mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1266 lines
38 KiB
1266 lines
38 KiB
/** |
|
* FLAC audio encoder |
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/crc.h" |
|
#include "libavutil/md5.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
#include "golomb.h" |
|
#include "lpc.h" |
|
#include "flac.h" |
|
#include "flacdata.h" |
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0 |
|
#define FLAC_SUBFRAME_VERBATIM 1 |
|
#define FLAC_SUBFRAME_FIXED 8 |
|
#define FLAC_SUBFRAME_LPC 32 |
|
|
|
#define MAX_FIXED_ORDER 4 |
|
#define MAX_PARTITION_ORDER 8 |
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) |
|
#define MAX_LPC_PRECISION 15 |
|
#define MAX_LPC_SHIFT 15 |
|
#define MAX_RICE_PARAM 14 |
|
|
|
typedef struct CompressionOptions { |
|
int compression_level; |
|
int block_time_ms; |
|
int use_lpc; |
|
int lpc_coeff_precision; |
|
int min_prediction_order; |
|
int max_prediction_order; |
|
int prediction_order_method; |
|
int min_partition_order; |
|
int max_partition_order; |
|
} CompressionOptions; |
|
|
|
typedef struct RiceContext { |
|
int porder; |
|
int params[MAX_PARTITIONS]; |
|
} RiceContext; |
|
|
|
typedef struct FlacSubframe { |
|
int type; |
|
int type_code; |
|
int obits; |
|
int order; |
|
int32_t coefs[MAX_LPC_ORDER]; |
|
int shift; |
|
RiceContext rc; |
|
int32_t samples[FLAC_MAX_BLOCKSIZE]; |
|
int32_t residual[FLAC_MAX_BLOCKSIZE+1]; |
|
} FlacSubframe; |
|
|
|
typedef struct FlacFrame { |
|
FlacSubframe subframes[FLAC_MAX_CHANNELS]; |
|
int blocksize; |
|
int bs_code[2]; |
|
uint8_t crc8; |
|
int ch_mode; |
|
} FlacFrame; |
|
|
|
typedef struct FlacEncodeContext { |
|
PutBitContext pb; |
|
int channels; |
|
int samplerate; |
|
int sr_code[2]; |
|
int max_blocksize; |
|
int min_framesize; |
|
int max_framesize; |
|
int max_encoded_framesize; |
|
uint32_t frame_count; |
|
uint64_t sample_count; |
|
uint8_t md5sum[16]; |
|
FlacFrame frame; |
|
CompressionOptions options; |
|
AVCodecContext *avctx; |
|
DSPContext dsp; |
|
struct AVMD5 *md5ctx; |
|
} FlacEncodeContext; |
|
|
|
/** |
|
* Write streaminfo metadata block to byte array |
|
*/ |
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) |
|
{ |
|
PutBitContext pb; |
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE); |
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); |
|
|
|
/* streaminfo metadata block */ |
|
put_bits(&pb, 16, s->max_blocksize); |
|
put_bits(&pb, 16, s->max_blocksize); |
|
put_bits(&pb, 24, s->min_framesize); |
|
put_bits(&pb, 24, s->max_framesize); |
|
put_bits(&pb, 20, s->samplerate); |
|
put_bits(&pb, 3, s->channels-1); |
|
put_bits(&pb, 5, 15); /* bits per sample - 1 */ |
|
/* write 36-bit sample count in 2 put_bits() calls */ |
|
put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12); |
|
put_bits(&pb, 12, s->sample_count & 0x000000FFFLL); |
|
flush_put_bits(&pb); |
|
memcpy(&header[18], s->md5sum, 16); |
|
} |
|
|
|
/** |
|
* Set blocksize based on samplerate |
|
* Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds |
|
*/ |
|
static int select_blocksize(int samplerate, int block_time_ms) |
|
{ |
|
int i; |
|
int target; |
|
int blocksize; |
|
|
|
assert(samplerate > 0); |
|
blocksize = ff_flac_blocksize_table[1]; |
|
target = (samplerate * block_time_ms) / 1000; |
|
for(i=0; i<16; i++) { |
|
if(target >= ff_flac_blocksize_table[i] && ff_flac_blocksize_table[i] > blocksize) { |
|
blocksize = ff_flac_blocksize_table[i]; |
|
} |
|
} |
|
return blocksize; |
|
} |
|
|
|
static av_cold int flac_encode_init(AVCodecContext *avctx) |
|
{ |
|
int freq = avctx->sample_rate; |
|
int channels = avctx->channels; |
|
FlacEncodeContext *s = avctx->priv_data; |
|
int i, level; |
|
uint8_t *streaminfo; |
|
|
|
