mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1443 lines
50 KiB
1443 lines
50 KiB
/* |
|
* ADPCM codecs |
|
* Copyright (c) 2001-2003 The ffmpeg Project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
|
|
/** |
|
* @file adpcm.c |
|
* ADPCM codecs. |
|
* First version by Francois Revol (revol@free.fr) |
|
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
|
* by Mike Melanson (melanson@pcisys.net) |
|
* CD-ROM XA ADPCM codec by BERO |
|
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) |
|
* THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) |
|
* |
|
* Features and limitations: |
|
* |
|
* Reference documents: |
|
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html |
|
* http://www.geocities.com/SiliconValley/8682/aud3.txt |
|
* http://openquicktime.sourceforge.net/plugins.htm |
|
* XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html |
|
* http://www.cs.ucla.edu/~leec/mediabench/applications.html |
|
* SoX source code http://home.sprynet.com/~cbagwell/sox.html |
|
* |
|
* CD-ROM XA: |
|
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html |
|
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html |
|
* readstr http://www.geocities.co.jp/Playtown/2004/ |
|
*/ |
|
|
|
#define BLKSIZE 1024 |
|
|
|
#define CLAMP_TO_SHORT(value) \ |
|
if (value > 32767) \ |
|
value = 32767; \ |
|
else if (value < -32768) \ |
|
value = -32768; \ |
|
|
|
/* step_table[] and index_table[] are from the ADPCM reference source */ |
|
/* This is the index table: */ |
|
static const int index_table[16] = { |
|
-1, -1, -1, -1, 2, 4, 6, 8, |
|
-1, -1, -1, -1, 2, 4, 6, 8, |
|
}; |
|
|
|
/** |
|
* This is the step table. Note that many programs use slight deviations from |
|
* this table, but such deviations are negligible: |
|
*/ |
|
static const int step_table[89] = { |
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
|
19, 21, 23, 25, 28, 31, 34, 37, 41, 45, |
|
50, 55, 60, 66, 73, 80, 88, 97, 107, 118, |
|
130, 143, 157, 173, 190, 209, 230, 253, 279, 307, |
|
337, 371, 408, 449, 494, 544, 598, 658, 724, 796, |
|
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, |
|
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, |
|
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, |
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 |
|
}; |
|
|
|
/* These are for MS-ADPCM */ |
|
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */ |
|
static const int AdaptationTable[] = { |
|
230, 230, 230, 230, 307, 409, 512, 614, |
|
768, 614, 512, 409, 307, 230, 230, 230 |
|
}; |
|
|
|
static const int AdaptCoeff1[] = { |
|
256, 512, 0, 192, 240, 460, 392 |
|
}; |
|
|
|
static const int AdaptCoeff2[] = { |
|
0, -256, 0, 64, 0, -208, -232 |
|
}; |
|
|
|
/* These are for CD-ROM XA ADPCM */ |
|
static const int xa_adpcm_table[5][2] = { |
|
{ 0, 0 }, |
|
{ 60, 0 }, |
|
{ 115, -52 }, |
|
{ 98, -55 }, |
|
{ 122, -60 } |
|
}; |
|
|
|
static const int ea_adpcm_table[] = { |
|
0, 240, 460, 392, 0, 0, -208, -220, 0, 1, |
|
3, 4, 7, 8, 10, 11, 0, -1, -3, -4 |
|
}; |
|
|
|
static const int ct_adpcm_table[8] = { |
|
0x00E6, 0x00E6, 0x00E6, 0x00E6, |
|
0x0133, 0x0199, 0x0200, 0x0266 |
|
}; |
|
|
|
// padded to zero where table size is less then 16 |
|
static const int swf_index_tables[4][16] = { |
|
/*2*/ { -1, 2 }, |
|
/*3*/ { -1, -1, 2, 4 }, |
|
/*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, |
|
/*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } |
|
}; |
|
|
|
static const int yamaha_indexscale[] = { |
|
230, 230, 230, 230, 307, 409, 512, 614, |
|
230, 230, 230, 230, 307, 409, 512, 614 |
|
}; |
|
|
|
static const int yamaha_difflookup[] = { |
|
1, 3, 5, 7, 9, 11, 13, 15, |
|
-1, -3, -5, -7, -9, -11, -13, -15 |
|
}; |
|
|
|
/* end of tables */ |
|
|
|
typedef struct ADPCMChannelStatus { |
|
int predictor; |
|
short int step_index; |
|
int step; |
|
/* for encoding */ |
|
int prev_sample; |
|
|
|
/* MS version */ |
|
short sample1; |
|
short sample2; |
|
int coeff1; |
|
int coeff2; |
|
int idelta; |
|
} ADPCMChannelStatus; |
|
|
|
typedef struct ADPCMContext { |
|
int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */ |
|
ADPCMChannelStatus status[2]; |
|
short sample_buffer[32]; /* hold left samples while waiting for right samples */ |
|
} ADPCMContext; |
|
|
|
/* XXX: implement encoding */ |
|
|
|
#ifdef CONFIG_ENCODERS |
|
static int adpcm_encode_init(AVCodecContext *avctx) |
|
{ |
|
if (avctx->channels > 2) |
|
return -1; /* only stereo or mono =) */ |
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n"); |
|
avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */ |
|
return -1; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ |
|
