mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2690 lines
80 KiB
2690 lines
80 KiB
/* |
|
* MPEG Audio decoder |
|
* Copyright (c) 2001, 2002 Fabrice Bellard. |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
/** |
|
* @file mpegaudiodec.c |
|
* MPEG Audio decoder. |
|
*/ |
|
|
|
//#define DEBUG |
|
#include "avcodec.h" |
|
#include "mpegaudio.h" |
|
#include "dsputil.h" |
|
|
|
/* |
|
* TODO: |
|
* - in low precision mode, use more 16 bit multiplies in synth filter |
|
* - test lsf / mpeg25 extensively. |
|
*/ |
|
|
|
/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg |
|
audio decoder */ |
|
#ifdef CONFIG_MPEGAUDIO_HP |
|
#define USE_HIGHPRECISION |
|
#endif |
|
|
|
#ifdef USE_HIGHPRECISION |
|
#define FRAC_BITS 23 /* fractional bits for sb_samples and dct */ |
|
#define WFRAC_BITS 16 /* fractional bits for window */ |
|
#else |
|
#define FRAC_BITS 15 /* fractional bits for sb_samples and dct */ |
|
#define WFRAC_BITS 14 /* fractional bits for window */ |
|
#endif |
|
|
|
#define FRAC_ONE (1 << FRAC_BITS) |
|
|
|
#define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) |
|
#define MUL64(a,b) ((int64_t)(a) * (int64_t)(b)) |
|
#define FIX(a) ((int)((a) * FRAC_ONE)) |
|
/* WARNING: only correct for posititive numbers */ |
|
#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) |
|
#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS) |
|
|
|
#if FRAC_BITS <= 15 |
|
typedef int16_t MPA_INT; |
|
#else |
|
typedef int32_t MPA_INT; |
|
#endif |
|
|
|
/****************/ |
|
|
|
#define HEADER_SIZE 4 |
|
#define BACKSTEP_SIZE 512 |
|
|
|
struct GranuleDef; |
|
|
|
typedef struct MPADecodeContext { |
|
uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */ |
|
int inbuf_index; |
|
uint8_t *inbuf_ptr, *inbuf; |
|
int frame_size; |
|
int free_format_frame_size; /* frame size in case of free format |
|
(zero if currently unknown) */ |
|
/* next header (used in free format parsing) */ |
|
uint32_t free_format_next_header; |
|
int error_protection; |
|
int layer; |
|
int sample_rate; |
|
int sample_rate_index; /* between 0 and 8 */ |
|
int bit_rate; |
|
int old_frame_size; |
|
GetBitContext gb; |
|
int nb_channels; |
|
int mode; |
|
int mode_ext; |
|
int lsf; |
|
MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16))); |
|
int synth_buf_offset[MPA_MAX_CHANNELS]; |
|
int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16))); |
|
int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ |
|
#ifdef DEBUG |
|
int frame_count; |
|
#endif |
|
void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g); |
|
} MPADecodeContext; |
|
|
|
/* layer 3 "granule" */ |
|
typedef struct GranuleDef { |
|
uint8_t scfsi; |
|
int part2_3_length; |
|
int big_values; |
|
int global_gain; |
|
int scalefac_compress; |
|
uint8_t block_type; |
|
uint8_t switch_point; |
|
int table_select[3]; |
|
int subblock_gain[3]; |
|
uint8_t scalefac_scale; |
|
uint8_t count1table_select; |
|
int region_size[3]; /* number of huffman codes in each region */ |
|
int preflag; |
|
int short_start, long_end; /* long/short band indexes */ |
|
uint8_t scale_factors[40]; |
|
int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */ |
|
} GranuleDef; |
|
|
|
#define MODE_EXT_MS_STEREO 2 |
|
#define MODE_EXT_I_STEREO 1 |
|
|
|
/* layer 3 huffman tables */ |
|
typedef struct HuffTable { |
|
int xsize; |
|
const uint8_t *bits; |
|
const uint16_t *codes; |
|
} HuffTable; |
|
|
|
#include "mpegaudiodectab.h" |
|
|
|
static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g); |
|
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g); |
|
|
|
/* vlc structure for decoding layer 3 huffman tables */ |
|
static VLC huff_vlc[16]; |
|
static uint8_t *huff_code_table[16]; |
|
static VLC huff_quad_vlc[2]; |
|
/* computed from band_size_long */ |
|
static uint16_t band_index_long[9][23]; |
|
/* XXX: free when all decoders are closed */ |
|
#define TABLE_4_3_SIZE (8191 + 16) |
|
static int8_t *table_4_3_exp; |
|
#if FRAC_BITS <= 15 |
|
static uint16_t *table_4_3_value; |
|
#else |
|
static uint32_t *table_4_3_value; |
|
#endif |
|
/* intensity stereo coef table */ |
|
static int32_t is_table[2][16]; |
|
static int32_t is_table_lsf[2][2][16]; |
|
static int32_t csa_table[8][4]; |
|
static float csa_table_float[8][4]; |
|
static int32_t mdct_win[8][36]; |
|
|
|
/* lower 2 bits: modulo 3, higher bits: shift */ |
|
static uint16_t scale_factor_modshift[64]; |
|
/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ |
|
static int32_t scale_factor_mult[15][3]; |
|
/* mult table for layer 2 group quantization */ |
|
|
|
#define SCALE_GEN(v) \ |
|
{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) } |
|
|
|
static int32_t scale_factor_mult2[3][3] = { |
|
SCALE_GEN(4.0 / 3.0), /* 3 steps */ |
|
SCALE_GEN(4.0 / 5.0), /* 5 steps */ |
|
SCALE_GEN(4.0 / 9.0), /* 9 steps */ |
|
}; |
|
|
|
/* 2^(n/4) */ |
|
static uint32_t scale_factor_mult3[4] = { |
|
FIXR(1.0), |
|
FIXR(1.18920711500272106671), |
|
FIXR(1.41421356237309504880), |
|
FIXR(1.68179283050742908605), |
|
}; |
|
|
|
static MPA_INT window[512] __attribute__((aligned(16))); |
|
|
|
/* layer 1 unscaling */ |
|
/* n = number of bits of the mantissa minus 1 */ |
|
static inline int l1_unscale(int n, int mant, int scale_factor) |
|
{ |
|
int shift, mod; |
|
int64_t val; |
|
|
|
shift = scale_factor_modshift[scale_factor]; |
|
mod = shift & 3; |
|
shift >>= 2; |
|
val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); |
|
shift += n; |
|
/* NOTE: at this point, 1 <= shift >= 21 + 15 */ |
|
return (int)((val + (1LL << (shift - 1))) >> shift); |
|
} |
|
|
|
static inline int l2_unscale_group(int steps, int mant, int scale_factor) |
|
{ |
|
int shift, mod, val; |
|
|
|
shift = scale_factor_modshift[scale_factor]; |
|
mod = shift & 3; |
|
shift >>= 2; |
|
|
|
val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; |
|
/* NOTE: at this point, 0 <= shift <= 21 */ |
|
if (shift > 0) |
|
val = (val + (1 << (shift - 1))) >> shift; |
|
return val; |
|
} |
|
|
|
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ |
|
static inline int l3_unscale(int value, int exponent) |
|
{ |
|
#if FRAC_BITS <= 15 |
|
unsigned int m; |
|
#else |
|
uint64_t m; |
|
#endif |
|
int e; |
|
|
|
e = table_4_3_exp[value]; |
|
e += (exponent >> 2); |
|
e = FRAC_BITS - e; |
|
#if FRAC_BITS <= 15 |
|
if (e > 31) |
|
e = 31; |
|
#endif |
|
m = table_4_3_value[value]; |
|
#if FRAC_BITS <= 15 |
|
m = (m * scale_factor_mult3[exponent & 3]); |
|
m = (m + (1 << (e-1))) >> e; |
|
return m; |
|
#else |
|
m = MUL64(m, scale_factor_mult3[exponent & 3]); |
|
m = (m + (uint64_t_C(1) << (e-1))) >> e; |
|
return m; |
|
#endif |
|
} |
|
|
|
/* all integer n^(4/3) computation code */ |
|
#define DEV_ORDER 13 |
|
|
|
#define POW_FRAC_BITS 24 |
|
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) |
|
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) |
|
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS) |
|
|
|
static int dev_4_3_coefs[DEV_ORDER]; |
|
|
|
static int pow_mult3[3] = { |
|
POW_FIX(1.0), |
|
POW_FIX(1.25992104989487316476), |
|
POW_FIX(1.58740105196819947474), |
|
}; |
|
|
|
static void int_pow_init(void) |
|
{ |
|
int i, a; |
|
|
|
a = POW_FIX(1.0); |
|
for(i=0;i<DEV_ORDER;i++) { |
|
a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1); |
|
dev_4_3_coefs[i] = a; |
|
} |
|
} |
|
|
|
/* return the mantissa and the binary exponent */ |
|
static int int_pow(int i, int *exp_ptr) |
|
{ |
|
int e, er, eq, j; |
|
int a, a1; |
|
|
|
/* renormalize */ |
|
a = i; |
|
e = POW_FRAC_BITS; |
|
while (a < (1 << (POW_FRAC_BITS - 1))) { |
|
a = a << 1; |
|
e--; |
|
} |
|
a -= (1 << POW_FRAC_BITS); |
|
a1 = 0; |
|
for(j = DEV_ORDER - 1; j >= 0; j--) |
|
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1); |
|
a = (1 << POW_FRAC_BITS) + a1; |
|
/* exponent compute (exact) */ |
|
e = e * 4; |
|
er = e % 3; |
|
eq = e / 3; |
|
a = POW_MULL(a, pow_mult3[er]); |
|
while (a >= 2 * POW_FRAC_ONE) { |
|
a = a >> 1; |
|
eq++; |
|
} |
|
/* convert to float */ |
|
while (a < POW_FRAC_ONE) { |
|
a = a << 1; |
|
eq--; |
|
} |
|
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */ |
|
#if POW_FRAC_BITS > FRAC_BITS |
|
a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS); |
|
/* correct overflow */ |
|
if (a >= 2 * (1 << FRAC_BITS)) { |
|
a = a >> 1; |
|
eq++; |
|
} |
|
#endif |
|
*exp_ptr = eq; |
|
return a; |
|
} |
|
|
|
static int decode_init(AVCodecContext * avctx) |
|
{ |
|
MPADecodeContext *s = avctx->priv_data; |
|
static int init=0; |
|
int i, j, k; |
|
|
|
if (!init && !avctx->parse_only) { |
|
/* scale factors table for layer 1/2 */ |
|
for(i=0;i<64;i++) { |
|
int shift, mod; |
|
