @param dst_size the amount of space in samples available in dst |
|
* @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context |
|
* @return the number of samples written in dst or -1 if an error occured |
|
*/ |
|
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ |
|
int dst_index, i; |
|
int index= c->index; |
|
int frac= c->frac; |
|
int dst_incr_frac= c->dst_incr % c->src_incr; |
|
int dst_incr= c->dst_incr / c->src_incr; |
|
int compensation_distance= c->compensation_distance; |
|
|
|
if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){ |
|
int64_t index2= ((int64_t)index)<<32; |
|
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; |
|
dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr); |
|
|
|
for(dst_index=0; dst_index < dst_size; dst_index++){ |
|
dst[dst_index] = src[index2>>32]; |
|
index2 += incr; |
|
} |
|
frac += dst_index * dst_incr_frac; |
|
index += dst_index * dst_incr; |
|
index += frac / c->src_incr; |
|
frac %= c->src_incr; |
|
}else{ |
|
for(dst_index=0; dst_index < dst_size; dst_index++){ |
|
FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask); |
|
int sample_index= index >> c->phase_shift; |
|
FELEM2 val=0; |
|
|
|
if(sample_index < 0){ |
|
for(i=0; i<c->filter_length; i++) |
|
val += src[ABS(sample_index + i) % src_size] * filter[i]; |
|
}else if(sample_index + c->filter_length > src_size){ |
|
break; |
|
}else if(c->linear){ |
|
int64_t v=0; |
|
int sub_phase= (frac<<8) / c->src_incr; |
|
for(i=0; i<c->filter_length; i++){ |
|
int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase; |
|
v += src[sample_index + i] * coeff; |
|
} |
|
val= v>>8; |
|
}else{ |
|
for(i=0; i<c->filter_length; i++){ |
|
val += src[sample_index + i] * (FELEM2)filter[i]; |
|
} |
|
} |
|
|
|
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; |
|
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; |
|
|
|
frac += dst_incr_frac; |
|
index += dst_incr; |
|
if(frac >= c->src_incr){ |
|
frac -= c->src_incr; |
|
index++; |
|
} |
|
|
|
if(dst_index + 1 == compensation_distance){ |
|
compensation_distance= 0; |
|
dst_incr_frac= c->ideal_dst_incr % c->src_incr; |
|
dst_incr= c->ideal_dst_incr / c->src_incr; |
|
} |
|
} |
|
} |
|
*consumed= FFMAX(index, 0) >> c->phase_shift; |
|
if(index>=0) index &= c->phase_mask; |
|
|
|
if(compensation_distance){ |
|
compensation_distance -= dst_index; |
|
assert(compensation_distance > 0); |
|
} |
|
if(update_ctx){ |
|
c->frac= frac; |
|
c->index= index; |
|
c->dst_incr= dst_incr_frac + c->src_incr*dst_incr; |
|
c->compensation_distance= compensation_distance; |
|
} |
|
#if 0 |
|
if(update_ctx && !c->compensation_distance){ |
|
#undef rand |
|
av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2); |
|
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance); |
|
} |
|
#endif |
|
|
|
return dst_index; |
|
}
|
|
|