/* and we have 4 bytes per channel overhead */ |
|
avctx->block_align = BLKSIZE; |
|
/* seems frame_size isn't taken into account... have to buffer the samples :-( */ |
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ |
|
/* and we have 7 bytes per channel overhead */ |
|
avctx->block_align = BLKSIZE; |
|
break; |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
avctx->frame_size = BLKSIZE * avctx->channels; |
|
avctx->block_align = BLKSIZE; |
|
break; |
|
default: |
|
return -1; |
|
break; |
|
} |
|
|
|
avctx->coded_frame= avcodec_alloc_frame(); |
|
avctx->coded_frame->key_frame= 1; |
|
|
|
return 0; |
|
} |
|
|
|
static int adpcm_encode_close(AVCodecContext *avctx) |
|
{ |
|
av_freep(&avctx->coded_frame); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int delta = sample - c->prev_sample; |
|
int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; |
|
c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8); |
|
CLAMP_TO_SHORT(c->prev_sample); |
|
c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88); |
|
return nibble; |
|
} |
|
|
|
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int predictor, nibble, bias; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; |
|
|
|
nibble= sample - predictor; |
|
if(nibble>=0) bias= c->idelta/2; |
|
else bias=-c->idelta/2; |
|
|
|
nibble= (nibble + bias) / c->idelta; |
|
nibble= av_clip(nibble, -8, 7)&0x0F; |
|
|
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
|
CLAMP_TO_SHORT(predictor); |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = predictor; |
|
|
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) c->idelta = 16; |
|
|
|
return nibble; |
|
} |
|
|
|
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int nibble, delta; |
|
|
|
if(!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
delta = sample - c->predictor; |
|
|
|
nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; |
|
|
|
c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8); |
|
CLAMP_TO_SHORT(c->predictor); |
|
c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24567); |
|
|
|
return nibble; |
|
} |
|
|
|
typedef struct TrellisPath { |
|
int nibble; |
|
int prev; |
|
} TrellisPath; |
|
|
|
typedef struct TrellisNode { |
|
uint32_t ssd; |
|
int path; |
|
int sample1; |
|
int sample2; |
|
int step; |
|
} TrellisNode; |
|
|
|
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, |
|
uint8_t *dst, ADPCMChannelStatus *c, int n) |
|
{ |
|
#define FREEZE_INTERVAL 128 |
|
//FIXME 6% faster if frontier is a compile-time constant |
|
const int frontier = 1 << avctx->trellis; |
|
const int stride = avctx->channels; |
|
const int version = avctx->codec->id; |
|
const int max_paths = frontier*FREEZE_INTERVAL; |
|
TrellisPath paths[max_paths], *p; |
|
TrellisNode node_buf[2][frontier]; |
|
TrellisNode *nodep_buf[2][frontier]; |
|
TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd |
|
TrellisNode **nodes_next = nodep_buf[1]; |
|
int pathn = 0, froze = -1, i, j, k; |
|
|
|
assert(!(max_paths&(max_paths-1))); |
|
|
|
memset(nodep_buf, 0, sizeof(nodep_buf)); |
|
nodes[0] = &node_buf[1][0]; |
|
nodes[0]->ssd = 0; |
|
nodes[0]->path = 0; |
|
nodes[0]->step = c->step_index; |
|
nodes[0]->sample1 = c->sample1; |
|
nodes[0]->sample2 = c->sample2; |
|
if(version == CODEC_ID_ADPCM_IMA_WAV) |
|
nodes[0]->sample1 = c->prev_sample; |
|
if(version == CODEC_ID_ADPCM_MS) |
|
nodes[0]->step = c->idelta; |
|
if(version == CODEC_ID_ADPCM_YAMAHA) { |
|
if(c->step == 0) { |
|
nodes[0]->step = 127; |
|
nodes[0]->sample1 = 0; |
|
} else { |
|
nodes[0]->step = c->step; |
|
nodes[0]->sample1 = c->predictor; |
|
} |
|
} |
|
|
|
for(i=0; i<n; i++) { |
|
TrellisNode *t = node_buf[i&1]; |
|
TrellisNode **u; |
|
int sample = samples[i*stride]; |
|
memset(nodes_next, 0, frontier*sizeof(TrellisNode*)); |
|
for(j=0; j<frontier && nodes[j]; j++) { |
|
// higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too |
|
const int range = (j < frontier/2) ? 1 : 0; |
|
const int step = nodes[j]->step; |
|
int nidx; |
|
if(version == CODEC_ID_ADPCM_MS) { |
|
const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256; |
|
const int div = (sample - predictor) / step; |
|
const int nmin = av_clip(div-range, -8, 6); |
|
const int nmax = av_clip(div+range, -7, 7); |
|
for(nidx=nmin; nidx<=nmax; nidx++) { |
|
const int nibble = nidx & 0xf; |
|
int dec_sample = predictor + nidx * step; |
|
#define STORE_NODE(NAME, STEP_INDEX)\ |
|
int d;\ |
|
uint32_t ssd;\ |
|
CLAMP_TO_SHORT(dec_sample);\ |
|
d = sample - dec_sample;\ |
|
ssd = nodes[j]->ssd + d*d;\ |
|
if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\ |
|
continue;\ |
|
/* Collapse any two states with the same previous sample value. \ |
