You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1798 lines
63 KiB

/*
* VVC motion vector decoder
*
* Copyright (C) 2023 Nuo Mi
* Copyright (C) 2022 Xu Mu
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "vvc_ctu.h"
#include "vvc_data.h"
#include "vvc_refs.h"
#include "vvc_mvs.h"
#define IS_SAME_MV(a, b) (AV_RN64A(a) == AV_RN64A(b))
//check if the two luma locations belong to the same motion estimation region
static av_always_inline int is_same_mer(const VVCFrameContext *fc, const int xN, const int yN, const int xP, const int yP)
{
const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level;
return xN >> plevel == xP >> plevel &&
yN >> plevel == yP >> plevel;
}
//return true if we have same mvs and ref_idxs
static av_always_inline int compare_mv_ref_idx(const MvField *n, const MvField *o)
{
if (!o || n->pred_flag != o->pred_flag)
return 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (n->pred_flag & mask) {
const int same_ref_idx = n->ref_idx[i] == o->ref_idx[i];
const int same_mv = IS_SAME_MV(n->mv + i, o->mv + i);
if (!same_ref_idx || !same_mv)
return 0;
}
}
return 1;
}
// 8.5.2.15 Temporal motion buffer compression process for collocated motion vectors
static av_always_inline void mv_compression(Mv *motion)
{
int mv[2] = {motion->x, motion->y};
for (int i = 0; i < 2; i++) {
const int s = mv[i] >> 17;
const int f = av_log2((mv[i] ^ s) | 31) - 4;
const int mask = (-1 << f) >> 1;
const int round = (1 << f) >> 2;
mv[i] = (mv[i] + round) & mask;
}
motion->x = mv[0];
motion->y = mv[1];
}
void ff_vvc_mv_scale(Mv *dst, const Mv *src, int td, int tb)
{
int tx, scale_factor;
td = av_clip_int8(td);
tb = av_clip_int8(tb);
tx = (0x4000 + (abs(td) >> 1)) / td;
scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12);
dst->x = av_clip_intp2((scale_factor * src->x + 127 +
(scale_factor * src->x < 0)) >> 8, 17);
dst->y = av_clip_intp2((scale_factor * src->y + 127 +
(scale_factor * src->y < 0)) >> 8, 17);
}
//part of 8.5.2.12 Derivation process for collocated motion vectors
static int check_mvset(Mv *mvLXCol, Mv *mvCol,
int colPic, int poc,
const RefPicList *refPicList, int X, int refIdxLx,
const RefPicList *refPicList_col, int listCol, int refidxCol)
{
int cur_lt = refPicList[X].isLongTerm[refIdxLx];
int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
int col_poc_diff, cur_poc_diff;
if (cur_lt != col_lt) {
mvLXCol->x = 0;
mvLXCol->y = 0;
return 0;
}
col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
cur_poc_diff = poc - refPicList[X].list[refIdxLx];
mv_compression(mvCol);
if (cur_lt || col_poc_diff == cur_poc_diff) {
mvLXCol->x = av_clip_intp2(mvCol->x, 17);
mvLXCol->y = av_clip_intp2(mvCol->y, 17);
} else {
ff_vvc_mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
}
return 1;
}
#define CHECK_MVSET(l) \
check_mvset(mvLXCol, temp_col.mv + l, \
colPic, fc->ps.ph.poc, \
refPicList, X, refIdxLx, \
refPicList_col, L ## l, temp_col.ref_idx[l])
//derive NoBackwardPredFlag
int ff_vvc_no_backward_pred_flag(const VVCLocalContext *lc)
{
int check_diffpicount = 0;
int i, j;
const RefPicList *rpl = lc->sc->rpl;
for (j = 0; j < 2; j++) {
for (i = 0; i < rpl[j].nb_refs; i++) {
if (rpl[j].list[i] > lc->fc->ps.ph.poc) {