s->avctx = avctx; |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
|
|
if(avctx->sample_fmt != SAMPLE_FMT_S16) { |
|
return -1; |
|
} |
|
|
|
if(channels < 1 || channels > FLAC_MAX_CHANNELS) { |
|
return -1; |
|
} |
|
s->channels = channels; |
|
|
|
/* find samplerate in table */ |
|
if(freq < 1) |
|
return -1; |
|
for(i=4; i<12; i++) { |
|
if(freq == ff_flac_sample_rate_table[i]) { |
|
s->samplerate = ff_flac_sample_rate_table[i]; |
|
s->sr_code[0] = i; |
|
s->sr_code[1] = 0; |
|
break; |
|
} |
|
} |
|
/* if not in table, samplerate is non-standard */ |
|
if(i == 12) { |
|
if(freq % 1000 == 0 && freq < 255000) { |
|
s->sr_code[0] = 12; |
|
s->sr_code[1] = freq / 1000; |
|
} else if(freq % 10 == 0 && freq < 655350) { |
|
s->sr_code[0] = 14; |
|
s->sr_code[1] = freq / 10; |
|
} else if(freq < 65535) { |
|
s->sr_code[0] = 13; |
|
s->sr_code[1] = freq; |
|
} else { |
|
return -1; |
|
} |
|
s->samplerate = freq; |
|
} |
|
|
|
/* set compression option defaults based on avctx->compression_level */ |
|
if(avctx->compression_level < 0) { |
|
s->options.compression_level = 5; |
|
} else { |
|
s->options.compression_level = avctx->compression_level; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level); |
|
|
|
level= s->options.compression_level; |
|
if(level > 12) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", |
|
s->options.compression_level); |
|
return -1; |
|
} |
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; |
|
s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
|
s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
|
s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; |
|
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, |
|
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, |
|
ORDER_METHOD_SEARCH})[level]; |
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; |
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; |
|
|
|
/* set compression option overrides from AVCodecContext */ |
|
if(avctx->use_lpc >= 0) { |
|
s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11); |
|
} |
|
if(s->options.use_lpc == 1) |
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n"); |
|
else if(s->options.use_lpc > 1) |
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n"); |
|
|
|
if(avctx->min_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->min_prediction_order < MIN_LPC_ORDER || |
|
avctx->min_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->min_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.min_prediction_order = avctx->min_prediction_order; |
|
} |
|
if(avctx->max_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->max_prediction_order < MIN_LPC_ORDER || |
|
avctx->max_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->max_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.max_prediction_order = avctx->max_prediction_order; |
|
} |
|
if(s->options.max_prediction_order < s->options.min_prediction_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
|
|
if(avctx->prediction_order_method >= 0) { |
|
if(avctx->prediction_order_method > ORDER_METHOD_LOG) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n", |
|
avctx->prediction_order_method); |
|
return -1; |
|
} |
|
s->options.prediction_order_method = avctx->prediction_order_method; |
|
} |
|
switch(s->options.prediction_order_method) { |
|
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"estimate"); break; |
|
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"2-level"); break; |
|
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"4-level"); break; |
|
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"8-level"); break; |
|
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"full search"); break; |
|