|
* One could also distinguish states by step and by 2nd to last |
|
* sample, but the effects of that are negligible. */\ |
|
for(k=0; k<frontier && nodes_next[k]; k++) {\ |
|
if(dec_sample == nodes_next[k]->sample1) {\ |
|
assert(ssd >= nodes_next[k]->ssd);\ |
|
goto next_##NAME;\ |
|
}\ |
|
}\ |
|
for(k=0; k<frontier; k++) {\ |
|
if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\ |
|
TrellisNode *u = nodes_next[frontier-1];\ |
|
if(!u) {\ |
|
assert(pathn < max_paths);\ |
|
u = t++;\ |
|
u->path = pathn++;\ |
|
}\ |
|
u->ssd = ssd;\ |
|
u->step = STEP_INDEX;\ |
|
u->sample2 = nodes[j]->sample1;\ |
|
u->sample1 = dec_sample;\ |
|
paths[u->path].nibble = nibble;\ |
|
paths[u->path].prev = nodes[j]->path;\ |
|
memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\ |
|
nodes_next[k] = u;\ |
|
break;\ |
|
}\ |
|
}\ |
|
next_##NAME:; |
|
STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); |
|
} |
|
} else if(version == CODEC_ID_ADPCM_IMA_WAV) { |
|
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ |
|
const int predictor = nodes[j]->sample1;\ |
|
const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
|
int nmin = av_clip(div-range, -7, 6);\ |
|
int nmax = av_clip(div+range, -6, 7);\ |
|
if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ |
|
if(nmax<0) nmax--;\ |
|
for(nidx=nmin; nidx<=nmax; nidx++) {\ |
|
const int nibble = nidx<0 ? 7-nidx : nidx;\ |
|
int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ |
|
STORE_NODE(NAME, STEP_INDEX);\ |
|
} |
|
LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88)); |
|
} else { //CODEC_ID_ADPCM_YAMAHA |
|
LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); |
|
#undef LOOP_NODES |
|
#undef STORE_NODE |
|
} |
|
} |
|
|
|
u = nodes; |
|
nodes = nodes_next; |
|
nodes_next = u; |
|
|
|
// prevent overflow |
|
if(nodes[0]->ssd > (1<<28)) { |
|
for(j=1; j<frontier && nodes[j]; j++) |
|
nodes[j]->ssd -= nodes[0]->ssd; |
|
nodes[0]->ssd = 0; |
|
} |
|
|
|
// merge old paths to save memory |
|
if(i == froze + FREEZE_INTERVAL) { |
|
p = &paths[nodes[0]->path]; |
|
for(k=i; k>froze; k--) { |
|
dst[k] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
froze = i; |
|
pathn = 0; |
|
// other nodes might use paths that don't coincide with the frozen one. |
|
// checking which nodes do so is too slow, so just kill them all. |
|
// this also slightly improves quality, but I don't know why. |
|
memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); |
|
} |
|
} |
|
|
|
p = &paths[nodes[0]->path]; |
|
for(i=n-1; i>froze; i--) { |
|
dst[i] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
|
|
c->predictor = nodes[0]->sample1; |
|
c->sample1 = nodes[0]->sample1; |
|
c->sample2 = nodes[0]->sample2; |
|
c->step_index = nodes[0]->step; |
|
c->step = nodes[0]->step; |
|
c->idelta = nodes[0]->step; |
|
} |
|
|
|
static int adpcm_encode_frame(AVCodecContext *avctx, |
|
unsigned char *frame, int buf_size, void *data) |
|
{ |
|
int n, i, st; |
|
short *samples; |
|
unsigned char *dst; |
|
ADPCMContext *c = avctx->priv_data; |
|
|
|
dst = frame; |
|
samples = (short *)data; |
|
st= avctx->channels == 2; |
|
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */ |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
n = avctx->frame_size / 8; |
|
c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ |
|
/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ |
|
*dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */ |
|
*dst++ = (c->status[0].prev_sample >> 8) & 0xFF; |
|
*dst++ = (unsigned char)c->status[0].step_index; |
|
*dst++ = 0; /* unknown */ |
|
samples++; |
|
if (avctx->channels == 2) { |
|
c->status[1].prev_sample = (signed short)samples[1]; |
|
/* c->status[1].step_index = 0; */ |
|
*dst++ = (c->status[1].prev_sample) & 0xFF; |
|
*dst++ = (c->status[1].prev_sample >> 8) & 0xFF; |
|
*dst++ = (unsigned char)c->status[1].step_index; |
|
*dst++ = 0; |
|
samples++; |
|
} |
|
|
|
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ |
|
if(avctx->trellis > 0) { |
|
uint8_t buf[2][n*8]; |
|
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8); |
|
if(avctx->channels == 2) |
|
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8); |
|
for(i=0; i<n; i++) { |
|
*dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4); |
|
*dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4); |
|
*dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4); |
|
*dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4); |
|
if (avctx->channels == 2) { |
|
*dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4); |
|
*dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4); |
|
*dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4); |