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ |
|
shift = (i / 3); |
|
mod = i % 3; |
|
scale_factor_modshift[i] = mod | (shift << 2); |
|
} |
|
|
|
/* scale factor multiply for layer 1 */ |
|
for(i=0;i<15;i++) { |
|
int n, norm; |
|
n = i + 2; |
|
norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); |
|
scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm); |
|
scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm); |
|
scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm); |
|
dprintf("%d: norm=%x s=%x %x %x\n", |
|
i, norm, |
|
scale_factor_mult[i][0], |
|
scale_factor_mult[i][1], |
|
scale_factor_mult[i][2]); |
|
} |
|
|
|
/* window */ |
|
/* max = 18760, max sum over all 16 coefs : 44736 */ |
|
for(i=0;i<257;i++) { |
|
int v; |
|
v = mpa_enwindow[i]; |
|
#if WFRAC_BITS < 16 |
|
v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); |
|
#endif |
|
window[i] = v; |
|
if ((i & 63) != 0) |
|
v = -v; |
|
if (i != 0) |
|
window[512 - i] = v; |
|
} |
|
|
|
/* huffman decode tables */ |
|
huff_code_table[0] = NULL; |
|
for(i=1;i<16;i++) { |
|
const HuffTable *h = &mpa_huff_tables[i]; |
|
int xsize, x, y; |
|
unsigned int n; |
|
uint8_t *code_table; |
|
|
|
xsize = h->xsize; |
|
n = xsize * xsize; |
|
/* XXX: fail test */ |
|
init_vlc(&huff_vlc[i], 8, n, |
|
h->bits, 1, 1, h->codes, 2, 2); |
|
|
|
code_table = av_mallocz(n); |
|
j = 0; |
|
for(x=0;x<xsize;x++) { |
|
for(y=0;y<xsize;y++) |
|
code_table[j++] = (x << 4) | y; |
|
} |
|
huff_code_table[i] = code_table; |
|
} |
|
for(i=0;i<2;i++) { |
|
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, |
|
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1); |
|
} |
|
|
|
for(i=0;i<9;i++) { |
|
k = 0; |
|
for(j=0;j<22;j++) { |
|
band_index_long[i][j] = k; |
|
k += band_size_long[i][j]; |
|
} |
|
band_index_long[i][22] = k; |
|
} |
|
|
|
/* compute n ^ (4/3) and store it in mantissa/exp format */ |
|
if (!av_mallocz_static(&table_4_3_exp, |
|
TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]))) |
|
return -1; |
|
if (!av_mallocz_static(&table_4_3_value, |
|
TABLE_4_3_SIZE * sizeof(table_4_3_value[0]))) |
|
return -1; |
|
|
|
int_pow_init(); |
|
for(i=1;i<TABLE_4_3_SIZE;i++) { |
|
int e, m; |
|
m = int_pow(i, &e); |
|
#if 0 |
|
/* test code */ |
|
{ |
|
double f, fm; |
|
int e1, m1; |
|
f = pow((double)i, 4.0 / 3.0); |
|
fm = frexp(f, &e1); |
|
m1 = FIXR(2 * fm); |
|
#if FRAC_BITS <= 15 |
|
if ((unsigned short)m1 != m1) { |
|
m1 = m1 >> 1; |
|
e1++; |
|
} |
|
#endif |
|
e1--; |
|
if (m != m1 || e != e1) { |
|
printf("%4d: m=%x m1=%x e=%d e1=%d\n", |
|
i, m, m1, e, e1); |
|
} |
|
} |
|
#endif |
|
/* normalized to FRAC_BITS */ |
|
table_4_3_value[i] = m; |
|
table_4_3_exp[i] = e; |
|
} |
|
|
|
for(i=0;i<7;i++) { |
|
float f; |
|
int v; |
|
if (i != 6) { |
|
f = tan((double)i * M_PI / 12.0); |
|
v = FIXR(f / (1.0 + f)); |
|
} else { |
|
v = FIXR(1.0); |
|
} |
|
is_table[0][i] = v; |
|
is_table[1][6 - i] = v; |
|
} |
|
/* invalid values */ |
|
for(i=7;i<16;i++) |
|
is_table[0][i] = is_table[1][i] = 0.0; |
|
|
|
for(i=0;i<16;i++) { |
|
double f; |
|
int e, k; |
|
|
|
for(j=0;j<2;j++) { |
|
e = -(j + 1) * ((i + 1) >> 1); |
|
f = pow(2.0, e / 4.0); |
|
k = i & 1; |
|
is_table_lsf[j][k ^ 1][i] = FIXR(f); |
|
is_table_lsf[j][k][i] = FIXR(1.0); |
|
dprintf("is_table_lsf %d %d: %x %x\n", |
|
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); |
|
} |
|
} |
|
|
|
if(avctx->antialias_algo == FF_AA_INT) |
|
s->compute_antialias= compute_antialias_integer; |
|
else |
|
s->compute_antialias= compute_antialias_float; |
|
for(i=0;i<8;i++) { |
|
float ci, cs, ca; |
|
ci = ci_table[i]; |
|
cs = 1.0 / sqrt(1.0 + ci * ci); |
|
ca = cs * ci; |
|
csa_table[i][0] = FIX(cs); |
|
csa_table[i][1] = FIX(ca); |
|
csa_table[i][2] = FIX(ca) + FIX(cs); |
|
csa_table[i][3] = FIX(ca) - FIX(cs); |
|
csa_table_float[i][0] = cs; |
|
csa_table_float[i][1] = ca; |
|
csa_table_float[i][2] = ca + cs; |
|
csa_table_float[i][3] = ca - cs; |
|
// printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca)); |
|
} |
|
|
|
/* compute mdct windows */ |
|
for(i=0;i<36;i++) { |
|
int v; |
|
v = FIXR(sin(M_PI * (i + 0.5) / 36.0)); |
|
mdct_win[0][i] = v; |
|
mdct_win[1][i] = v; |
|
mdct_win[3][i] = v; |
|
} |
|
for(i=0;i<6;i++) { |
|
mdct_win[1][18 + i] = FIXR(1.0); |
|
mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0)); |
|
mdct_win[1][30 + i] = FIXR(0.0); |
|
|
|
mdct_win[3][i] = FIXR(0.0); |
|
mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); |
|
mdct_win[3][12 + i] = FIXR(1.0); |
|
} |
|
|
|
for(i=0;i<12;i++) |
|
mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); |
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing |
|
the sign of the right window coefs */ |
|
for(j=0;j<4;j++) { |
|
for(i=0;i<36;i+=2) { |
|
mdct_win[j + 4][i] = mdct_win[j][i]; |
|
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; |
|
} |
|
} |
|
|
|
#if defined(DEBUG) |
|
for(j=0;j<8;j++) { |
|
printf("win%d=\n", j); |
|
for(i=0;i<36;i++) |
|
printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE); |
|
printf("\n"); |
|
} |
|
#endif |
|
init = 1; |
|
} |
|
|
|
s->inbuf_index = 0; |
|
s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; |
|
s->inbuf_ptr = s->inbuf; |
|
#ifdef DEBUG |
|
s->frame_count = 0; |
|
#endif |
|
return 0; |
|
} |
|
|
|
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */ |
|
|
|
/* cos(i*pi/64) */ |
|
|
|
#define COS0_0 FIXR(0.50060299823519630134) |
|
#define COS0_1 FIXR(0.50547095989754365998) |
|
#define COS0_2 FIXR(0.51544730992262454697) |
|
#define COS0_3 FIXR(0.53104259108978417447) |
|
#define COS0_4 FIXR(0.55310389603444452782) |
|
#define COS0_5 FIXR(0.58293496820613387367) |
|
#define COS0_6 FIXR(0.62250412303566481615) |
|
#define COS0_7 FIXR(0.67480834145500574602) |
|
#define COS0_8 FIXR(0.74453627100229844977) |
|
#define COS0_9 FIXR(0.83934964541552703873) |
|
#define COS0_10 FIXR(0.97256823786196069369) |
|
#define COS0_11 FIXR(1.16943993343288495515) |
|
#define COS0_12 FIXR(1.48416461631416627724) |
|
#define COS0_13 FIXR(2.05778100995341155085) |
|
#define COS0_14 FIXR(3.40760841846871878570) |
|
#define COS0_15 FIXR(10.19000812354805681150) |
|
|
|
#define COS1_0 FIXR(0.50241928618815570551) |
|
#define COS1_1 FIXR(0.52249861493968888062) |
|
#define COS1_2 FIXR(0.56694403481635770368) |
|
#define COS1_3 FIXR(0.64682178335999012954) |
|
#define COS1_4 FIXR(0.78815462345125022473) |
|
#define COS1_5 FIXR(1.06067768599034747134) |
|
#define COS1_6 FIXR(1.72244709823833392782) |
|
#define COS1_7 FIXR(5.10114861868916385802) |
|
|
|
#define COS2_0 FIXR(0.50979557910415916894) |
|
#define COS2_1 FIXR(0.60134488693504528054) |
|
#define COS2_2 FIXR(0.89997622313641570463) |
|
#define COS2_3 FIXR(2.56291544774150617881) |
|
|
|
#define COS3_0 FIXR(0.54119610014619698439) |
|
#define COS3_1 FIXR(1.30656296487637652785) |
|
|
|
#define COS4_0 FIXR(0.70710678118654752439) |
|
|
|
/* butterfly operator */ |
|
#define BF(a, b, c)\ |
|
{\ |
|
tmp0 = tab[a] + tab[b];\ |
|
tmp1 = tab[a] - tab[b];\ |
|
tab[a] = tmp0;\ |
|
tab[b] = MULL(tmp1, c);\ |
|
} |
|
|
|
#define BF1(a, b, c, d)\ |
|
{\ |
|
BF(a, b, COS4_0);\ |
|
BF(c, d, -COS4_0);\ |
|
tab[c] += tab[d];\ |
|
} |
|
|
|
#define BF2(a, b, c, d)\ |
|
{\ |
|
BF(a, b, COS4_0);\ |
|
BF(c, d, -COS4_0);\ |
|
tab[c] += tab[d];\ |
|
tab[a] += tab[c];\ |
|
tab[c] += tab[b];\ |
|
tab[b] += tab[d];\ |
|
} |
|
|
|
#define ADD(a, b) tab[a] += tab[b] |
|
|
|
/* DCT32 without 1/sqrt(2) coef zero scaling. */ |
|
static void dct32(int32_t *out, int32_t *tab) |
|
{ |
|
int tmp0, tmp1; |
|
|
|
/* pass 1 */ |
|
BF(0, 31, COS0_0); |
|
BF(1, 30, COS0_1); |
|
BF(2, 29, COS0_2); |
|
BF(3, 28, COS0_3); |
|
BF(4, 27, COS0_4); |
|
BF(5, 26, COS0_5); |
|
BF(6, 25, COS0_6); |
|
BF(7, 24, COS0_7); |
|
BF(8, 23, COS0_8); |
|
BF(9, 22, COS0_9); |
|
BF(10, 21, COS0_10); |
|
BF(11, 20, COS0_11); |
|
BF(12, 19, COS0_12); |
|
BF(13, 18, COS0_13); |
|
BF(14, 17, COS0_14); |
|
BF(15, 16, COS0_15); |
|
|
|
/* pass 2 */ |
|
BF(0, 15, COS1_0); |
|
BF(1, 14, COS1_1); |
|
BF(2, 13, COS1_2); |
|
BF(3, 12, COS1_3); |
|
BF(4, 11, COS1_4); |
|
BF(5, 10, COS1_5); |
|
BF(6, 9, COS1_6); |
|
BF(7, 8, COS1_7); |
|
|
|
BF(16, 31, -COS1_0); |
|
BF(17, 30, -COS1_1); |
|
BF(18, 29, -COS1_2); |
|
BF(19, 28, -COS1_3); |
|
BF(20, 27, -COS1_4); |
|
BF(21, 26, -COS1_5); |
|
BF(22, 25, -COS1_6); |
|
BF(23, 24, -COS1_7); |
|
|
|
/* pass 3 */ |
|
BF(0, 7, COS2_0); |
|
BF(1, 6, COS2_1); |
|
BF(2, 5, COS2_2); |
|
BF(3, 4, COS2_3); |
|
|
|
BF(8, 15, -COS2_0); |
|
BF(9, 14, -COS2_1); |
|
BF(10, 13, -COS2_2); |
|
BF(11, 12, -COS2_3); |
|
|
|
BF(16, 23, COS2_0); |
|
BF(17, 22, COS2_1); |
|
BF(18, 21, COS2_2); |
|
BF(19, 20, COS2_3); |