case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"log search"); break; |
|
} |
|
|
|
if(avctx->min_partition_order >= 0) { |
|
if(avctx->min_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n", |
|
avctx->min_partition_order); |
|
return -1; |
|
} |
|
s->options.min_partition_order = avctx->min_partition_order; |
|
} |
|
if(avctx->max_partition_order >= 0) { |
|
if(avctx->max_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n", |
|
avctx->max_partition_order); |
|
return -1; |
|
} |
|
s->options.max_partition_order = avctx->max_partition_order; |
|
} |
|
if(s->options.max_partition_order < s->options.min_partition_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
|
|
if(avctx->frame_size > 0) { |
|
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE || |
|
avctx->frame_size > FLAC_MAX_BLOCKSIZE) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", |
|
avctx->frame_size); |
|
return -1; |
|
} |
|
} else { |
|
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); |
|
} |
|
s->max_blocksize = s->avctx->frame_size; |
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size); |
|
|
|
/* set LPC precision */ |
|
if(avctx->lpc_coeff_precision > 0) { |
|
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n", |
|
avctx->lpc_coeff_precision); |
|
return -1; |
|
} |
|
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision; |
|
} else { |
|
/* default LPC precision */ |
|
s->options.lpc_coeff_precision = 15; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", |
|
s->options.lpc_coeff_precision); |
|
|
|
/* set maximum encoded frame size in verbatim mode */ |
|
s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size, |
|
s->channels, 16); |
|
|
|
/* initialize MD5 context */ |
|
s->md5ctx = av_malloc(av_md5_size); |
|
if(!s->md5ctx) |
|
return AVERROR(ENOMEM); |
|
av_md5_init(s->md5ctx); |
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); |
|
write_streaminfo(s, streaminfo); |
|
avctx->extradata = streaminfo; |
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE; |
|
|
|
s->frame_count = 0; |
|
s->min_framesize = s->max_framesize; |
|
|
|
avctx->coded_frame = avcodec_alloc_frame(); |
|
avctx->coded_frame->key_frame = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static void init_frame(FlacEncodeContext *s) |
|
{ |
|
int i, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
|
|
for(i=0; i<16; i++) { |
|
if(s->avctx->frame_size == ff_flac_blocksize_table[i]) { |
|
frame->blocksize = ff_flac_blocksize_table[i]; |
|
frame->bs_code[0] = i; |
|
frame->bs_code[1] = 0; |
|
break; |
|
} |
|
} |
|
if(i == 16) { |
|
frame->blocksize = s->avctx->frame_size; |
|
if(frame->blocksize <= 256) { |
|
frame->bs_code[0] = 6; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} else { |
|
frame->bs_code[0] = 7; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} |
|
} |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
frame->subframes[ch].obits = 16; |
|
} |
|
} |
|
|
|
/** |
|
* Copy channel-interleaved input samples into separate subframes |
|
*/ |
|
static void copy_samples(FlacEncodeContext *s, int16_t *samples) |
|
{ |
|
int i, j, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
for(i=0,j=0; i<frame->blocksize; i++) { |
|
for(ch=0; ch<s->channels; ch++,j++) { |
|
frame->subframes[ch].samples[i] = samples[j]; |
|
} |
|
} |
|
} |
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) |
|
|
|
/** |
|
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0 |
|
*/ |
|
static int find_optimal_param(uint32_t sum, int n) |
|
{ |
|
int k; |
|
uint32_t sum2; |
|
|
|
if(sum <= n>>1) |
|
return 0; |
|
sum2 = sum-(n>>1); |
|
k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n); |
|
return FFMIN(k, MAX_RICE_PARAM); |
