mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
5.5 KiB
204 lines
5.5 KiB
/* |
|
* Copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* miscellaneous math routines and tables |
|
*/ |
|
|
|
#include <stdint.h> |
|
#include <limits.h> |
|
|
|
#include "mathematics.h" |
|
#include "libavutil/intmath.h" |
|
#include "libavutil/common.h" |
|
#include "avassert.h" |
|
#include "version.h" |
|
|
|
/* Stein's binary GCD algorithm: |
|
* https://en.wikipedia.org/wiki/Binary_GCD_algorithm */ |
|
int64_t av_gcd(int64_t a, int64_t b) { |
|
int za, zb, k; |
|
int64_t u, v; |
|
if (a == 0) |
|
return b; |
|
if (b == 0) |
|
return a; |
|
za = ff_ctzll(a); |
|
zb = ff_ctzll(b); |
|
k = FFMIN(za, zb); |
|
u = llabs(a >> za); |
|
v = llabs(b >> zb); |
|
while (u != v) { |
|
if (u > v) |
|
FFSWAP(int64_t, v, u); |
|
v -= u; |
|
v >>= ff_ctzll(v); |
|
} |
|
return u << k; |
|
} |
|
|
|
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) |
|
{ |
|
int64_t r = 0; |
|
av_assert2(c > 0); |
|
av_assert2(b >=0); |
|
av_assert2((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4); |
|
|
|
if (c <= 0 || b < 0 || !((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4)) |
|
return INT64_MIN; |
|
|
|
if (rnd & AV_ROUND_PASS_MINMAX) { |
|
if (a == INT64_MIN || a == INT64_MAX) |
|
return a; |
|
rnd -= AV_ROUND_PASS_MINMAX; |
|
} |
|
|
|
if (a < 0 && a != INT64_MIN) |
|
return -av_rescale_rnd(-a, b, c, rnd ^ ((rnd >> 1) & 1)); |
|
|
|
if (rnd == AV_ROUND_NEAR_INF) |
|
r = c / 2; |
|
else if (rnd & 1) |
|
r = c - 1; |
|
|
|
if (b <= INT_MAX && c <= INT_MAX) { |
|
if (a <= INT_MAX) |
|
return (a * b + r) / c; |
|
else |
|
return a / c * b + (a % c * b + r) / c; |
|
} else { |
|
#if 1 |
|
uint64_t a0 = a & 0xFFFFFFFF; |
|
uint64_t a1 = a >> 32; |
|
uint64_t b0 = b & 0xFFFFFFFF; |
|
uint64_t b1 = b >> 32; |
|
uint64_t t1 = a0 * b1 + a1 * b0; |
|
uint64_t t1a = t1 << 32; |
|
int i; |
|
|
|
a0 = a0 * b0 + t1a; |
|
a1 = a1 * b1 + (t1 >> 32) + (a0 < t1a); |
|
a0 += r; |
|
a1 += a0 < r; |
|
|
|
for (i = 63; i >= 0; i--) { |
|
a1 += a1 + ((a0 >> i) & 1); |
|
t1 += t1; |
|
if (c <= a1) { |
|
a1 -= c; |
|
t1++; |
|
} |
|
} |
|
return t1; |
|
} |
|
#else |
|
AVInteger ai; |
|
ai = av_mul_i(av_int2i(a), av_int2i(b)); |
|
ai = av_add_i(ai, av_int2i(r)); |
|
|
|
return av_i2int(av_div_i(ai, av_int2i(c))); |
|
} |
|
#endif |
|
} |
|
|
|
int64_t av_rescale(int64_t a, int64_t b, int64_t c) |
|
{ |
|
return av_rescale_rnd(a, b, c, AV_ROUND_NEAR_INF); |
|
} |
|
|
|
int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq, |
|
enum AVRounding rnd) |
|
{ |
|
int64_t b = bq.num * (int64_t)cq.den; |
|
int64_t c = cq.num * (int64_t)bq.den; |
|
return av_rescale_rnd(a, b, c, rnd); |
|
} |
|
|
|
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) |
|
{ |
|
return av_rescale_q_rnd(a, bq, cq, AV_ROUND_NEAR_INF); |
|
} |
|
|
|
int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b) |
|
{ |
|
int64_t a = tb_a.num * (int64_t)tb_b.den; |
|
int64_t b = tb_b.num * (int64_t)tb_a.den; |
|
if ((FFABS(ts_a)|a|FFABS(ts_b)|b) <= INT_MAX) |
|
return (ts_a*a > ts_b*b) - (ts_a*a < ts_b*b); |
|
if (av_rescale_rnd(ts_a, a, b, AV_ROUND_DOWN) < ts_b) |
|
return -1; |
|
if (av_rescale_rnd(ts_b, b, a, AV_ROUND_DOWN) < ts_a) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod) |
|
{ |
|
int64_t c = (a - b) & (mod - 1); |
|
if (c > (mod >> 1)) |
|
c -= mod; |
|
return c; |
|
} |
|
|
|
int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb){ |
|
int64_t a, b, this; |
|
|
|
av_assert0(in_ts != AV_NOPTS_VALUE); |
|
av_assert0(duration >= 0); |
|
|
|
if (*last == AV_NOPTS_VALUE || !duration || in_tb.num*(int64_t)out_tb.den <= out_tb.num*(int64_t)in_tb.den) { |
|
simple_round: |
|
*last = av_rescale_q(in_ts, in_tb, fs_tb) + duration; |
|
return av_rescale_q(in_ts, in_tb, out_tb); |
|
} |
|
|
|
a = av_rescale_q_rnd(2*in_ts-1, in_tb, fs_tb, AV_ROUND_DOWN) >>1; |
|
b = (av_rescale_q_rnd(2*in_ts+1, in_tb, fs_tb, AV_ROUND_UP )+1)>>1; |
|
if (*last < 2*a - b || *last > 2*b - a) |
|
goto simple_round; |
|
|
|
this = av_clip64(*last, a, b); |
|
*last = this + duration; |
|
|
|
return av_rescale_q(this, fs_tb, out_tb); |
|
} |
|
|
|
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc) |
|
{ |
|
int64_t m, d; |
|
|
|
if (inc != 1) |
|
inc_tb = av_mul_q(inc_tb, (AVRational) {inc, 1}); |
|
|
|
m = inc_tb.num * (int64_t)ts_tb.den; |
|
d = inc_tb.den * (int64_t)ts_tb.num; |
|
|
|
if (m % d == 0) |
|
return ts + m / d; |
|
if (m < d) |
|
return ts; |
|
|
|
{ |
|
int64_t old = av_rescale_q(ts, ts_tb, inc_tb); |
|
int64_t old_ts = av_rescale_q(old, inc_tb, ts_tb); |
|
return av_rescale_q(old + 1, inc_tb, ts_tb) + (ts - old_ts); |
|
} |
|
}
|
|
|