mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
4.7 KiB
166 lines
4.7 KiB
/* |
|
* LSP routines for ACELP-based codecs |
|
* |
|
* Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder) |
|
* Copyright (c) 2008 Vladimir Voroshilov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <inttypes.h> |
|
|
|
#include "avcodec.h" |
|
#define FRAC_BITS 14 |
|
#include "mathops.h" |
|
#include "lsp.h" |
|
#include "celp_math.h" |
|
|
|
void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order) |
|
{ |
|
int i, j; |
|
|
|
/* sort lsfq in ascending order. float bubble agorithm, |
|
O(n) if data already sorted, O(n^2) - otherwise */ |
|
for(i=0; i<lp_order-1; i++) |
|
for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--) |
|
FFSWAP(int16_t, lsfq[j], lsfq[j+1]); |
|
|
|
for(i=0; i<lp_order; i++) |
|
{ |
|
lsfq[i] = FFMAX(lsfq[i], lsfq_min); |
|
lsfq_min = lsfq[i] + lsfq_min_distance; |
|
} |
|
lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ? |
|
} |
|
|
|
void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order) |
|
{ |
|
int i; |
|
|
|
/* Convert LSF to LSP, lsp=cos(lsf) */ |
|
for(i=0; i<lp_order; i++) |
|
// 20861 = 2.0 / PI in (0.15) |
|
lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14) |
|
} |
|
|
|
/** |
|
* \brief decodes polynomial coefficients from LSP |
|
* \param f [out] decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff) |
|
* \param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff) |
|
*/ |
|
static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order) |
|
{ |
|
int i, j; |
|
|
|
f[0] = 0x400000; // 1.0 in (3.22) |
|
f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22) |
|
|
|
for(i=2; i<=lp_half_order; i++) |
|
{ |
|
f[i] = f[i-2]; |
|
for(j=i; j>1; j--) |
|
f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2]; |
|
|
|
f[1] -= lsp[2*i-2] << 8; |
|
} |
|
} |
|
|
|
void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order) |
|
{ |
|
int i; |
|
int f1[lp_half_order+1]; // (3.22) |
|
int f2[lp_half_order+1]; // (3.22) |
|
|
|
lsp2poly(f1, lsp , lp_half_order); |
|
lsp2poly(f2, lsp+1, lp_half_order); |
|
|
|
/* 3.2.6 of G.729, Equations 25 and 26*/ |
|
lp[0] = 4096; |
|
for(i=1; i<lp_half_order+1; i++) |
|
{ |
|
int ff1 = f1[i] + f1[i-1]; // (3.22) |
|
int ff2 = f2[i] - f2[i-1]; // (3.22) |
|
|
|
ff1 += 1 << 10; // for rounding |
|
lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12) |
|
lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12) |
|
} |
|
} |
|
|
|
void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order) |
|
{ |
|
int16_t lsp_1st[lp_order]; // (0.15) |
|
int i; |
|
|
|
/* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/ |
|
for(i=0; i<lp_order; i++) |
|
#ifdef G729_BITEXACT |
|
lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1); |
|
#else |
|
lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1; |
|
#endif |
|
|
|
ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1); |
|
|
|
/* LSP values for second subframe (3.2.5 of G.729)*/ |
|
ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1); |
|
} |
|
|
|
/** |
|
* Computes the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients |
|
* needed for LSP to LPC conversion. |
|
* We only need to calculate the 6 first elements of the polynomial. |
|
* |
|
* @param lsp line spectral pairs in cosine domain |
|
* @param f [out] polynomial input/output as a vector |
|
* |
|
* TIA/EIA/IS-733 2.4.3.3.5-1/2 |
|
*/ |
|
static void lsp2polyf(const double *lsp, double *f, int lp_half_order) |
|
{ |
|
int i, j; |
|
|
|
f[0] = 1.0; |
|
f[1] = -2 * lsp[0]; |
|
lsp -= 2; |
|
for(i=2; i<=lp_half_order; i++) |
|
{ |
|
double val = -2 * lsp[2*i]; |
|
f[i] = val * f[i-1] + 2*f[i-2]; |
|
for(j=i-1; j>1; j--) |
|
f[j] += f[j-1] * val + f[j-2]; |
|
f[1] += val; |
|
} |
|
} |
|
|
|
void ff_acelp_lspd2lpc(const double *lsp, float *lpc) |
|
{ |
|
double pa[6], qa[6]; |
|
int i; |
|
|
|
lsp2polyf(lsp, pa, 5); |
|
lsp2polyf(lsp + 1, qa, 5); |
|
|
|
for (i=4; i>=0; i--) |
|
{ |
|
double paf = pa[i+1] + pa[i]; |
|
double qaf = qa[i+1] - qa[i]; |
|
|
|
lpc[i ] = 0.5*(paf+qaf); |
|
lpc[9-i] = 0.5*(paf-qaf); |
|
} |
|
}
|
|
|