|
} |
|
|
|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, |
|
uint32_t *sums, int n, int pred_order) |
|
{ |
|
int i; |
|
int k, cnt, part; |
|
uint32_t all_bits; |
|
|
|
part = (1 << porder); |
|
all_bits = 4 * part; |
|
|
|
cnt = (n >> porder) - pred_order; |
|
for(i=0; i<part; i++) { |
|
k = find_optimal_param(sums[i], cnt); |
|
rc->params[i] = k; |
|
all_bits += rice_encode_count(sums[i], cnt, k); |
|
cnt = n >> porder; |
|
} |
|
|
|
rc->porder = porder; |
|
|
|
return all_bits; |
|
} |
|
|
|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order, |
|
uint32_t sums[][MAX_PARTITIONS]) |
|
{ |
|
int i, j; |
|
int parts; |
|
uint32_t *res, *res_end; |
|
|
|
/* sums for highest level */ |
|
parts = (1 << pmax); |
|
res = &data[pred_order]; |
|
res_end = &data[n >> pmax]; |
|
for(i=0; i<parts; i++) { |
|
uint32_t sum = 0; |
|
while(res < res_end){ |
|
sum += *(res++); |
|
} |
|
sums[pmax][i] = sum; |
|
res_end+= n >> pmax; |
|
} |
|
/* sums for lower levels */ |
|
for(i=pmax-1; i>=pmin; i--) { |
|
parts = (1 << i); |
|
for(j=0; j<parts; j++) { |
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1]; |
|
} |
|
} |
|
} |
|
|
|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order) |
|
{ |
|
int i; |
|
uint32_t bits[MAX_PARTITION_ORDER+1]; |
|
int opt_porder; |
|
RiceContext tmp_rc; |
|
uint32_t *udata; |
|
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS]; |
|
|
|
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); |
|
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); |
|
assert(pmin <= pmax); |
|
|
|
udata = av_malloc(n * sizeof(uint32_t)); |
|
for(i=0; i<n; i++) { |
|
udata[i] = (2*data[i]) ^ (data[i]>>31); |
|
} |
|
|
|
calc_sums(pmin, pmax, udata, n, pred_order, sums); |
|
|
|
opt_porder = pmin; |
|
bits[pmin] = UINT32_MAX; |
|
for(i=pmin; i<=pmax; i++) { |
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); |
|
if(bits[i] <= bits[opt_porder]) { |
|
opt_porder = i; |
|
*rc= tmp_rc; |
|
} |
|
} |
|
|
|
av_freep(&udata); |
|
return bits[opt_porder]; |
|
} |
|
|
|
static int get_max_p_order(int max_porder, int n, int order) |
|
{ |
|
int porder = FFMIN(max_porder, av_log2(n^(n-1))); |
|
if(order > 0) |
|
porder = FFMIN(porder, av_log2(n/order)); |
|
return porder; |
|
} |
|
|
|
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps) |
|
{ |
|
uint32_t bits; |
|
pmin = get_max_p_order(pmin, n, pred_order); |
|
pmax = get_max_p_order(pmax, n, pred_order); |
|
bits = pred_order*bps + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps, int precision) |
|
{ |
|
uint32_t bits; |
|
pmin = get_max_p_order(pmin, n, pred_order); |
|
pmax = get_max_p_order(pmax, n, pred_order); |
|
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n) |
|
{ |
|
assert(n > 0); |
|
memcpy(res, smp, n * sizeof(int32_t)); |
|
} |
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, |
|
int order) |
|
{ |
|
int i; |
|
|
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
|
|
if(order==0){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i]; |
|
}else if(order==1){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - smp[i-1]; |
|
}else if(order==2){ |
|
int a = smp[order-1] - smp[order-2]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
res[i]= b - a; |
|
a = smp[i+1] - smp[i]; |
|
res[i+1]= a - b; |
|
} |
|
}else if(order==3){ |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
int d = b - a; |
|
res[i]= d - c; |
|
a = smp[i+1] - smp[i]; |
|
c = a - b; |
|
res[i+1]= c - d; |
|
} |
|
}else{ |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
int d = b - a; |
|
int f = d - c; |
|
res[i]= f - e; |
|
a = smp[i+1] - smp[i]; |
|
c = a - b; |
|
e = c - d; |
|
res[i+1]= e - f; |
|
} |
|
} |
|
} |
|
|
|
#define LPC1(x) {\ |