|
|
|
BF(24, 31, -COS2_0); |
|
BF(25, 30, -COS2_1); |
|
BF(26, 29, -COS2_2); |
|
BF(27, 28, -COS2_3); |
|
|
|
/* pass 4 */ |
|
BF(0, 3, COS3_0); |
|
BF(1, 2, COS3_1); |
|
|
|
BF(4, 7, -COS3_0); |
|
BF(5, 6, -COS3_1); |
|
|
|
BF(8, 11, COS3_0); |
|
BF(9, 10, COS3_1); |
|
|
|
BF(12, 15, -COS3_0); |
|
BF(13, 14, -COS3_1); |
|
|
|
BF(16, 19, COS3_0); |
|
BF(17, 18, COS3_1); |
|
|
|
BF(20, 23, -COS3_0); |
|
BF(21, 22, -COS3_1); |
|
|
|
BF(24, 27, COS3_0); |
|
BF(25, 26, COS3_1); |
|
|
|
BF(28, 31, -COS3_0); |
|
BF(29, 30, -COS3_1); |
|
|
|
/* pass 5 */ |
|
BF1(0, 1, 2, 3); |
|
BF2(4, 5, 6, 7); |
|
BF1(8, 9, 10, 11); |
|
BF2(12, 13, 14, 15); |
|
BF1(16, 17, 18, 19); |
|
BF2(20, 21, 22, 23); |
|
BF1(24, 25, 26, 27); |
|
BF2(28, 29, 30, 31); |
|
|
|
/* pass 6 */ |
|
|
|
ADD( 8, 12); |
|
ADD(12, 10); |
|
ADD(10, 14); |
|
ADD(14, 9); |
|
ADD( 9, 13); |
|
ADD(13, 11); |
|
ADD(11, 15); |
|
|
|
out[ 0] = tab[0]; |
|
out[16] = tab[1]; |
|
out[ 8] = tab[2]; |
|
out[24] = tab[3]; |
|
out[ 4] = tab[4]; |
|
out[20] = tab[5]; |
|
out[12] = tab[6]; |
|
out[28] = tab[7]; |
|
out[ 2] = tab[8]; |
|
out[18] = tab[9]; |
|
out[10] = tab[10]; |
|
out[26] = tab[11]; |
|
out[ 6] = tab[12]; |
|
out[22] = tab[13]; |
|
out[14] = tab[14]; |
|
out[30] = tab[15]; |
|
|
|
ADD(24, 28); |
|
ADD(28, 26); |
|
ADD(26, 30); |
|
ADD(30, 25); |
|
ADD(25, 29); |
|
ADD(29, 27); |
|
ADD(27, 31); |
|
|
|
out[ 1] = tab[16] + tab[24]; |
|
out[17] = tab[17] + tab[25]; |
|
out[ 9] = tab[18] + tab[26]; |
|
out[25] = tab[19] + tab[27]; |
|
out[ 5] = tab[20] + tab[28]; |
|
out[21] = tab[21] + tab[29]; |
|
out[13] = tab[22] + tab[30]; |
|
out[29] = tab[23] + tab[31]; |
|
out[ 3] = tab[24] + tab[20]; |
|
out[19] = tab[25] + tab[21]; |
|
out[11] = tab[26] + tab[22]; |
|
out[27] = tab[27] + tab[23]; |
|
out[ 7] = tab[28] + tab[18]; |
|
out[23] = tab[29] + tab[19]; |
|
out[15] = tab[30] + tab[17]; |
|
out[31] = tab[31]; |
|
} |
|
|
|
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) |
|
|
|
#if FRAC_BITS <= 15 |
|
|
|
static inline int round_sample(int sum) |
|
{ |
|
int sum1; |
|
sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT; |
|
if (sum1 < -32768) |
|
sum1 = -32768; |
|
else if (sum1 > 32767) |
|
sum1 = 32767; |
|
return sum1; |
|
} |
|
|
|
#if defined(ARCH_POWERPC_405) |
|
|
|
/* signed 16x16 -> 32 multiply add accumulate */ |
|
#define MACS(rt, ra, rb) \ |
|
asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb)); |
|
|
|
/* signed 16x16 -> 32 multiply */ |
|
#define MULS(ra, rb) \ |
|
({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; }) |
|
|
|
#else |
|
|
|
/* signed 16x16 -> 32 multiply add accumulate */ |
|
#define MACS(rt, ra, rb) rt += (ra) * (rb) |
|
|
|
/* signed 16x16 -> 32 multiply */ |
|
#define MULS(ra, rb) ((ra) * (rb)) |
|
|
|
#endif |
|
|
|
#else |
|
|
|
static inline int round_sample(int64_t sum) |
|
{ |
|
int sum1; |
|
sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT); |
|
if (sum1 < -32768) |
|
sum1 = -32768; |
|
else if (sum1 > 32767) |
|
sum1 = 32767; |
|
return sum1; |
|
} |
|
|
|
#define MULS(ra, rb) MUL64(ra, rb) |
|
|
|
#endif |
|
|
|
#define SUM8(sum, op, w, p) \ |
|
{ \ |
|
sum op MULS((w)[0 * 64], p[0 * 64]);\ |
|
sum op MULS((w)[1 * 64], p[1 * 64]);\ |
|
sum op MULS((w)[2 * 64], p[2 * 64]);\ |
|
sum op MULS((w)[3 * 64], p[3 * 64]);\ |
|
sum op MULS((w)[4 * 64], p[4 * 64]);\ |
|
sum op MULS((w)[5 * 64], p[5 * 64]);\ |
|
sum op MULS((w)[6 * 64], p[6 * 64]);\ |
|
sum op MULS((w)[7 * 64], p[7 * 64]);\ |
|
} |
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ |
|
{ \ |
|
int tmp;\ |
|
tmp = p[0 * 64];\ |
|
sum1 op1 MULS((w1)[0 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[0 * 64], tmp);\ |
|
tmp = p[1 * 64];\ |
|
sum1 op1 MULS((w1)[1 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[1 * 64], tmp);\ |
|
tmp = p[2 * 64];\ |
|
sum1 op1 MULS((w1)[2 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[2 * 64], tmp);\ |
|
tmp = p[3 * 64];\ |
|
sum1 op1 MULS((w1)[3 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[3 * 64], tmp);\ |
|
tmp = p[4 * 64];\ |
|
sum1 op1 MULS((w1)[4 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[4 * 64], tmp);\ |
|
tmp = p[5 * 64];\ |
|
sum1 op1 MULS((w1)[5 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[5 * 64], tmp);\ |
|
tmp = p[6 * 64];\ |
|
sum1 op1 MULS((w1)[6 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[6 * 64], tmp);\ |
|
tmp = p[7 * 64];\ |
|
sum1 op1 MULS((w1)[7 * 64], tmp);\ |
|
sum2 op2 MULS((w2)[7 * 64], tmp);\ |
|
} |
|
|
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: |
|
32 samples. */ |
|
/* XXX: optimize by avoiding ring buffer usage */ |
|
static void synth_filter(MPADecodeContext *s1, |
|
int ch, int16_t *samples, int incr, |
|
int32_t sb_samples[SBLIMIT]) |
|
{ |
|
int32_t tmp[32]; |
|
register MPA_INT *synth_buf; |
|
const register MPA_INT *w, *w2, *p; |
|
int j, offset, v; |
|
int16_t *samples2; |
|
#if FRAC_BITS <= 15 |
|
int sum, sum2; |
|
#else |
|
int64_t sum, sum2; |
|
#endif |
|
|
|
dct32(tmp, sb_samples); |
|
|
|
offset = s1->synth_buf_offset[ch]; |
|
synth_buf = s1->synth_buf[ch] + offset; |
|
|
|
for(j=0;j<32;j++) { |
|
v = tmp[j]; |
|
#if FRAC_BITS <= 15 |
|
/* NOTE: can cause a loss in precision if very high amplitude |
|
sound */ |
|
if (v > 32767) |
|
v = 32767; |
|
else if (v < -32768) |
|
v = -32768; |
|
#endif |
|
synth_buf[j] = v; |
|
} |
|
/* copy to avoid wrap */ |
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT)); |
|
|
|
samples2 = samples + 31 * incr; |
|
w = window; |
|
w2 = window + 31; |
|
|
|
sum = 0; |
|
p = synth_buf + 16; |
|
SUM8(sum, +=, w, p); |
|
p = synth_buf + 48; |
|
SUM8(sum, -=, w + 32, p); |
|
*samples = round_sample(sum); |
|
samples += incr; |
|
w++; |
|
|
|
/* we calculate two samples at the same time to avoid one memory |
|
access per two sample */ |
|
for(j=1;j<16;j++) { |
|
sum = 0; |
|
sum2 = 0; |
|
p = synth_buf + 16 + j; |
|
SUM8P2(sum, +=, sum2, -=, w, w2, p); |
|
p = synth_buf + 48 - j; |
|
SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p); |
|
|
|
*samples = round_sample(sum); |
|
samples += incr; |
|
*samples2 = round_sample(sum2); |
|
samples2 -= incr; |
|
w++; |
|
w2--; |
|
} |
|
|
|
p = synth_buf + 32; |
|
sum = 0; |
|
SUM8(sum, -=, w + 32, p); |
|
*samples = round_sample(sum); |
|
|
|
offset = (offset - 32) & 511; |
|
s1->synth_buf_offset[ch] = offset; |
|
} |
|
|
|
/* cos(pi*i/24) */ |
|
#define C1 FIXR(0.99144486137381041114) |
|
#define C3 FIXR(0.92387953251128675612) |
|
#define C5 FIXR(0.79335334029123516458) |
|
#define C7 FIXR(0.60876142900872063941) |
|
#define C9 FIXR(0.38268343236508977173) |
|
#define C11 FIXR(0.13052619222005159154) |
|
|
|
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious |
|
cases. */ |
|
static void imdct12(int *out, int *in) |
|
{ |
|
int tmp; |
|
int64_t in1_3, in1_9, in4_3, in4_9; |
|
|
|
in1_3 = MUL64(in[1], C3); |
|
in1_9 = MUL64(in[1], C9); |
|
in4_3 = MUL64(in[4], C3); |
|
in4_9 = MUL64(in[4], C9); |
|
|
|
tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + |
|
MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5)); |
|
out[0] = tmp; |
|
out[5] = -tmp; |
|
tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + |
|
MUL64(in[2] + in[5], C3) - in4_9); |
|
out[1] = tmp; |
|
out[4] = -tmp; |
|
tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) - |
|
MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1)); |
|
out[2] = tmp; |
|
out[3] = -tmp; |
|
tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + |
|
MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7)); |
|
out[6] = tmp; |
|
out[11] = tmp; |
|
tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + |
|
MUL64(in[2] + in[5], C9) + in4_3); |
|
out[7] = tmp; |
|
out[10] = tmp; |
|
tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) - |
|
MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11)); |
|
out[8] = tmp; |
|
out[9] = tmp; |
|
} |
|
|
|
#undef C1 |
|
#undef C3 |
|
#undef C5 |
|
#undef C7 |
|
#undef C9 |
|
#undef C11 |
|
|
|
/* cos(pi*i/18) */ |
|
#define C1 FIXR(0.98480775301220805936) |
|
#define C2 FIXR(0.93969262078590838405) |
|
#define C3 FIXR(0.86602540378443864676) |
|
#define C4 FIXR(0.76604444311897803520) |
|
#define C5 FIXR(0.64278760968653932632) |
|
#define C6 FIXR(0.5) |
|
#define C7 FIXR(0.34202014332566873304) |
|
#define C8 FIXR(0.17364817766693034885) |
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
static const int icos36[9] = { |
|
FIXR(0.50190991877167369479), |
|
FIXR(0.51763809020504152469), |
|
FIXR(0.55168895948124587824), |
|
FIXR(0.61038729438072803416), |
|
FIXR(0.70710678118654752439), |
|
FIXR(0.87172339781054900991), |
|
FIXR(1.18310079157624925896), |
|