|
*dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4); |
|
} |
|
} |
|
} else |
|
for (; n>0; n--) { |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F; |
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F; |
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F; |
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F; |
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0; |
|
dst++; |
|
/* right channel */ |
|
if (avctx->channels == 2) { |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; |
|
dst++; |
|
} |
|
samples += 8 * avctx->channels; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
for(i=0; i<avctx->channels; i++){ |
|
int predictor=0; |
|
|
|
*dst++ = predictor; |
|
c->status[i].coeff1 = AdaptCoeff1[predictor]; |
|
c->status[i].coeff2 = AdaptCoeff2[predictor]; |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
if (c->status[i].idelta < 16) |
|
c->status[i].idelta = 16; |
|
|
|
*dst++ = c->status[i].idelta & 0xFF; |
|
*dst++ = c->status[i].idelta >> 8; |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
c->status[i].sample1= *samples++; |
|
|
|
*dst++ = c->status[i].sample1 & 0xFF; |
|
*dst++ = c->status[i].sample1 >> 8; |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
c->status[i].sample2= *samples++; |
|
|
|
*dst++ = c->status[i].sample2 & 0xFF; |
|
*dst++ = c->status[i].sample2 >> 8; |
|
} |
|
|
|
if(avctx->trellis > 0) { |
|
int n = avctx->block_align - 7*avctx->channels; |
|
uint8_t buf[2][n]; |
|
if(avctx->channels == 1) { |
|
n *= 2; |
|
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
|
for(i=0; i<n; i+=2) |
|
*dst++ = (buf[0][i] << 4) | buf[0][i+1]; |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
|
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
|
for(i=0; i<n; i++) |
|
*dst++ = (buf[0][i] << 4) | buf[1][i]; |
|
} |
|
} else |
|
for(i=7*avctx->channels; i<avctx->block_align; i++) { |
|
int nibble; |
|
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; |
|
nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++); |
|
*dst++ = nibble; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
n = avctx->frame_size / 2; |
|
if(avctx->trellis > 0) { |
|
uint8_t buf[2][n*2]; |
|
n *= 2; |
|
if(avctx->channels == 1) { |
|
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
|
for(i=0; i<n; i+=2) |
|
*dst++ = buf[0][i] | (buf[0][i+1] << 4); |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
|
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
|
for(i=0; i<n; i++) |
|
*dst++ = buf[0][i] | (buf[1][i] << 4); |
|
} |
|
} else |
|
for (; n>0; n--) { |
|
for(i = 0; i < avctx->channels; i++) { |
|
int nibble; |
|
nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]); |
|
nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4; |
|
*dst++ = nibble; |
|
} |
|
samples += 2 * avctx->channels; |
|
} |
|
break; |
|
default: |
|
return -1; |
|
} |
|
return dst - frame; |
|
} |
|
#endif //CONFIG_ENCODERS |
|
|
|
static int adpcm_decode_init(AVCodecContext * avctx) |
|
{ |
|
ADPCMContext *c = avctx->priv_data; |
|
|
|
if(avctx->channels > 2U){ |
|
return -1; |
|
} |
|
|
|
c->channel = 0; |
|
c->status[0].predictor = c->status[1].predictor = 0; |
|
c->status[0].step_index = c->status[1].step_index = 0; |
|
c->status[0].step = c->status[1].step = 0; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_CT: |
|
c->status[0].step = c->status[1].step = 511; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
if (avctx->extradata && avctx->extradata_size == 2 * 4) { |
|
c->status[0].predictor = AV_RL32(avctx->extradata); |
|
c->status[1].predictor = AV_RL32(avctx->extradata + 4); |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
return 0; |
|
} |
|
|
|
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
|
{ |
|
int step_index; |
|
int predictor; |
|
int sign, delta, diff, step; |
|
|
|
step = step_table[c->step_index]; |
|
step_index = c->step_index + index_table[(unsigned)nibble]; |
|
if (step_index < 0) step_index = 0; |
|
else if (step_index > 88) step_index = 88; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * step) >> shift; |
|
predictor = c->predictor; |
|
if (sign) predictor -= diff; |
|
else predictor += diff; |
|
|
|
CLAMP_TO_SHORT(predictor); |
|
c->predictor = predictor; |
|
c->step_index = step_index; |
|
|
|
return (short)predictor; |
|
} |
|
|
|
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int predictor; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; |
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
|
CLAMP_TO_SHORT(predictor); |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = predictor; |
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) c->idelta = 16; |