|
int c = coefs[(x)-1];\ |
|
p0 += c*s;\ |
|
s = smp[i-(x)+1];\ |
|
p1 += c*s;\ |
|
} |
|
|
|
static av_always_inline void encode_residual_lpc_unrolled( |
|
int32_t *res, const int32_t *smp, int n, |
|
int order, const int32_t *coefs, int shift, int big) |
|
{ |
|
int i; |
|
for(i=order; i<n; i+=2) { |
|
int s = smp[i-order]; |
|
int p0 = 0, p1 = 0; |
|
if(big) { |
|
switch(order) { |
|
case 32: LPC1(32) |
|
case 31: LPC1(31) |
|
case 30: LPC1(30) |
|
case 29: LPC1(29) |
|
case 28: LPC1(28) |
|
case 27: LPC1(27) |
|
case 26: LPC1(26) |
|
case 25: LPC1(25) |
|
case 24: LPC1(24) |
|
case 23: LPC1(23) |
|
case 22: LPC1(22) |
|
case 21: LPC1(21) |
|
case 20: LPC1(20) |
|
case 19: LPC1(19) |
|
case 18: LPC1(18) |
|
case 17: LPC1(17) |
|
case 16: LPC1(16) |
|
case 15: LPC1(15) |
|
case 14: LPC1(14) |
|
case 13: LPC1(13) |
|
case 12: LPC1(12) |
|
case 11: LPC1(11) |
|
case 10: LPC1(10) |
|
case 9: LPC1( 9) |
|
LPC1( 8) |
|
LPC1( 7) |
|
LPC1( 6) |
|
LPC1( 5) |
|
LPC1( 4) |
|
LPC1( 3) |
|
LPC1( 2) |
|
LPC1( 1) |
|
} |
|
} else { |
|
switch(order) { |
|
case 8: LPC1( 8) |
|
case 7: LPC1( 7) |
|
case 6: LPC1( 6) |
|
case 5: LPC1( 5) |
|
case 4: LPC1( 4) |
|
case 3: LPC1( 3) |
|
case 2: LPC1( 2) |
|
case 1: LPC1( 1) |
|
} |
|
} |
|
res[i ] = smp[i ] - (p0 >> shift); |
|
res[i+1] = smp[i+1] - (p1 >> shift); |
|
} |
|
} |
|
|
|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n, |
|
int order, const int32_t *coefs, int shift) |
|
{ |
|
int i; |
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
#if CONFIG_SMALL |
|
for(i=order; i<n; i+=2) { |
|
int j; |
|
int s = smp[i]; |
|
int p0 = 0, p1 = 0; |
|
for(j=0; j<order; j++) { |
|
int c = coefs[j]; |
|
p1 += c*s; |
|
s = smp[i-j-1]; |
|
p0 += c*s; |
|
} |
|
res[i ] = smp[i ] - (p0 >> shift); |
|
res[i+1] = smp[i+1] - (p1 >> shift); |
|
} |
|
#else |
|
switch(order) { |
|
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break; |
|
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break; |
|
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break; |
|
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break; |
|
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break; |
|
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break; |
|
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break; |
|
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break; |
|
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break; |
|
} |
|
#endif |
|
} |
|
|
|
static int encode_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
int min_order, max_order, opt_order, precision, omethod; |
|
int min_porder, max_porder; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int shift[MAX_LPC_ORDER]; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
if(n < 5) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
min_order = ctx->options.min_prediction_order; |
|
max_order = ctx->options.max_prediction_order; |
|
min_porder = ctx->options.min_partition_order; |
|
max_porder = ctx->options.max_partition_order; |
|
precision = ctx->options.lpc_coeff_precision; |
|
omethod = ctx->options.prediction_order_method; |
|
|
|
/* FIXED */ |
|
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) { |
|
uint32_t bits[MAX_FIXED_ORDER+1]; |
|
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for(i=min_order; i<=max_order; i++) { |
|
encode_residual_fixed(res, smp, n, i); |
|
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, |
|
n, i, sub->obits); |
|
if(bits[i] < bits[opt_order]) { |
|
opt_order = i; |
|
} |
|
} |
|
sub->order = opt_order; |
|
sub->type = FLAC_SUBFRAME_FIXED; |
|
sub->type_code = sub->type | sub->order; |
|
if(sub->order != max_order) { |
|
encode_residual_fixed(res, smp, n, sub->order); |