FIXR(1.93185165257813657349), |
|
FIXR(5.73685662283492756461), |
|
}; |
|
|
|
static const int icos72[18] = { |
|
/* 0.5 / cos(pi*(2*i+19)/72) */ |
|
FIXR(0.74009361646113053152), |
|
FIXR(0.82133981585229078570), |
|
FIXR(0.93057949835178895673), |
|
FIXR(1.08284028510010010928), |
|
FIXR(1.30656296487637652785), |
|
FIXR(1.66275476171152078719), |
|
FIXR(2.31011315767264929558), |
|
FIXR(3.83064878777019433457), |
|
FIXR(11.46279281302667383546), |
|
|
|
/* 0.5 / cos(pi*(2*(i + 18) +19)/72) */ |
|
FIXR(-0.67817085245462840086), |
|
FIXR(-0.63023620700513223342), |
|
FIXR(-0.59284452371708034528), |
|
FIXR(-0.56369097343317117734), |
|
FIXR(-0.54119610014619698439), |
|
FIXR(-0.52426456257040533932), |
|
FIXR(-0.51213975715725461845), |
|
FIXR(-0.50431448029007636036), |
|
FIXR(-0.50047634258165998492), |
|
}; |
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */ |
|
static void imdct36(int *out, int *in) |
|
{ |
|
int i, j, t0, t1, t2, t3, s0, s1, s2, s3; |
|
int tmp[18], *tmp1, *in1; |
|
int64_t in3_3, in6_6; |
|
|
|
for(i=17;i>=1;i--) |
|
in[i] += in[i-1]; |
|
for(i=17;i>=3;i-=2) |
|
in[i] += in[i-2]; |
|
|
|
for(j=0;j<2;j++) { |
|
tmp1 = tmp + j; |
|
in1 = in + j; |
|
|
|
in3_3 = MUL64(in1[2*3], C3); |
|
in6_6 = MUL64(in1[2*6], C6); |
|
|
|
tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + |
|
MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7)); |
|
tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + |
|
MUL64(in1[2*4], C4) + in6_6 + |
|
MUL64(in1[2*8], C8)); |
|
tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3)); |
|
tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - |
|
in1[2*6] + in1[2*0]; |
|
tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - |
|
MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1)); |
|
tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - |
|
MUL64(in1[2*4], C2) + in6_6 + |
|
MUL64(in1[2*8], C4)); |
|
tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + |
|
MUL64(in1[2*5], C1) - |
|
MUL64(in1[2*7], C5)); |
|
tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + |
|
MUL64(in1[2*4], C8) + in6_6 - |
|
MUL64(in1[2*8], C2)); |
|
tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8]; |
|
} |
|
|
|
i = 0; |
|
for(j=0;j<4;j++) { |
|
t0 = tmp[i]; |
|
t1 = tmp[i + 2]; |
|
s0 = t1 + t0; |
|
s2 = t1 - t0; |
|
|
|
t2 = tmp[i + 1]; |
|
t3 = tmp[i + 3]; |
|
s1 = MULL(t3 + t2, icos36[j]); |
|
s3 = MULL(t3 - t2, icos36[8 - j]); |
|
|
|
t0 = MULL(s0 + s1, icos72[9 + 8 - j]); |
|
t1 = MULL(s0 - s1, icos72[8 - j]); |
|
out[18 + 9 + j] = t0; |
|
out[18 + 8 - j] = t0; |
|
out[9 + j] = -t1; |
|
out[8 - j] = t1; |
|
|
|
t0 = MULL(s2 + s3, icos72[9+j]); |
|
t1 = MULL(s2 - s3, icos72[j]); |
|
out[18 + 9 + (8 - j)] = t0; |
|
out[18 + j] = t0; |
|
out[9 + (8 - j)] = -t1; |
|
out[j] = t1; |
|
i += 4; |
|
} |
|
|
|
s0 = tmp[16]; |
|
s1 = MULL(tmp[17], icos36[4]); |
|
t0 = MULL(s0 + s1, icos72[9 + 4]); |
|
t1 = MULL(s0 - s1, icos72[4]); |
|
out[18 + 9 + 4] = t0; |
|
out[18 + 8 - 4] = t0; |
|
out[9 + 4] = -t1; |
|
out[8 - 4] = t1; |
|
} |
|
|
|
/* fast header check for resync */ |
|
static int check_header(uint32_t header) |
|
{ |
|
/* header */ |
|
if ((header & 0xffe00000) != 0xffe00000) |
|
return -1; |
|
/* layer check */ |
|
if (((header >> 17) & 3) == 0) |
|
return -1; |
|
/* bit rate */ |
|
if (((header >> 12) & 0xf) == 0xf) |
|
return -1; |
|
/* frequency */ |
|
if (((header >> 10) & 3) == 3) |
|
return -1; |
|
return 0; |
|
} |
|
|
|
/* header + layer + bitrate + freq + lsf/mpeg25 */ |
|
#define SAME_HEADER_MASK \ |
|
(0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19)) |
|
|
|
/* header decoding. MUST check the header before because no |
|
consistency check is done there. Return 1 if free format found and |
|
that the frame size must be computed externally */ |
|
static int decode_header(MPADecodeContext *s, uint32_t header) |
|
{ |
|
int sample_rate, frame_size, mpeg25, padding; |
|
int sample_rate_index, bitrate_index; |
|
if (header & (1<<20)) { |
|
s->lsf = (header & (1<<19)) ? 0 : 1; |
|
mpeg25 = 0; |
|
} else { |
|
s->lsf = 1; |
|
mpeg25 = 1; |
|
} |
|
|
|
s->layer = 4 - ((header >> 17) & 3); |
|
/* extract frequency */ |
|
sample_rate_index = (header >> 10) & 3; |
|
sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); |
|
sample_rate_index += 3 * (s->lsf + mpeg25); |
|
s->sample_rate_index = sample_rate_index; |
|
s->error_protection = ((header >> 16) & 1) ^ 1; |
|
s->sample_rate = sample_rate; |
|
|
|
bitrate_index = (header >> 12) & 0xf; |
|
padding = (header >> 9) & 1; |
|
//extension = (header >> 8) & 1; |
|
s->mode = (header >> 6) & 3; |
|
s->mode_ext = (header >> 4) & 3; |
|
//copyright = (header >> 3) & 1; |
|
//original = (header >> 2) & 1; |
|
//emphasis = header & 3; |
|
|
|
if (s->mode == MPA_MONO) |
|
s->nb_channels = 1; |
|
else |
|
s->nb_channels = 2; |
|
|
|
if (bitrate_index != 0) { |
|
frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; |
|
s->bit_rate = frame_size * 1000; |
|
switch(s->layer) { |
|
case 1: |
|
frame_size = (frame_size * 12000) / sample_rate; |
|
frame_size = (frame_size + padding) * 4; |
|
break; |
|
case 2: |
|
frame_size = (frame_size * 144000) / sample_rate; |
|
frame_size += padding; |
|
break; |
|
default: |
|
case 3: |
|
frame_size = (frame_size * 144000) / (sample_rate << s->lsf); |
|
frame_size += padding; |
|
break; |
|
} |
|
s->frame_size = frame_size; |
|
} else { |
|
/* if no frame size computed, signal it */ |
|
if (!s->free_format_frame_size) |
|
return 1; |
|
/* free format: compute bitrate and real frame size from the |
|
frame size we extracted by reading the bitstream */ |
|
s->frame_size = s->free_format_frame_size; |
|
switch(s->layer) { |
|
case 1: |
|
s->frame_size += padding * 4; |
|
s->bit_rate = (s->frame_size * sample_rate) / 48000; |
|
break; |
|
case 2: |
|
s->frame_size += padding; |
|
s->bit_rate = (s->frame_size * sample_rate) / 144000; |
|
break; |
|
default: |
|
case 3: |
|
s->frame_size += padding; |
|
s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; |
|
break; |
|
} |
|
} |
|
|
|
#if defined(DEBUG) |
|
printf("layer%d, %d Hz, %d kbits/s, ", |
|
s->layer, s->sample_rate, s->bit_rate); |
|
if (s->nb_channels == 2) { |
|
if (s->layer == 3) { |
|
if (s->mode_ext & MODE_EXT_MS_STEREO) |
|
printf("ms-"); |
|
if (s->mode_ext & MODE_EXT_I_STEREO) |
|
printf("i-"); |
|
} |
|
printf("stereo"); |
|
} else { |
|
printf("mono"); |
|
} |
|
printf("\n"); |
|
#endif |
|
return 0; |
|
} |
|
|
|
/* useful helper to get mpeg audio stream infos. Return -1 if error in |
|
header, otherwise the coded frame size in bytes */ |
|
int mpa_decode_header(AVCodecContext *avctx, uint32_t head) |
|
{ |
|
MPADecodeContext s1, *s = &s1; |
|
|
|
if (check_header(head) != 0) |
|
return -1; |
|
|
|
if (decode_header(s, head) != 0) { |
|
return -1; |
|
} |
|
|
|
switch(s->layer) { |
|
case 1: |
|
avctx->frame_size = 384; |
|
break; |
|
case 2: |
|
avctx->frame_size = 1152; |
|
break; |
|
default: |
|
case 3: |
|
if (s->lsf) |
|
avctx->frame_size = 576; |
|
else |
|
avctx->frame_size = 1152; |
|
break; |
|
} |
|
|
|
avctx->sample_rate = s->sample_rate; |
|
avctx->channels = s->nb_channels; |
|
avctx->bit_rate = s->bit_rate; |
|
avctx->sub_id = s->layer; |
|
return s->frame_size; |
|
} |
|
|
|
/* return the number of decoded frames */ |
|
static int mp_decode_layer1(MPADecodeContext *s) |
|
{ |
|
int bound, i, v, n, ch, j, mant; |
|
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; |
|
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; |
|
|
|
if (s->mode == MPA_JSTEREO) |
|
bound = (s->mode_ext + 1) * 4; |
|
else |
|
bound = SBLIMIT; |
|
|
|
/* allocation bits */ |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
allocation[ch][i] = get_bits(&s->gb, 4); |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
allocation[0][i] = get_bits(&s->gb, 4); |
|
} |
|
|
|
/* scale factors */ |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (allocation[ch][i]) |
|
scale_factors[ch][i] = get_bits(&s->gb, 6); |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
if (allocation[0][i]) { |
|
scale_factors[0][i] = get_bits(&s->gb, 6); |
|
scale_factors[1][i] = get_bits(&s->gb, 6); |
|
} |
|
} |
|
|
|
/* compute samples */ |
|
for(j=0;j<12;j++) { |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
n = allocation[ch][i]; |
|
if (n) { |
|
mant = get_bits(&s->gb, n + 1); |
|
v = l1_unscale(n, mant, scale_factors[ch][i]); |
|
} else { |
|
v = 0; |
|
} |
|
s->sb_samples[ch][j][i] = v; |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
n = allocation[0][i]; |
|
if (n) { |
|
mant = get_bits(&s->gb, n + 1); |
|
v = l1_unscale(n, mant, scale_factors[0][i]); |
|