|
|
|
return (short)predictor; |
|
} |
|
|
|
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int predictor; |
|
int sign, delta, diff; |
|
int new_step; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * c->step) >> 3; |
|
predictor = c->predictor; |
|
/* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ |
|
if(sign) |
|
predictor = ((predictor * 254) >> 8) - diff; |
|
else |
|
predictor = ((predictor * 254) >> 8) + diff; |
|
/* calculate new step and clamp it to range 511..32767 */ |
|
new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8; |
|
c->step = new_step; |
|
if(c->step < 511) |
|
c->step = 511; |
|
if(c->step > 32767) |
|
c->step = 32767; |
|
|
|
CLAMP_TO_SHORT(predictor); |
|
c->predictor = predictor; |
|
return (short)predictor; |
|
} |
|
|
|
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
|
{ |
|
int sign, delta, diff; |
|
|
|
sign = nibble & (1<<(size-1)); |
|
delta = nibble & ((1<<(size-1))-1); |
|
diff = delta << (7 + c->step + shift); |
|
|
|
if (sign) |
|
c->predictor -= diff; |
|
else |
|
c->predictor += diff; |
|
|
|
/* clamp result */ |
|
if (c->predictor > 16256) |
|
c->predictor = 16256; |
|
else if (c->predictor < -16384) |
|
c->predictor = -16384; |
|
|
|
/* calculate new step */ |
|
if (delta >= (2*size - 3) && c->step < 3) |
|
c->step++; |
|
else if (delta == 0 && c->step > 0) |
|
c->step--; |
|
|
|
return (short) c->predictor; |
|
} |
|
|
|
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
|
{ |
|
if(!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; |
|
CLAMP_TO_SHORT(c->predictor); |
|
c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24567); |
|
return c->predictor; |
|
} |
|
|
|
static void xa_decode(short *out, const unsigned char *in, |
|
ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) |
|
{ |
|
int i, j; |
|
int shift,filter,f0,f1; |
|
int s_1,s_2; |
|
int d,s,t; |
|
|
|
for(i=0;i<4;i++) { |
|
|
|
shift = 12 - (in[4+i*2] & 15); |
|
filter = in[4+i*2] >> 4; |
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
s_1 = left->sample1; |
|
s_2 = left->sample2; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)(d<<4)>>4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
CLAMP_TO_SHORT(s); |
|
*out = s; |
|
out += inc; |
|
s_2 = s_1; |
|
s_1 = s; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
s_1 = right->sample1; |
|
s_2 = right->sample2; |
|
out = out + 1 - 28*2; |
|
} |
|
|
|
shift = 12 - (in[5+i*2] & 15); |
|
filter = in[5+i*2] >> 4; |
|
|
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)d >> 4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
CLAMP_TO_SHORT(s); |
|
*out = s; |
|
out += inc; |
|
s_2 = s_1; |
|
s_1 = s; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
right->sample1 = s_1; |
|
right->sample2 = s_2; |
|
out -= 1; |
|
} else { |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* DK3 ADPCM support macro */ |
|
#define DK3_GET_NEXT_NIBBLE() \ |
|
if (decode_top_nibble_next) \ |
|
{ \ |
|
nibble = (last_byte >> 4) & 0x0F; \ |
|
decode_top_nibble_next = 0; \ |
|
} \ |
|
else \ |
|
{ \ |
|
last_byte = *src++; \ |
|
if (src >= buf + buf_size) break; \ |
|
nibble = last_byte & 0x0F; \ |
|
decode_top_nibble_next = 1; \ |
|
} |
|
|
|
static int adpcm_decode_frame(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
uint8_t *buf, int buf_size) |
|
{ |
|
ADPCMContext *c = avctx->priv_data; |
|
ADPCMChannelStatus *cs; |
|
int n, m, channel, i; |
|
int block_predictor[2]; |
|
short *samples; |
|
short *samples_end; |
|
uint8_t *src; |
|
int st; /* stereo */ |
|
|
|
/* DK3 ADPCM accounting variables */ |
|
unsigned char last_byte = 0; |
|
unsigned char nibble; |
|
int decode_top_nibble_next = 0; |
|
int diff_channel; |
|
|
|
/* EA ADPCM state variables */ |
|
uint32_t samples_in_chunk; |
|
int32_t previous_left_sample, previous_right_sample; |
|
int32_t current_left_sample, current_right_sample; |
|
int32_t next_left_sample, next_right_sample; |
|
int32_t coeff1l, coeff2l, coeff1r, coeff2r; |
|
uint8_t shift_left, shift_right; |
|
int count1, count2; |
|
|
|
if (!buf_size) |
|
return 0; |
|
|
|
//should protect all 4bit ADPCM variants |
|
//8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels |
|
// |
|
if(*data_size/4 < buf_size + 8) |
|
return -1; |
|
|
|
samples = data; |
|
samples_end= samples + *data_size/2; |
|
*data_size= 0; |
|
src = buf; |
|
|
|
st = avctx->channels == 2 ? 1 : 0; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
n = (buf_size - 2);/* >> 2*avctx->channels;*/ |
|
channel = c->channel; |
|
cs = &(c->status[channel]); |
|
/* (pppppp) (piiiiiii) */ |
|
|
|
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ |
|