|
return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n, |
|
sub->order, sub->obits); |
|
} |
|
return bits[sub->order]; |
|
} |
|
|
|
/* LPC */ |
|
opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order, |
|
precision, coefs, shift, ctx->options.use_lpc, |
|
omethod, MAX_LPC_SHIFT, 0); |
|
|
|
if(omethod == ORDER_METHOD_2LEVEL || |
|
omethod == ORDER_METHOD_4LEVEL || |
|
omethod == ORDER_METHOD_8LEVEL) { |
|
int levels = 1 << omethod; |
|
uint32_t bits[1 << ORDER_METHOD_8LEVEL]; |
|
int order; |
|
int opt_index = levels-1; |
|
opt_order = max_order-1; |
|
bits[opt_index] = UINT32_MAX; |
|
for(i=levels-1; i>=0; i--) { |
|
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; |
|
if(order < 0) order = 0; |
|
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, order+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_index]) { |
|
opt_index = i; |
|
opt_order = order; |
|
} |
|
} |
|
opt_order++; |
|
} else if(omethod == ORDER_METHOD_SEARCH) { |
|
// brute-force optimal order search |
|
uint32_t bits[MAX_LPC_ORDER]; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for(i=min_order-1; i<max_order; i++) { |
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, i+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_order]) { |
|
opt_order = i; |
|
} |
|
} |
|
opt_order++; |
|
} else if(omethod == ORDER_METHOD_LOG) { |
|
uint32_t bits[MAX_LPC_ORDER]; |
|
int step; |
|
|
|
opt_order= min_order - 1 + (max_order-min_order)/3; |
|
memset(bits, -1, sizeof(bits)); |
|
|
|
for(step=16 ;step; step>>=1){ |
|
int last= opt_order; |
|
for(i=last-step; i<=last+step; i+= step){ |
|
if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX) |
|
continue; |
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, i+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_order]) |
|
opt_order= i; |
|
} |
|
} |
|
opt_order++; |
|
} |
|
|
|
sub->order = opt_order; |
|
sub->type = FLAC_SUBFRAME_LPC; |
|
sub->type_code = sub->type | (sub->order-1); |
|
sub->shift = shift[sub->order-1]; |
|
for(i=0; i<sub->order; i++) { |
|
sub->coefs[i] = coefs[sub->order-1][i]; |
|
} |
|
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); |
|
return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order, |
|
sub->obits, precision); |
|
} |
|
|
|
static int encode_residual_v(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) |
|
{ |
|
int i, best; |
|
int32_t lt, rt; |
|
uint64_t sum[4]; |
|
uint64_t score[4]; |
|
int k; |
|
|
|
/* calculate sum of 2nd order residual for each channel */ |
|
sum[0] = sum[1] = sum[2] = sum[3] = 0; |
|
for(i=2; i<n; i++) { |
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; |
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; |
|
sum[2] += FFABS((lt + rt) >> 1); |
|
sum[3] += FFABS(lt - rt); |
|
sum[0] += FFABS(lt); |
|
sum[1] += FFABS(rt); |
|
} |
|
/* estimate bit counts */ |
|
for(i=0; i<4; i++) { |
|
k = find_optimal_param(2*sum[i], n); |
|
sum[i] = rice_encode_count(2*sum[i], n, k); |
|
} |
|
|
|
/* calculate score for each mode */ |
|
score[0] = sum[0] + sum[1]; |
|
score[1] = sum[0] + sum[3]; |
|
score[2] = sum[1] + sum[3]; |
|
score[3] = sum[2] + sum[3]; |
|
|
|
/* return mode with lowest score */ |
|
best = 0; |
|
for(i=1; i<4; i++) { |
|
if(score[i] < score[best]) { |
|
best = i; |
|
} |
|
} |
|
if(best == 0) { |
|
return FLAC_CHMODE_INDEPENDENT; |
|
} else if(best == 1) { |
|
return FLAC_CHMODE_LEFT_SIDE; |
|
} else if(best == 2) { |
|
return FLAC_CHMODE_RIGHT_SIDE; |
|
} else { |
|
return FLAC_CHMODE_MID_SIDE; |
|
} |
|
} |
|
|
|
/** |
|
* Perform stereo channel decorrelation |
|
*/ |
|
static void channel_decorrelation(FlacEncodeContext *ctx) |
|
{ |
|
FlacFrame *frame; |
|
int32_t *left, *right; |
|