s->sb_samples[0][j][i] = v; |
|
v = l1_unscale(n, mant, scale_factors[1][i]); |
|
s->sb_samples[1][j][i] = v; |
|
} else { |
|
s->sb_samples[0][j][i] = 0; |
|
s->sb_samples[1][j][i] = 0; |
|
} |
|
} |
|
} |
|
return 12; |
|
} |
|
|
|
/* bitrate is in kb/s */ |
|
int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) |
|
{ |
|
int ch_bitrate, table; |
|
|
|
ch_bitrate = bitrate / nb_channels; |
|
if (!lsf) { |
|
if ((freq == 48000 && ch_bitrate >= 56) || |
|
(ch_bitrate >= 56 && ch_bitrate <= 80)) |
|
table = 0; |
|
else if (freq != 48000 && ch_bitrate >= 96) |
|
table = 1; |
|
else if (freq != 32000 && ch_bitrate <= 48) |
|
table = 2; |
|
else |
|
table = 3; |
|
} else { |
|
table = 4; |
|
} |
|
return table; |
|
} |
|
|
|
static int mp_decode_layer2(MPADecodeContext *s) |
|
{ |
|
int sblimit; /* number of used subbands */ |
|
const unsigned char *alloc_table; |
|
int table, bit_alloc_bits, i, j, ch, bound, v; |
|
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; |
|
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; |
|
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; |
|
int scale, qindex, bits, steps, k, l, m, b; |
|
|
|
/* select decoding table */ |
|
table = l2_select_table(s->bit_rate / 1000, s->nb_channels, |
|
s->sample_rate, s->lsf); |
|
sblimit = sblimit_table[table]; |
|
alloc_table = alloc_tables[table]; |
|
|
|
if (s->mode == MPA_JSTEREO) |
|
bound = (s->mode_ext + 1) * 4; |
|
else |
|
bound = sblimit; |
|
|
|
dprintf("bound=%d sblimit=%d\n", bound, sblimit); |
|
/* parse bit allocation */ |
|
j = 0; |
|
for(i=0;i<bound;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); |
|
} |
|
j += 1 << bit_alloc_bits; |
|
} |
|
for(i=bound;i<sblimit;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
v = get_bits(&s->gb, bit_alloc_bits); |
|
bit_alloc[0][i] = v; |
|
bit_alloc[1][i] = v; |
|
j += 1 << bit_alloc_bits; |
|
} |
|
|
|
#ifdef DEBUG |
|
{ |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
for(i=0;i<sblimit;i++) |
|
printf(" %d", bit_alloc[ch][i]); |
|
printf("\n"); |
|
} |
|
} |
|
#endif |
|
|
|
/* scale codes */ |
|
for(i=0;i<sblimit;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (bit_alloc[ch][i]) |
|
scale_code[ch][i] = get_bits(&s->gb, 2); |
|
} |
|
} |
|
|
|
/* scale factors */ |
|
for(i=0;i<sblimit;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (bit_alloc[ch][i]) { |
|
sf = scale_factors[ch][i]; |
|
switch(scale_code[ch][i]) { |
|
default: |
|
case 0: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[1] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
break; |
|
case 2: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[1] = sf[0]; |
|
sf[2] = sf[0]; |
|
break; |
|
case 1: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
sf[1] = sf[0]; |
|
break; |
|
case 3: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
sf[1] = sf[2]; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef DEBUG |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
for(i=0;i<sblimit;i++) { |
|
if (bit_alloc[ch][i]) { |
|
sf = scale_factors[ch][i]; |
|
printf(" %d %d %d", sf[0], sf[1], sf[2]); |
|
} else { |
|
printf(" -"); |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
#endif |
|
|
|
/* samples */ |
|
for(k=0;k<3;k++) { |
|
for(l=0;l<12;l+=3) { |
|
j = 0; |
|
for(i=0;i<bound;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
b = bit_alloc[ch][i]; |
|
if (b) { |
|
scale = scale_factors[ch][i][k]; |
|
qindex = alloc_table[j+b]; |
|
bits = quant_bits[qindex]; |
|
if (bits < 0) { |
|
/* 3 values at the same time */ |
|
v = get_bits(&s->gb, -bits); |
|
steps = quant_steps[qindex]; |
|
s->sb_samples[ch][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, v % steps, scale); |
|
v = v / steps; |
|
s->sb_samples[ch][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, v % steps, scale); |
|
v = v / steps; |
|
s->sb_samples[ch][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v, scale); |
|
} else { |
|
for(m=0;m<3;m++) { |
|
v = get_bits(&s->gb, bits); |
|
v = l1_unscale(bits - 1, v, scale); |
|
s->sb_samples[ch][k * 12 + l + m][i] = v; |
|
} |
|
} |
|
} else { |
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
|
} |
|
} |
|
/* next subband in alloc table */ |
|
j += 1 << bit_alloc_bits; |
|
} |
|
/* XXX: find a way to avoid this duplication of code */ |
|
for(i=bound;i<sblimit;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
b = bit_alloc[0][i]; |
|
if (b) { |
|
int mant, scale0, scale1; |
|
scale0 = scale_factors[0][i][k]; |
|
scale1 = scale_factors[1][i][k]; |
|
qindex = alloc_table[j+b]; |
|
bits = quant_bits[qindex]; |
|
if (bits < 0) { |
|
/* 3 values at the same time */ |
|
v = get_bits(&s->gb, -bits); |
|
steps = quant_steps[qindex]; |
|
mant = v % steps; |
|
v = v / steps; |
|
s->sb_samples[0][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, mant, scale1); |
|
mant = v % steps; |
|
v = v / steps; |
|
s->sb_samples[0][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, mant, scale1); |
|
s->sb_samples[0][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v, scale0); |
|
s->sb_samples[1][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v, scale1); |
|
} else { |
|
for(m=0;m<3;m++) { |
|
mant = get_bits(&s->gb, bits); |
|
s->sb_samples[0][k * 12 + l + m][i] = |
|
l1_unscale(bits - 1, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + m][i] = |
|
l1_unscale(bits - 1, mant, scale1); |
|
} |
|
} |
|
} else { |
|
s->sb_samples[0][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[0][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[0][k * 12 + l + 2][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 2][i] = 0; |
|
} |
|
/* next subband in alloc table */ |
|
j += 1 << bit_alloc_bits; |
|
} |
|
/* fill remaining samples to zero */ |
|
for(i=sblimit;i<SBLIMIT;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
|
} |
|
} |
|
} |
|
} |
|
return 3 * 12; |
|
} |
|
|
|
/* |
|
* Seek back in the stream for backstep bytes (at most 511 bytes) |
|
*/ |
|
static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep) |
|
{ |
|
uint8_t *ptr; |
|
|
|
/* compute current position in stream */ |
|
ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3)); |
|
|
|
/* copy old data before current one */ |
|
ptr -= backstep; |
|
memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + |
|
BACKSTEP_SIZE + s->old_frame_size - backstep, backstep); |
|
/* init get bits again */ |
|
init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8); |
|
|
|
/* prepare next buffer */ |
|
s->inbuf_index ^= 1; |
|
s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; |
|
s->old_frame_size = s->frame_size; |
|
} |
|
|
|
static inline void lsf_sf_expand(int *slen, |
|
int sf, int n1, int n2, int n3) |
|
{ |
|
if (n3) { |
|
slen[3] = sf % n3; |
|
sf /= n3; |
|
} else { |
|
slen[3] = 0; |
|
} |
|
if (n2) { |
|
slen[2] = sf % n2; |
|
sf /= n2; |
|
} else { |
|
slen[2] = 0; |
|
} |
|
slen[1] = sf % n1; |
|
sf /= n1; |
|
slen[0] = sf; |
|
} |
|
|
|
static void exponents_from_scale_factors(MPADecodeContext *s, |
|
GranuleDef *g, |
|
int16_t *exponents) |
|
{ |
|
const uint8_t *bstab, *pretab; |
|
int len, i, j, k, l, v0, shift, gain, gains[3]; |
|
int16_t *exp_ptr; |
|
|
|
exp_ptr = exponents; |
|
gain = g->global_gain - 210; |
|
shift = g->scalefac_scale + 1; |
|
|
|
bstab = band_size_long[s->sample_rate_index]; |
|
pretab = mpa_pretab[g->preflag]; |
|
for(i=0;i<g->long_end;i++) { |
|
v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift); |
|
len = bstab[i]; |
|
for(j=len;j>0;j--) |
|
*exp_ptr++ = v0; |
|
} |
|
|
|
if (g->short_start < 13) { |
|
bstab = band_size_short[s->sample_rate_index]; |
|
gains[0] = gain - (g->subblock_gain[0] << 3); |
|
gains[1] = gain - (g->subblock_gain[1] << 3); |
|
gains[2] = gain - (g->subblock_gain[2] << 3); |
|
k = g->long_end; |
|
for(i=g->short_start;i<13;i++) { |
|
len = bstab[i]; |
|
for(l=0;l<3;l++) { |
|
v0 = gains[l] - (g->scale_factors[k++] << shift); |
|
for(j=len;j>0;j--) |
|
*exp_ptr++ = v0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* handle n = 0 too */ |
|
static inline int get_bitsz(GetBitContext *s, int n) |
|
{ |
|
if (n == 0) |
|
return 0; |
|
else |
|
return get_bits(s, n); |
|
} |
|
|
|
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, |
|
int16_t *exponents, int end_pos) |
|
{ |
|
int s_index; |
|
int linbits, code, x, y, l, v, i, j, k, pos; |
|
GetBitContext last_gb; |
|
VLC *vlc; |
|
uint8_t *code_table; |
|
|
|
/* low frequencies (called big values) */ |
|
s_index = 0; |
|
for(i=0;i<3;i++) { |
|
j = g->region_size[i]; |
|
if (j == 0) |
|
continue; |
|
/* select vlc table */ |
|
k = g->table_select[i]; |
|
l = mpa_huff_data[k][0]; |
|
linbits = mpa_huff_data[k][1]; |