cs->predictor = (*src++) << 8; |
|
cs->predictor |= (*src & 0x80); |
|
cs->predictor &= 0xFF80; |
|
|
|
/* sign extension */ |
|
if(cs->predictor & 0x8000) |
|
cs->predictor -= 0x10000; |
|
|
|
CLAMP_TO_SHORT(cs->predictor); |
|
|
|
cs->step_index = (*src++) & 0x7F; |
|
|
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
|
|
cs->step = step_table[cs->step_index]; |
|
|
|
if (st && channel) |
|
samples++; |
|
|
|
for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ |
|
*samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); |
|
samples += avctx->channels; |
|
*samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3); |
|
samples += avctx->channels; |
|
src ++; |
|
} |
|
|
|
if(st) { /* handle stereo interlacing */ |
|
c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */ |
|
if(channel == 1) { /* wait for the other packet before outputing anything */ |
|
return src - buf; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; |
|
|
|
for(i=0; i<avctx->channels; i++){ |
|
cs = &(c->status[i]); |
|
cs->predictor = (int16_t)(src[0] + (src[1]<<8)); |
|
src+=2; |
|
|
|
// XXX: is this correct ??: *samples++ = cs->predictor; |
|
|
|
cs->step_index = *src++; |
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ |
|
} |
|
|
|
while(src < buf + buf_size){ |
|
for(m=0; m<4; m++){ |
|
for(i=0; i<=st; i++) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); |
|
for(i=0; i<=st; i++) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); |
|
src++; |
|
} |
|
src += 4*st; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_4XM: |
|
cs = &(c->status[0]); |
|
c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
|
if(st){ |
|
c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
|
} |
|
c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
|
if(st){ |
|
c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
|
} |
|
if (cs->step_index < 0) cs->step_index = 0; |
|
if (cs->step_index > 88) cs->step_index = 88; |
|
|
|
m= (buf_size - (src - buf))>>st; |
|
for(i=0; i<m; i++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); |
|
} |
|
|
|
src += m<<st; |
|
|
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
n = buf_size - 7 * avctx->channels; |
|
if (n < 0) |
|
return -1; |
|
block_predictor[0] = av_clip(*src++, 0, 7); |
|
block_predictor[1] = 0; |
|
if (st) |
|
block_predictor[1] = av_clip(*src++, 0, 7); |
|
c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
src+=2; |
|
if (st){ |
|
c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
src+=2; |
|
} |
|
c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; |
|
c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; |
|
c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; |
|
c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; |
|
|
|
c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
src+=2; |
|
if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
if (st) src+=2; |
|
c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
src+=2; |
|
if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
|
if (st) src+=2; |
|
|
|
*samples++ = c->status[0].sample1; |
|
if (st) *samples++ = c->status[1].sample1; |
|
*samples++ = c->status[0].sample2; |
|
if (st) *samples++ = c->status[1].sample2; |
|
for(;n>0;n--) { |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F); |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); |
|
src ++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK4: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8)); |
|
c->status[0].step_index = src[2]; |
|
src += 4; |
|
*samples++ = c->status[0].predictor; |
|
if (st) { |
|
c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8)); |
|
c->status[1].step_index = src[2]; |
|
src += 4; |
|
*samples++ = c->status[1].predictor; |
|
} |
|
while (src < buf + buf_size) { |
|
|
|
/* take care of the top nibble (always left or mono channel) */ |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F, 3); |
|
|
|
/* take care of the bottom nibble, which is right sample for |
|
* stereo, or another mono sample */ |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], |
|
src[0] & 0x0F, 3); |
|
else |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] & 0x0F, 3); |
|
|
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK3: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
if(buf_size + 16 > (samples_end - samples)*3/8) |
|
return -1; |
|
|
|
c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8)); |
|
c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8)); |
|
c->status[0].step_index = src[14]; |
|
c->status[1].step_index = src[15]; |
|
/* sign extend the predictors */ |
|
src += 16; |
|
diff_channel = c->status[1].predictor; |
|
|
|