int i, n; |
|
|
|
frame = &ctx->frame; |
|
n = frame->blocksize; |
|
left = frame->subframes[0].samples; |
|
right = frame->subframes[1].samples; |
|
|
|
if(ctx->channels != 2) { |
|
frame->ch_mode = FLAC_CHMODE_INDEPENDENT; |
|
return; |
|
} |
|
|
|
frame->ch_mode = estimate_stereo_mode(left, right, n); |
|
|
|
/* perform decorrelation and adjust bits-per-sample */ |
|
if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) { |
|
return; |
|
} |
|
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) { |
|
int32_t tmp; |
|
for(i=0; i<n; i++) { |
|
tmp = left[i]; |
|
left[i] = (tmp + right[i]) >> 1; |
|
right[i] = tmp - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
|
for(i=0; i<n; i++) { |
|
right[i] = left[i] - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else { |
|
for(i=0; i<n; i++) { |
|
left[i] -= right[i]; |
|
} |
|
frame->subframes[0].obits++; |
|
} |
|
} |
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val) |
|
{ |
|
uint8_t tmp; |
|
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);) |
|
} |
|
|
|
static void output_frame_header(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
int crc; |
|
|
|
frame = &s->frame; |
|
|
|
put_bits(&s->pb, 16, 0xFFF8); |
|
put_bits(&s->pb, 4, frame->bs_code[0]); |
|
put_bits(&s->pb, 4, s->sr_code[0]); |
|
if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) { |
|
put_bits(&s->pb, 4, s->channels-1); |
|
} else { |
|
put_bits(&s->pb, 4, frame->ch_mode); |
|
} |
|
put_bits(&s->pb, 3, 4); /* bits-per-sample code */ |
|
put_bits(&s->pb, 1, 0); |
|
write_utf8(&s->pb, s->frame_count); |
|
if(frame->bs_code[0] == 6) { |
|
put_bits(&s->pb, 8, frame->bs_code[1]); |
|
} else if(frame->bs_code[0] == 7) { |
|
put_bits(&s->pb, 16, frame->bs_code[1]); |
|
} |
|
if(s->sr_code[0] == 12) { |
|
put_bits(&s->pb, 8, s->sr_code[1]); |
|
} else if(s->sr_code[0] > 12) { |
|
put_bits(&s->pb, 16, s->sr_code[1]); |
|
} |
|
flush_put_bits(&s->pb); |
|
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, |
|
s->pb.buf, put_bits_count(&s->pb)>>3); |
|
put_bits(&s->pb, 8, crc); |
|
} |
|
|
|
static void output_subframe_constant(FlacEncodeContext *s, int ch) |
|
{ |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
sub = &s->frame.subframes[ch]; |
|
res = sub->residual[0]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
|
|
static void output_subframe_verbatim(FlacEncodeContext *s, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
frame = &s->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
for(i=0; i<frame->blocksize; i++) { |
|
res = sub->residual[i]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
} |
|
|
|
static void output_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, j, p, n, parts; |
|
int k, porder, psize, res_cnt; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
n = frame->blocksize; |
|
|
|
/* rice-encoded block */ |
|
put_bits(&ctx->pb, 2, 0); |
|
|
|
/* partition order */ |
|
porder = sub->rc.porder; |
|
psize = n >> porder; |
|
parts = (1 << porder); |
|
put_bits(&ctx->pb, 4, porder); |
|
res_cnt = psize - sub->order; |
|
|
|
/* residual */ |
|
j = sub->order; |
|
for(p=0; p<parts; p++) { |
|
k = sub->rc.params[p]; |
|
put_bits(&ctx->pb, 4, k); |
|
if(p == 1) res_cnt = psize; |
|
for(i=0; i<res_cnt && j<n; i++, j++) { |
|
set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0); |
|
} |
|
} |
|
} |
|
|
|
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, cbits; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* LPC coefficients */ |
|
cbits = ctx->options.lpc_coeff_precision; |
|
put_bits(&ctx->pb, 4, cbits-1); |
|
put_sbits(&ctx->pb, 5, sub->shift); |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, cbits, sub->coefs[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframes(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int ch; |