|
vlc = &huff_vlc[l]; |
|
code_table = huff_code_table[l]; |
|
|
|
/* read huffcode and compute each couple */ |
|
for(;j>0;j--) { |
|
if (get_bits_count(&s->gb) >= end_pos) |
|
break; |
|
if (code_table) { |
|
code = get_vlc(&s->gb, vlc); |
|
if (code < 0) |
|
return -1; |
|
y = code_table[code]; |
|
x = y >> 4; |
|
y = y & 0x0f; |
|
} else { |
|
x = 0; |
|
y = 0; |
|
} |
|
dprintf("region=%d n=%d x=%d y=%d exp=%d\n", |
|
i, g->region_size[i] - j, x, y, exponents[s_index]); |
|
if (x) { |
|
if (x == 15) |
|
x += get_bitsz(&s->gb, linbits); |
|
v = l3_unscale(x, exponents[s_index]); |
|
if (get_bits1(&s->gb)) |
|
v = -v; |
|
} else { |
|
v = 0; |
|
} |
|
g->sb_hybrid[s_index++] = v; |
|
if (y) { |
|
if (y == 15) |
|
y += get_bitsz(&s->gb, linbits); |
|
v = l3_unscale(y, exponents[s_index]); |
|
if (get_bits1(&s->gb)) |
|
v = -v; |
|
} else { |
|
v = 0; |
|
} |
|
g->sb_hybrid[s_index++] = v; |
|
} |
|
} |
|
|
|
/* high frequencies */ |
|
vlc = &huff_quad_vlc[g->count1table_select]; |
|
last_gb.buffer = NULL; |
|
while (s_index <= 572) { |
|
pos = get_bits_count(&s->gb); |
|
if (pos >= end_pos) { |
|
if (pos > end_pos && last_gb.buffer != NULL) { |
|
/* some encoders generate an incorrect size for this |
|
part. We must go back into the data */ |
|
s_index -= 4; |
|
s->gb = last_gb; |
|
} |
|
break; |
|
} |
|
last_gb= s->gb; |
|
|
|
code = get_vlc(&s->gb, vlc); |
|
dprintf("t=%d code=%d\n", g->count1table_select, code); |
|
if (code < 0) |
|
return -1; |
|
for(i=0;i<4;i++) { |
|
if (code & (8 >> i)) { |
|
/* non zero value. Could use a hand coded function for |
|
'one' value */ |
|
v = l3_unscale(1, exponents[s_index]); |
|
if(get_bits1(&s->gb)) |
|
v = -v; |
|
} else { |
|
v = 0; |
|
} |
|
g->sb_hybrid[s_index++] = v; |
|
} |
|
} |
|
while (s_index < 576) |
|
g->sb_hybrid[s_index++] = 0; |
|
return 0; |
|
} |
|
|
|
/* Reorder short blocks from bitstream order to interleaved order. It |
|
would be faster to do it in parsing, but the code would be far more |
|
complicated */ |
|
static void reorder_block(MPADecodeContext *s, GranuleDef *g) |
|
{ |
|
int i, j, k, len; |
|
int32_t *ptr, *dst, *ptr1; |
|
int32_t tmp[576]; |
|
|
|
if (g->block_type != 2) |
|
return; |
|
|
|
if (g->switch_point) { |
|
if (s->sample_rate_index != 8) { |
|
ptr = g->sb_hybrid + 36; |
|
} else { |
|
ptr = g->sb_hybrid + 48; |
|
} |
|
} else { |
|
ptr = g->sb_hybrid; |
|
} |
|
|
|
for(i=g->short_start;i<13;i++) { |
|
len = band_size_short[s->sample_rate_index][i]; |
|
ptr1 = ptr; |
|
for(k=0;k<3;k++) { |
|
dst = tmp + k; |
|
for(j=len;j>0;j--) { |
|
*dst = *ptr++; |
|
dst += 3; |
|
} |
|
} |
|
memcpy(ptr1, tmp, len * 3 * sizeof(int32_t)); |
|
} |
|
} |
|
|
|
#define ISQRT2 FIXR(0.70710678118654752440) |
|
|
|
static void compute_stereo(MPADecodeContext *s, |
|
GranuleDef *g0, GranuleDef *g1) |
|
{ |
|
int i, j, k, l; |
|
int32_t v1, v2; |
|
int sf_max, tmp0, tmp1, sf, len, non_zero_found; |
|
int32_t (*is_tab)[16]; |
|
int32_t *tab0, *tab1; |
|
int non_zero_found_short[3]; |
|
|
|
/* intensity stereo */ |
|
if (s->mode_ext & MODE_EXT_I_STEREO) { |
|
if (!s->lsf) { |
|
is_tab = is_table; |
|
sf_max = 7; |
|
} else { |
|
is_tab = is_table_lsf[g1->scalefac_compress & 1]; |
|
sf_max = 16; |
|
} |
|
|
|
tab0 = g0->sb_hybrid + 576; |
|
tab1 = g1->sb_hybrid + 576; |
|
|
|
non_zero_found_short[0] = 0; |
|
non_zero_found_short[1] = 0; |
|
non_zero_found_short[2] = 0; |
|
k = (13 - g1->short_start) * 3 + g1->long_end - 3; |
|
for(i = 12;i >= g1->short_start;i--) { |
|
/* for last band, use previous scale factor */ |
|
if (i != 11) |
|
k -= 3; |
|
len = band_size_short[s->sample_rate_index][i]; |
|
for(l=2;l>=0;l--) { |
|
tab0 -= len; |
|
tab1 -= len; |
|
if (!non_zero_found_short[l]) { |
|
/* test if non zero band. if so, stop doing i-stereo */ |
|
for(j=0;j<len;j++) { |
|
if (tab1[j] != 0) { |
|
non_zero_found_short[l] = 1; |
|
goto found1; |
|
} |
|
} |
|
sf = g1->scale_factors[k + l]; |
|
if (sf >= sf_max) |
|
goto found1; |
|
|
|
v1 = is_tab[0][sf]; |
|
v2 = is_tab[1][sf]; |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tab0[j] = MULL(tmp0, v1); |
|
tab1[j] = MULL(tmp0, v2); |
|
} |
|
} else { |
|
found1: |
|
if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* lower part of the spectrum : do ms stereo |
|
if enabled */ |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tmp1 = tab1[j]; |
|
tab0[j] = MULL(tmp0 + tmp1, ISQRT2); |
|
tab1[j] = MULL(tmp0 - tmp1, ISQRT2); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
non_zero_found = non_zero_found_short[0] | |
|
non_zero_found_short[1] | |
|
non_zero_found_short[2]; |
|
|
|
for(i = g1->long_end - 1;i >= 0;i--) { |
|
len = band_size_long[s->sample_rate_index][i]; |
|
tab0 -= len; |
|
tab1 -= len; |
|
/* test if non zero band. if so, stop doing i-stereo */ |
|
if (!non_zero_found) { |
|
for(j=0;j<len;j++) { |
|
if (tab1[j] != 0) { |
|
non_zero_found = 1; |
|
goto found2; |
|
} |
|
} |
|
/* for last band, use previous scale factor */ |
|
k = (i == 21) ? 20 : i; |
|
sf = g1->scale_factors[k]; |
|
if (sf >= sf_max) |
|
goto found2; |
|
v1 = is_tab[0][sf]; |
|
v2 = is_tab[1][sf]; |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tab0[j] = MULL(tmp0, v1); |
|
tab1[j] = MULL(tmp0, v2); |
|
} |
|
} else { |
|
found2: |
|
if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* lower part of the spectrum : do ms stereo |
|
if enabled */ |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tmp1 = tab1[j]; |
|
tab0[j] = MULL(tmp0 + tmp1, ISQRT2); |
|
tab1[j] = MULL(tmp0 - tmp1, ISQRT2); |
|
} |
|
} |
|
} |
|
} |
|
} else if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* ms stereo ONLY */ |
|
/* NOTE: the 1/sqrt(2) normalization factor is included in the |
|
global gain */ |
|
tab0 = g0->sb_hybrid; |
|
tab1 = g1->sb_hybrid; |
|
for(i=0;i<576;i++) { |
|
tmp0 = tab0[i]; |
|
tmp1 = tab1[i]; |
|
tab0[i] = tmp0 + tmp1; |
|
tab1[i] = tmp0 - tmp1; |
|
} |
|
} |
|
} |
|
|
|
static void compute_antialias_integer(MPADecodeContext *s, |
|
GranuleDef *g) |
|
{ |
|
int32_t *ptr, *p0, *p1, *csa; |
|
int n, i, j; |
|
|
|
/* we antialias only "long" bands */ |
|
if (g->block_type == 2) { |
|
if (!g->switch_point) |
|
return; |
|
/* XXX: check this for 8000Hz case */ |
|
n = 1; |
|
} else { |
|
n = SBLIMIT - 1; |
|
} |
|
|
|
ptr = g->sb_hybrid + 18; |
|
for(i = n;i > 0;i--) { |
|
p0 = ptr - 1; |
|
p1 = ptr; |
|
csa = &csa_table[0][0]; |
|
for(j=0;j<4;j++) { |
|
int tmp0 = *p0; |
|
int tmp1 = *p1; |
|
#if 0 |
|
*p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1])); |
|
*p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0])); |
|
#else |
|
int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]); |
|
*p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2])); |
|
*p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3])); |
|
#endif |
|
p0--; p1++; |
|
csa += 4; |
|
tmp0 = *p0; |
|
tmp1 = *p1; |
|
#if 0 |
|
*p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1])); |
|
*p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0])); |
|
#else |
|
tmp2= MUL64(tmp0 + tmp1, csa[0]); |
|
*p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2])); |
|
*p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3])); |
|
#endif |
|
p0--; p1++; |
|
csa += 4; |
|
} |
|
ptr += 18; |
|
} |
|
} |
|
|
|
static void compute_antialias_float(MPADecodeContext *s, |
|
GranuleDef *g) |
|
{ |
|
int32_t *ptr, *p0, *p1; |
|
int n, i, j; |
|
|
|
/* we antialias only "long" bands */ |
|
if (g->block_type == 2) { |
|
if (!g->switch_point) |
|
return; |
|
/* XXX: check this for 8000Hz case */ |
|
n = 1; |
|
} else { |
|
n = SBLIMIT - 1; |
|
} |
|
|
|
ptr = g->sb_hybrid + 18; |
|
for(i = n;i > 0;i--) { |
|
float *csa = &csa_table_float[0][0]; |
|
p0 = ptr - 1; |
|
p1 = ptr; |
|
for(j=0;j<4;j++) { |
|
float tmp0 = *p0; |
|
float tmp1 = *p1; |
|
#if 1 |
|
*p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]); |
|
*p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]); |
|
#else |
|
float tmp2= (tmp0 + tmp1) * csa[0]; |
|
*p0 = lrintf(tmp2 - tmp1 * csa[2]); |
|
*p1 = lrintf(tmp2 + tmp0 * csa[3]); |
|
#endif |
|
p0--; p1++; |
|
csa += 4; |
|
tmp0 = *p0; |
|
tmp1 = *p1; |
|
#if 1 |
|
*p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]); |
|
*p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]); |
|
#else |
|
tmp2= (tmp0 + tmp1) * csa[0]; |
|
*p0 = lrintf(tmp2 - tmp1 * csa[2]); |
|
*p1 = lrintf(tmp2 + tmp0 * csa[3]); |
|
#endif |
|
p0--; p1++; |
|
csa += 4; |
|
} |
|
ptr += 18; |
|
} |
|
} |
|
|
|
static void compute_imdct(MPADecodeContext *s, |
|
GranuleDef *g, |
|
int32_t *sb_samples, |
|
int32_t *mdct_buf) |
|
{ |
|
int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1; |