/* the DK3_GET_NEXT_NIBBLE macro issues the break statement when |
|
* the buffer is consumed */ |
|
while (1) { |
|
|
|
/* for this algorithm, c->status[0] is the sum channel and |
|
* c->status[1] is the diff channel */ |
|
|
|
/* process the first predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the diff channel predictor */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
|
|
|
/* process the first pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
|
|
/* process the second predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the second pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
/* no per-block initialization; just start decoding the data */ |
|
while (src < buf + buf_size) { |
|
|
|
if (st) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], |
|
src[0] & 0x0F, 3); |
|
} else { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] & 0x0F, 3); |
|
} |
|
|
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_XA: |
|
c->status[0].sample1 = c->status[0].sample2 = |
|
c->status[1].sample1 = c->status[1].sample2 = 0; |
|
while (buf_size >= 128) { |
|
xa_decode(samples, src, &c->status[0], &c->status[1], |
|
avctx->channels); |
|
src += 128; |
|
samples += 28 * 8; |
|
buf_size -= 128; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_EA: |
|
samples_in_chunk = AV_RL32(src); |
|
if (samples_in_chunk >= ((buf_size - 12) * 2)) { |
|
src += buf_size; |
|
break; |
|
} |
|
src += 4; |
|
current_left_sample = (int16_t)AV_RL16(src); |
|
src += 2; |
|
previous_left_sample = (int16_t)AV_RL16(src); |
|
src += 2; |
|
current_right_sample = (int16_t)AV_RL16(src); |
|
src += 2; |
|
previous_right_sample = (int16_t)AV_RL16(src); |
|
src += 2; |
|
|
|
for (count1 = 0; count1 < samples_in_chunk/28;count1++) { |
|
coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F]; |
|
coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4]; |
|
coeff1r = ea_adpcm_table[*src & 0x0F]; |
|
coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; |
|
src++; |
|
|
|
shift_left = ((*src >> 4) & 0x0F) + 8; |
|
shift_right = (*src & 0x0F) + 8; |
|
src++; |
|
|
|
for (count2 = 0; count2 < 28; count2++) { |
|
next_left_sample = (((*src & 0xF0) << 24) >> shift_left); |
|
next_right_sample = (((*src & 0x0F) << 28) >> shift_right); |
|
src++; |
|
|
|
next_left_sample = (next_left_sample + |
|
(current_left_sample * coeff1l) + |
|
(previous_left_sample * coeff2l) + 0x80) >> 8; |
|
next_right_sample = (next_right_sample + |
|
(current_right_sample * coeff1r) + |
|
(previous_right_sample * coeff2r) + 0x80) >> 8; |
|
CLAMP_TO_SHORT(next_left_sample); |
|
CLAMP_TO_SHORT(next_right_sample); |
|
|
|
previous_left_sample = current_left_sample; |
|
current_left_sample = next_left_sample; |
|
previous_right_sample = current_right_sample; |
|
current_right_sample = next_right_sample; |
|
*samples++ = (unsigned short)current_left_sample; |
|
*samples++ = (unsigned short)current_right_sample; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_SMJPEG: |
|
c->status[0].predictor = *src; |
|
src += 2; |
|
c->status[0].step_index = *src++; |
|
src++; /* skip another byte before getting to the meat */ |
|
while (src < buf + buf_size) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
*src & 0x0F, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
(*src >> 4) & 0x0F, 3); |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_CT: |
|
while (src < buf + buf_size) { |
|
if (st) { |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F); |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[1], |
|
src[0] & 0x0F); |
|
} else { |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F); |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
} |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SBPRO_4: |
|
case CODEC_ID_ADPCM_SBPRO_3: |
|
case CODEC_ID_ADPCM_SBPRO_2: |
|
if (!c->status[0].step_index) { |
|
/* the first byte is a raw sample */ |
|
*samples++ = 128 * (*src++ - 0x80); |
|
if (st) |
|
*samples++ = 128 * (*src++ - 0x80); |
|
c->status[0].step_index = 1; |
|
} |
|
if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { |
|
while (src < buf + buf_size) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F, 4, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x0F, 4, 0); |
|
src++; |
|
} |
|
} else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { |
|
while (src < buf + buf_size && samples + 2 < samples_end) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 5) & 0x07, 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x07, 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] & 0x03, 2, 0); |
|
src++; |
|
} |
|
} else { |
|