|
|
|
frame = &s->frame; |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
sub = &frame->subframes[ch]; |
|
|
|
/* subframe header */ |
|
put_bits(&s->pb, 1, 0); |
|
put_bits(&s->pb, 6, sub->type_code); |
|
put_bits(&s->pb, 1, 0); /* no wasted bits */ |
|
|
|
/* subframe */ |
|
if(sub->type == FLAC_SUBFRAME_CONSTANT) { |
|
output_subframe_constant(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_VERBATIM) { |
|
output_subframe_verbatim(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_FIXED) { |
|
output_subframe_fixed(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_LPC) { |
|
output_subframe_lpc(s, ch); |
|
} |
|
} |
|
} |
|
|
|
static void output_frame_footer(FlacEncodeContext *s) |
|
{ |
|
int crc; |
|
flush_put_bits(&s->pb); |
|
crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, |
|
s->pb.buf, put_bits_count(&s->pb)>>3)); |
|
put_bits(&s->pb, 16, crc); |
|
flush_put_bits(&s->pb); |
|
} |
|
|
|
static void update_md5_sum(FlacEncodeContext *s, int16_t *samples) |
|
{ |
|
#if HAVE_BIGENDIAN |
|
int i; |
|
for(i = 0; i < s->frame.blocksize*s->channels; i++) { |
|
int16_t smp = av_le2ne16(samples[i]); |
|
av_md5_update(s->md5ctx, (uint8_t *)&smp, 2); |
|
} |
|
#else |
|
av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2); |
|
#endif |
|
} |
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
|
int buf_size, void *data) |
|
{ |
|
int ch; |
|
FlacEncodeContext *s; |
|
int16_t *samples = data; |
|
int out_bytes; |
|
int reencoded=0; |
|
|
|
s = avctx->priv_data; |
|
|
|
if(buf_size < s->max_framesize*2) { |
|
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n"); |
|
return 0; |
|
} |
|
|
|
/* when the last block is reached, update the header in extradata */ |
|
if (!data) { |
|
s->max_framesize = s->max_encoded_framesize; |
|
av_md5_final(s->md5ctx, s->md5sum); |
|
write_streaminfo(s, avctx->extradata); |
|
return 0; |
|
} |
|
|
|
init_frame(s); |
|
|
|
copy_samples(s, samples); |
|
|
|
channel_decorrelation(s); |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual(s, ch); |
|
} |
|
|
|
write_frame: |
|
init_put_bits(&s->pb, frame, buf_size); |
|
output_frame_header(s); |
|
output_subframes(s); |
|
output_frame_footer(s); |
|
out_bytes = put_bits_count(&s->pb) >> 3; |
|
|
|
if(out_bytes > s->max_framesize) { |
|
if(reencoded) { |
|
/* still too large. must be an error. */ |
|
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n"); |
|
return -1; |
|
} |
|
|
|
/* frame too large. use verbatim mode */ |
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual_v(s, ch); |
|
} |
|
reencoded = 1; |
|
goto write_frame; |
|
} |
|
|
|
s->frame_count++; |
|
s->sample_count += avctx->frame_size; |
|
update_md5_sum(s, samples); |
|
if (out_bytes > s->max_encoded_framesize) |
|
s->max_encoded_framesize = out_bytes; |
|
if (out_bytes < s->min_framesize) |
|
s->min_framesize = out_bytes; |
|
|
|
return out_bytes; |
|
} |
|
|
|
static av_cold int flac_encode_close(AVCodecContext *avctx) |
|
{ |
|
if (avctx->priv_data) { |
|
FlacEncodeContext *s = avctx->priv_data; |
|
av_freep(&s->md5ctx); |
|
} |
|
av_freep(&avctx->extradata); |
|
avctx->extradata_size = 0; |
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
AVCodec flac_encoder = { |
|
"flac", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_FLAC, |
|
sizeof(FlacEncodeContext), |
|
flac_encode_init, |
|
flac_encode_frame, |
|
flac_encode_close, |
|
NULL, |
|
.capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY, |
|
.sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, |
|
.long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"), |
|
};
|
|
|