|
int32_t in[6]; |
|
int32_t out[36]; |
|
int32_t out2[12]; |
|
int i, j, k, mdct_long_end, v, sblimit; |
|
|
|
/* find last non zero block */ |
|
ptr = g->sb_hybrid + 576; |
|
ptr1 = g->sb_hybrid + 2 * 18; |
|
while (ptr >= ptr1) { |
|
ptr -= 6; |
|
v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5]; |
|
if (v != 0) |
|
break; |
|
} |
|
sblimit = ((ptr - g->sb_hybrid) / 18) + 1; |
|
|
|
if (g->block_type == 2) { |
|
/* XXX: check for 8000 Hz */ |
|
if (g->switch_point) |
|
mdct_long_end = 2; |
|
else |
|
mdct_long_end = 0; |
|
} else { |
|
mdct_long_end = sblimit; |
|
} |
|
|
|
buf = mdct_buf; |
|
ptr = g->sb_hybrid; |
|
for(j=0;j<mdct_long_end;j++) { |
|
imdct36(out, ptr); |
|
/* apply window & overlap with previous buffer */ |
|
out_ptr = sb_samples + j; |
|
/* select window */ |
|
if (g->switch_point && j < 2) |
|
win1 = mdct_win[0]; |
|
else |
|
win1 = mdct_win[g->block_type]; |
|
/* select frequency inversion */ |
|
win = win1 + ((4 * 36) & -(j & 1)); |
|
for(i=0;i<18;i++) { |
|
*out_ptr = MULL(out[i], win[i]) + buf[i]; |
|
buf[i] = MULL(out[i + 18], win[i + 18]); |
|
out_ptr += SBLIMIT; |
|
} |
|
ptr += 18; |
|
buf += 18; |
|
} |
|
for(j=mdct_long_end;j<sblimit;j++) { |
|
for(i=0;i<6;i++) { |
|
out[i] = 0; |
|
out[6 + i] = 0; |
|
out[30+i] = 0; |
|
} |
|
/* select frequency inversion */ |
|
win = mdct_win[2] + ((4 * 36) & -(j & 1)); |
|
buf2 = out + 6; |
|
for(k=0;k<3;k++) { |
|
/* reorder input for short mdct */ |
|
ptr1 = ptr + k; |
|
for(i=0;i<6;i++) { |
|
in[i] = *ptr1; |
|
ptr1 += 3; |
|
} |
|
imdct12(out2, in); |
|
/* apply 12 point window and do small overlap */ |
|
for(i=0;i<6;i++) { |
|
buf2[i] = MULL(out2[i], win[i]) + buf2[i]; |
|
buf2[i + 6] = MULL(out2[i + 6], win[i + 6]); |
|
} |
|
buf2 += 6; |
|
} |
|
/* overlap */ |
|
out_ptr = sb_samples + j; |
|
for(i=0;i<18;i++) { |
|
*out_ptr = out[i] + buf[i]; |
|
buf[i] = out[i + 18]; |
|
out_ptr += SBLIMIT; |
|
} |
|
ptr += 18; |
|
buf += 18; |
|
} |
|
/* zero bands */ |
|
for(j=sblimit;j<SBLIMIT;j++) { |
|
/* overlap */ |
|
out_ptr = sb_samples + j; |
|
for(i=0;i<18;i++) { |
|
*out_ptr = buf[i]; |
|
buf[i] = 0; |
|
out_ptr += SBLIMIT; |
|
} |
|
buf += 18; |
|
} |
|
} |
|
|
|
#if defined(DEBUG) |
|
void sample_dump(int fnum, int32_t *tab, int n) |
|
{ |
|
static FILE *files[16], *f; |
|
char buf[512]; |
|
int i; |
|
int32_t v; |
|
|
|
f = files[fnum]; |
|
if (!f) { |
|
sprintf(buf, "/tmp/out%d.%s.pcm", |
|
fnum, |
|
#ifdef USE_HIGHPRECISION |
|
"hp" |
|
#else |
|
"lp" |
|
#endif |
|
); |
|
f = fopen(buf, "w"); |
|
if (!f) |
|
return; |
|
files[fnum] = f; |
|
} |
|
|
|
if (fnum == 0) { |
|
static int pos = 0; |
|
printf("pos=%d\n", pos); |
|
for(i=0;i<n;i++) { |
|
printf(" %0.4f", (double)tab[i] / FRAC_ONE); |
|
if ((i % 18) == 17) |
|
printf("\n"); |
|
} |
|
pos += n; |
|
} |
|
for(i=0;i<n;i++) { |
|
/* normalize to 23 frac bits */ |
|
v = tab[i] << (23 - FRAC_BITS); |
|
fwrite(&v, 1, sizeof(int32_t), f); |
|
} |
|
} |
|
#endif |
|
|
|
|
|
/* main layer3 decoding function */ |
|
static int mp_decode_layer3(MPADecodeContext *s) |
|
{ |
|
int nb_granules, main_data_begin, private_bits; |
|
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left; |
|
GranuleDef granules[2][2], *g; |
|
int16_t exponents[576]; |
|
|
|
/* read side info */ |
|
if (s->lsf) { |
|
main_data_begin = get_bits(&s->gb, 8); |
|
if (s->nb_channels == 2) |
|
private_bits = get_bits(&s->gb, 2); |
|
else |
|
private_bits = get_bits(&s->gb, 1); |
|
nb_granules = 1; |
|
} else { |
|
main_data_begin = get_bits(&s->gb, 9); |
|
if (s->nb_channels == 2) |
|
private_bits = get_bits(&s->gb, 3); |
|
else |
|
private_bits = get_bits(&s->gb, 5); |
|
nb_granules = 2; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
granules[ch][0].scfsi = 0; /* all scale factors are transmitted */ |
|
granules[ch][1].scfsi = get_bits(&s->gb, 4); |
|
} |
|
} |
|
|
|
for(gr=0;gr<nb_granules;gr++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
dprintf("gr=%d ch=%d: side_info\n", gr, ch); |
|
g = &granules[ch][gr]; |
|
g->part2_3_length = get_bits(&s->gb, 12); |
|
g->big_values = get_bits(&s->gb, 9); |
|
g->global_gain = get_bits(&s->gb, 8); |
|
/* if MS stereo only is selected, we precompute the |
|
1/sqrt(2) renormalization factor */ |
|
if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == |
|
MODE_EXT_MS_STEREO) |
|
g->global_gain -= 2; |
|
if (s->lsf) |
|
g->scalefac_compress = get_bits(&s->gb, 9); |
|
else |
|
g->scalefac_compress = get_bits(&s->gb, 4); |
|
blocksplit_flag = get_bits(&s->gb, 1); |
|
if (blocksplit_flag) { |
|
g->block_type = get_bits(&s->gb, 2); |
|
if (g->block_type == 0) |
|
return -1; |
|
g->switch_point = get_bits(&s->gb, 1); |
|
for(i=0;i<2;i++) |
|
g->table_select[i] = get_bits(&s->gb, 5); |
|
for(i=0;i<3;i++) |
|
g->subblock_gain[i] = get_bits(&s->gb, 3); |
|
/* compute huffman coded region sizes */ |
|
if (g->block_type == 2) |
|
g->region_size[0] = (36 / 2); |
|
else { |
|
if (s->sample_rate_index <= 2) |
|
g->region_size[0] = (36 / 2); |
|
else if (s->sample_rate_index != 8) |
|
g->region_size[0] = (54 / 2); |
|
else |
|
g->region_size[0] = (108 / 2); |
|
} |
|
g->region_size[1] = (576 / 2); |
|
} else { |
|
int region_address1, region_address2, l; |
|
g->block_type = 0; |
|
g->switch_point = 0; |
|
for(i=0;i<3;i++) |
|
g->table_select[i] = get_bits(&s->gb, 5); |
|
/* compute huffman coded region sizes */ |
|
region_address1 = get_bits(&s->gb, 4); |
|
region_address2 = get_bits(&s->gb, 3); |
|
dprintf("region1=%d region2=%d\n", |
|
region_address1, region_address2); |
|
g->region_size[0] = |
|
band_index_long[s->sample_rate_index][region_address1 + 1] >> 1; |
|
l = region_address1 + region_address2 + 2; |
|
/* should not overflow */ |
|
if (l > 22) |
|
l = 22; |
|
g->region_size[1] = |
|
band_index_long[s->sample_rate_index][l] >> 1; |
|
} |
|
/* convert region offsets to region sizes and truncate |
|
size to big_values */ |
|
g->region_size[2] = (576 / 2); |
|
j = 0; |
|
for(i=0;i<3;i++) { |
|
k = g->region_size[i]; |
|
if (k > g->big_values) |
|
k = g->big_values; |
|
g->region_size[i] = k - j; |
|
j = k; |
|
} |
|
|
|
/* compute band indexes */ |
|
if (g->block_type == 2) { |
|
if (g->switch_point) { |
|
/* if switched mode, we handle the 36 first samples as |
|
long blocks. For 8000Hz, we handle the 48 first |
|
exponents as long blocks (XXX: check this!) */ |
|
if (s->sample_rate_index <= 2) |
|
g->long_end = 8; |
|
else if (s->sample_rate_index != 8) |
|
g->long_end = 6; |
|
else |
|
g->long_end = 4; /* 8000 Hz */ |
|
|
|
if (s->sample_rate_index != 8) |
|
g->short_start = 3; |
|
else |
|
g->short_start = 2; |
|
} else { |
|
g->long_end = 0; |
|
g->short_start = 0; |
|
} |
|
} else { |
|
g->short_start = 13; |
|
g->long_end = 22; |
|
} |
|
|
|
g->preflag = 0; |
|
if (!s->lsf) |
|
g->preflag = get_bits(&s->gb, 1); |
|
g->scalefac_scale = get_bits(&s->gb, 1); |
|
g->count1table_select = get_bits(&s->gb, 1); |
|
dprintf("block_type=%d switch_point=%d\n", |
|
g->block_type, g->switch_point); |
|
} |
|
} |
|
|
|
/* now we get bits from the main_data_begin offset */ |
|
dprintf("seekback: %d\n", main_data_begin); |
|
seek_to_maindata(s, main_data_begin); |
|
|
|
for(gr=0;gr<nb_granules;gr++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
g = &granules[ch][gr]; |
|
|
|
bits_pos = get_bits_count(&s->gb); |
|
|
|
if (!s->lsf) { |
|
uint8_t *sc; |
|
int slen, slen1, slen2; |
|
|
|
/* MPEG1 scale factors */ |
|
slen1 = slen_table[0][g->scalefac_compress]; |
|
slen2 = slen_table[1][g->scalefac_compress]; |
|
dprintf("slen1=%d slen2=%d\n", slen1, slen2); |
|
if (g->block_type == 2) { |
|
n = g->switch_point ? 17 : 18; |
|
j = 0; |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bitsz(&s->gb, slen1); |
|
for(i=0;i<18;i++) |
|
g->scale_factors[j++] = get_bitsz(&s->gb, slen2); |
|
for(i=0;i<3;i++) |
|
g->scale_factors[j++] = 0; |
|
} else { |
|
sc = granules[ch][0].scale_factors; |
|
j = 0; |
|
for(k=0;k<4;k++) { |
|
n = (k == 0 ? 6 : 5); |
|
if ((g->scfsi & (0x8 >> k)) == 0) { |
|
slen = (k < 2) ? slen1 : slen2; |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bitsz(&s->gb, slen); |
|
} else { |
|
/* simply copy from last granule */ |
|
for(i=0;i<n;i++) { |
|
g->scale_factors[j] = sc[j]; |
|
j++; |
|
} |
|
} |
|
} |
|
g->scale_factors[j++] = 0; |
|
} |
|
#if defined(DEBUG) |
|
{ |
|
printf("scfsi=%x gr=%d ch=%d scale_factors:\n", |
|
g->scfsi, gr, ch); |
|
for(i=0;i<j;i++) |
|
printf(" %d", g->scale_factors[i]); |
|
printf("\n"); |
|
} |
|
#endif |
|
} else { |
|
int tindex, tindex2, slen[4], sl, sf; |
|
|
|
/* LSF scale factors */ |
|
if (g->block_type == 2) { |
|
tindex = g->switch_point ? 2 : 1; |
|
} else { |