while (src < buf + buf_size && samples + 3 < samples_end) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 6) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
(src[0] >> 4) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x03, 2, 2); |
|
src++; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SWF: |
|
{ |
|
GetBitContext gb; |
|
const int *table; |
|
int k0, signmask, nb_bits; |
|
int size = buf_size*8; |
|
|
|
init_get_bits(&gb, buf, size); |
|
|
|
//read bits & inital values |
|
nb_bits = get_bits(&gb, 2)+2; |
|
//av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); |
|
table = swf_index_tables[nb_bits-2]; |
|
k0 = 1 << (nb_bits-2); |
|
signmask = 1 << (nb_bits-1); |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
*samples++ = c->status[i].predictor = get_sbits(&gb, 16); |
|
c->status[i].step_index = get_bits(&gb, 6); |
|
} |
|
|
|
while (get_bits_count(&gb) < size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
// similar to IMA adpcm |
|
int delta = get_bits(&gb, nb_bits); |
|
int step = step_table[c->status[i].step_index]; |
|
long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 |
|
int k = k0; |
|
|
|
do { |
|
if (delta & k) |
|
vpdiff += step; |
|
step >>= 1; |
|
k >>= 1; |
|
} while(k); |
|
vpdiff += step; |
|
|
|
if (delta & signmask) |
|
c->status[i].predictor -= vpdiff; |
|
else |
|
c->status[i].predictor += vpdiff; |
|
|
|
c->status[i].step_index += table[delta & (~signmask)]; |
|
|
|
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
|
c->status[i].predictor = av_clip(c->status[i].predictor, -32768, 32767); |
|
|
|
*samples++ = c->status[i].predictor; |
|
if (samples >= samples_end) { |
|
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
|
return -1; |
|
} |
|
} |
|
} |
|
src += buf_size; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
while (src < buf + buf_size) { |
|
if (st) { |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[1], |
|
(src[0] >> 4) & 0x0F); |
|
} else { |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
(src[0] >> 4) & 0x0F); |
|
} |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_THP: |
|
{ |
|
GetBitContext gb; |
|
int table[2][16]; |
|
unsigned int samplecnt; |
|
int prev[2][2]; |
|
int ch; |
|
|
|
if (buf_size < 80) { |
|
av_log(avctx, AV_LOG_ERROR, "frame too small\n"); |
|
return -1; |
|
} |
|
|
|
init_get_bits(&gb, src, buf_size * 8); |
|
src += buf_size; |
|
|
|
get_bits_long(&gb, 32); /* Channel size */ |
|
samplecnt = get_bits_long(&gb, 32); |
|
|
|
for (i = 0; i < 32; i++) |
|
table[0][i] = get_sbits(&gb, 16); |
|
|
|
/* Initialize the previous sample. */ |
|
for (i = 0; i < 4; i++) |
|
prev[0][i] = get_sbits(&gb, 16); |
|
|
|
if (samplecnt >= (samples_end - samples) / (st + 1)) { |
|
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
|
return -1; |
|
} |
|
|
|
for (ch = 0; ch <= st; ch++) { |
|
samples = (unsigned short *) data + ch; |
|
|
|
/* Read in every sample for this channel. */ |
|
for (i = 0; i < samplecnt / 14; i++) { |
|
int index = get_bits (&gb, 4) & 7; |
|
unsigned int exp = get_bits (&gb, 4); |
|
int factor1 = table[ch][index * 2]; |
|
int factor2 = table[ch][index * 2 + 1]; |
|
|
|
/* Decode 14 samples. */ |
|
for (n = 0; n < 14; n++) { |
|
int sampledat = get_sbits (&gb, 4); |
|
|
|
*samples = ((prev[ch][0]*factor1 |
|
+ prev[ch][1]*factor2) >> 11) + (sampledat << exp); |
|
prev[ch][1] = prev[ch][0]; |
|
prev[ch][0] = *samples++; |
|
|
|
/* In case of stereo, skip one sample, this sample |
|
is for the other channel. */ |
|
samples += st; |
|
} |
|
} |
|
} |
|
|
|
/* In the previous loop, in case stereo is used, samples is |
|
increased exactly one time too often. */ |
|
samples -= st; |
|
break; |
|
} |
|
|
|
default: |
|
return -1; |
|
} |
|
*data_size = (uint8_t *)samples - (uint8_t *)data; |
|
return src - buf; |
|
} |
|
|
|
|
|
|
|
#ifdef CONFIG_ENCODERS |
|
#define ADPCM_ENCODER(id,name) \ |
|
AVCodec name ## _encoder = { \ |
|
#name, \ |
|
CODEC_TYPE_AUDIO, \ |
|
id, \ |
|
sizeof(ADPCMContext), \ |
|
adpcm_encode_init, \ |
|
adpcm_encode_frame, \ |
|
adpcm_encode_close, \ |
|
NULL, \ |
|
}; |
|
#else |
|
#define ADPCM_ENCODER(id,name) |
|
#endif |
|
|
|
#ifdef CONFIG_DECODERS |
|
#define ADPCM_DECODER(id,name) \ |
|
AVCodec name ## _decoder = { \ |
|
#name, \ |
|
CODEC_TYPE_AUDIO, \ |
|
id, \ |
|
sizeof(ADPCMContext), \ |
|
adpcm_decode_init, \ |
|
NULL, \ |
|
NULL, \ |
|
adpcm_decode_frame, \ |
|
}; |
|
#else |
|
#define ADPCM_DECODER(id,name) |
|
#endif |
|
|
|
#define ADPCM_CODEC(id, name) \ |
|
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name) |
|
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2); |
|
ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp); |
|
|
|
#undef ADPCM_CODEC
|
|
|