|
tindex = 0; |
|
} |
|
sf = g->scalefac_compress; |
|
if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { |
|
/* intensity stereo case */ |
|
sf >>= 1; |
|
if (sf < 180) { |
|
lsf_sf_expand(slen, sf, 6, 6, 0); |
|
tindex2 = 3; |
|
} else if (sf < 244) { |
|
lsf_sf_expand(slen, sf - 180, 4, 4, 0); |
|
tindex2 = 4; |
|
} else { |
|
lsf_sf_expand(slen, sf - 244, 3, 0, 0); |
|
tindex2 = 5; |
|
} |
|
} else { |
|
/* normal case */ |
|
if (sf < 400) { |
|
lsf_sf_expand(slen, sf, 5, 4, 4); |
|
tindex2 = 0; |
|
} else if (sf < 500) { |
|
lsf_sf_expand(slen, sf - 400, 5, 4, 0); |
|
tindex2 = 1; |
|
} else { |
|
lsf_sf_expand(slen, sf - 500, 3, 0, 0); |
|
tindex2 = 2; |
|
g->preflag = 1; |
|
} |
|
} |
|
|
|
j = 0; |
|
for(k=0;k<4;k++) { |
|
n = lsf_nsf_table[tindex2][tindex][k]; |
|
sl = slen[k]; |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bitsz(&s->gb, sl); |
|
} |
|
/* XXX: should compute exact size */ |
|
for(;j<40;j++) |
|
g->scale_factors[j] = 0; |
|
#if defined(DEBUG) |
|
{ |
|
printf("gr=%d ch=%d scale_factors:\n", |
|
gr, ch); |
|
for(i=0;i<40;i++) |
|
printf(" %d", g->scale_factors[i]); |
|
printf("\n"); |
|
} |
|
#endif |
|
} |
|
|
|
exponents_from_scale_factors(s, g, exponents); |
|
|
|
/* read Huffman coded residue */ |
|
if (huffman_decode(s, g, exponents, |
|
bits_pos + g->part2_3_length) < 0) |
|
return -1; |
|
#if defined(DEBUG) |
|
sample_dump(0, g->sb_hybrid, 576); |
|
#endif |
|
|
|
/* skip extension bits */ |
|
bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos); |
|
if (bits_left < 0) { |
|
dprintf("bits_left=%d\n", bits_left); |
|
return -1; |
|
} |
|
while (bits_left >= 16) { |
|
skip_bits(&s->gb, 16); |
|
bits_left -= 16; |
|
} |
|
if (bits_left > 0) |
|
skip_bits(&s->gb, bits_left); |
|
} /* ch */ |
|
|
|
if (s->nb_channels == 2) |
|
compute_stereo(s, &granules[0][gr], &granules[1][gr]); |
|
|
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
g = &granules[ch][gr]; |
|
|
|
reorder_block(s, g); |
|
#if defined(DEBUG) |
|
sample_dump(0, g->sb_hybrid, 576); |
|
#endif |
|
s->compute_antialias(s, g); |
|
#if defined(DEBUG) |
|
sample_dump(1, g->sb_hybrid, 576); |
|
#endif |
|
compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); |
|
#if defined(DEBUG) |
|
sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576); |
|
#endif |
|
} |
|
} /* gr */ |
|
return nb_granules * 18; |
|
} |
|
|
|
static int mp_decode_frame(MPADecodeContext *s, |
|
short *samples) |
|
{ |
|
int i, nb_frames, ch; |
|
short *samples_ptr; |
|
|
|
init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, |
|
(s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8); |
|
|
|
/* skip error protection field */ |
|
if (s->error_protection) |
|
get_bits(&s->gb, 16); |
|
|
|
dprintf("frame %d:\n", s->frame_count); |
|
switch(s->layer) { |
|
case 1: |
|
nb_frames = mp_decode_layer1(s); |
|
break; |
|
case 2: |
|
nb_frames = mp_decode_layer2(s); |
|
break; |
|
case 3: |
|
default: |
|
nb_frames = mp_decode_layer3(s); |
|
break; |
|
} |
|
#if defined(DEBUG) |
|
for(i=0;i<nb_frames;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
int j; |
|
printf("%d-%d:", i, ch); |
|
for(j=0;j<SBLIMIT;j++) |
|
printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE); |
|
printf("\n"); |
|
} |
|
} |
|
#endif |
|
/* apply the synthesis filter */ |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
samples_ptr = samples + ch; |
|
for(i=0;i<nb_frames;i++) { |
|
synth_filter(s, ch, samples_ptr, s->nb_channels, |
|
s->sb_samples[ch][i]); |
|
samples_ptr += 32 * s->nb_channels; |
|
} |
|
} |
|
#ifdef DEBUG |
|
s->frame_count++; |
|
#endif |
|
return nb_frames * 32 * sizeof(short) * s->nb_channels; |
|
} |
|
|
|
static int decode_frame(AVCodecContext * avctx, |
|
void *data, int *data_size, |
|
uint8_t * buf, int buf_size) |
|
{ |
|
MPADecodeContext *s = avctx->priv_data; |
|
uint32_t header; |
|
uint8_t *buf_ptr; |
|
int len, out_size; |
|
short *out_samples = data; |
|
|
|
*data_size = 0; |
|
buf_ptr = buf; |
|
while (buf_size > 0) { |
|
len = s->inbuf_ptr - s->inbuf; |
|
if (s->frame_size == 0) { |
|
/* special case for next header for first frame in free |
|
format case (XXX: find a simpler method) */ |
|
if (s->free_format_next_header != 0) { |
|
s->inbuf[0] = s->free_format_next_header >> 24; |
|
s->inbuf[1] = s->free_format_next_header >> 16; |
|
s->inbuf[2] = s->free_format_next_header >> 8; |
|
s->inbuf[3] = s->free_format_next_header; |
|
s->inbuf_ptr = s->inbuf + 4; |
|
s->free_format_next_header = 0; |
|
goto got_header; |
|
} |
|
/* no header seen : find one. We need at least HEADER_SIZE |
|
bytes to parse it */ |
|
len = HEADER_SIZE - len; |
|
if (len > buf_size) |
|
len = buf_size; |
|
if (len > 0) { |
|
memcpy(s->inbuf_ptr, buf_ptr, len); |
|
buf_ptr += len; |
|
buf_size -= len; |
|
s->inbuf_ptr += len; |
|
} |
|
if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) { |
|
got_header: |
|
header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | |
|
(s->inbuf[2] << 8) | s->inbuf[3]; |
|
|
|
if (check_header(header) < 0) { |
|
/* no sync found : move by one byte (inefficient, but simple!) */ |
|
memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); |
|
s->inbuf_ptr--; |
|
dprintf("skip %x\n", header); |
|
/* reset free format frame size to give a chance |
|
to get a new bitrate */ |
|
s->free_format_frame_size = 0; |
|
} else { |
|
if (decode_header(s, header) == 1) { |
|
/* free format: prepare to compute frame size */ |
|
s->frame_size = -1; |
|
} |
|
/* update codec info */ |
|
avctx->sample_rate = s->sample_rate; |
|
avctx->channels = s->nb_channels; |
|
avctx->bit_rate = s->bit_rate; |
|
avctx->sub_id = s->layer; |
|
switch(s->layer) { |
|
case 1: |
|
avctx->frame_size = 384; |
|
break; |
|
case 2: |
|
avctx->frame_size = 1152; |
|
break; |
|
case 3: |
|
if (s->lsf) |
|
avctx->frame_size = 576; |
|
else |
|
avctx->frame_size = 1152; |
|
break; |
|
} |
|
} |
|
} |
|
} else if (s->frame_size == -1) { |
|
/* free format : find next sync to compute frame size */ |
|
len = MPA_MAX_CODED_FRAME_SIZE - len; |
|
if (len > buf_size) |
|
len = buf_size; |
|
if (len == 0) { |
|
/* frame too long: resync */ |
|
s->frame_size = 0; |
|
memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); |
|
s->inbuf_ptr--; |
|
} else { |
|
uint8_t *p, *pend; |
|
uint32_t header1; |
|
int padding; |
|
|
|
memcpy(s->inbuf_ptr, buf_ptr, len); |
|
/* check for header */ |
|
p = s->inbuf_ptr - 3; |
|
pend = s->inbuf_ptr + len - 4; |
|
while (p <= pend) { |
|
header = (p[0] << 24) | (p[1] << 16) | |
|
(p[2] << 8) | p[3]; |
|
header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | |
|
(s->inbuf[2] << 8) | s->inbuf[3]; |
|
/* check with high probability that we have a |
|
valid header */ |
|
if ((header & SAME_HEADER_MASK) == |
|
(header1 & SAME_HEADER_MASK)) { |
|
/* header found: update pointers */ |
|
len = (p + 4) - s->inbuf_ptr; |
|
buf_ptr += len; |
|
buf_size -= len; |
|
s->inbuf_ptr = p; |
|
/* compute frame size */ |
|
s->free_format_next_header = header; |
|
s->free_format_frame_size = s->inbuf_ptr - s->inbuf; |
|
padding = (header1 >> 9) & 1; |
|
if (s->layer == 1) |
|
s->free_format_frame_size -= padding * 4; |
|
else |
|
s->free_format_frame_size -= padding; |
|
dprintf("free frame size=%d padding=%d\n", |
|
s->free_format_frame_size, padding); |
|
decode_header(s, header1); |
|
goto next_data; |
|
} |
|
p++; |
|
} |
|
/* not found: simply increase pointers */ |
|
buf_ptr += len; |
|
s->inbuf_ptr += len; |
|
buf_size -= len; |
|
} |
|
} else if (len < s->frame_size) { |
|
if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE) |
|
s->frame_size = MPA_MAX_CODED_FRAME_SIZE; |
|
len = s->frame_size - len; |
|
if (len > buf_size) |
|
len = buf_size; |
|
memcpy(s->inbuf_ptr, buf_ptr, len); |
|
buf_ptr += len; |
|
s->inbuf_ptr += len; |
|
buf_size -= len; |
|
} |
|
next_data: |
|
if (s->frame_size > 0 && |
|
(s->inbuf_ptr - s->inbuf) >= s->frame_size) { |
|
if (avctx->parse_only) { |
|
/* simply return the frame data */ |
|
*(uint8_t **)data = s->inbuf; |
|
out_size = s->inbuf_ptr - s->inbuf; |
|
} else { |
|
out_size = mp_decode_frame(s, out_samples); |
|
} |
|
s->inbuf_ptr = s->inbuf; |
|
s->frame_size = 0; |
|
*data_size = out_size; |
|
break; |
|
} |
|
} |
|
return buf_ptr - buf; |
|
} |
|
|
|
AVCodec mp2_decoder = |
|
{ |
|
"mp2", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_MP2, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame, |
|
CODEC_CAP_PARSE_ONLY, |
|
}; |
|
|
|
AVCodec mp3_decoder = |
|
{ |
|
"mp3", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_MP3, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame, |
|
CODEC_CAP_PARSE_ONLY, |
|
};
|
|
|