check_diffpicount++;
break;
}
}
}
return !check_diffpicount;
}
//8.5.2.12 Derivation process for collocated motion vectors
static int derive_temporal_colocated_mvs(const VVCLocalContext *lc, MvField temp_col,
int refIdxLx, Mv *mvLXCol, int X,
int colPic, const RefPicList *refPicList_col, int sb_flag)
{
const VVCFrameContext *fc = lc->fc;
const SliceContext *sc = lc->sc;
RefPicList* refPicList = sc->rpl;
if (temp_col.pred_flag == PF_INTRA)
return 0;
if (sb_flag){
if (X == 0) {
if (temp_col.pred_flag & PF_L0)
return CHECK_MVSET(0);
else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L1))
return CHECK_MVSET(1);
} else {
if (temp_col.pred_flag & PF_L1)
return CHECK_MVSET(1);
else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L0))
return CHECK_MVSET(0);
}
} else {
if (!(temp_col.pred_flag & PF_L0))
return CHECK_MVSET(1);
else if (temp_col.pred_flag == PF_L0)
return CHECK_MVSET(0);
else if (temp_col.pred_flag == PF_BI) {
if (ff_vvc_no_backward_pred_flag(lc)) {
if (X == 0)
return CHECK_MVSET(0);
else
return CHECK_MVSET(1);
} else {
if (!lc->sc->sh.r->sh_collocated_from_l0_flag)
return CHECK_MVSET(0);
else
return CHECK_MVSET(1);
}
}
}
return 0;
}
#define TAB_MVF(x, y) \
tab_mvf[((y) >> MIN_PU_LOG2) * min_pu_width + ((x) >> MIN_PU_LOG2)]
#define TAB_MVF_PU(v) \
TAB_MVF(x ## v, y ## v)
#define TAB_CP_MV(lx, x, y) \
fc->tab.cp_mv[lx][((((y) >> min_cb_log2_size) * min_cb_width + ((x) >> min_cb_log2_size)) ) * MAX_CONTROL_POINTS]
#define DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag) \
derive_temporal_colocated_mvs(lc, temp_col, \
refIdxLx, mvLXCol, X, colPic, \
ff_vvc_get_ref_list(fc, ref, x, y), sb_flag)
//8.5.2.11 Derivation process for temporal luma motion vector prediction
static int temporal_luma_motion_vector(const VVCLocalContext *lc,
const int refIdxLx, Mv *mvLXCol, const int X, int check_center, int sb_flag)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const CodingUnit *cu = lc->cu;
int x, y, colPic, availableFlagLXCol = 0;
int min_pu_width = fc->ps.pps->min_pu_width;
VVCFrame *ref = fc->ref->collocated_ref;
MvField *tab_mvf;
MvField temp_col;
if (!ref) {
memset(mvLXCol, 0, sizeof(*mvLXCol));
return 0;
}
if (!fc->ps.ph.r->ph_temporal_mvp_enabled_flag || (cu->cb_width * cu->cb_height <= 32))
return 0;
tab_mvf = ref->tab_dmvr_mvf;
colPic = ref->poc;
//bottom right collocated motion vector
x = cu->x0 + cu->cb_width;
y = cu->y0 + cu->cb_height;
if (tab_mvf &&
(cu->y0 >> sps->ctb_log2_size_y) == (y >> sps->ctb_log2_size_y) &&
y < fc->ps.sps->height &&
x < fc->ps.sps->width) {
x &= ~7;
y &= ~7;
temp_col = TAB_MVF(x, y);
availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag);
}
if (check_center) {
// derive center collocated motion vector
if (tab_mvf && !availableFlagLXCol) {
x = cu->x0 + (cu->cb_width >> 1);
y = cu->y0 + (cu->cb_height >> 1);
x &= ~7;
y &= ~7;
temp_col = TAB_MVF(x, y);
availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag);
}
}
return availableFlagLXCol;
}
void ff_vvc_set_mvf(const VVCLocalContext *lc, const int x0, const int y0, const int w, const int h, const MvField *mvf)
{
const VVCFrameContext *fc = lc->fc;
MvField *tab_mvf = fc->tab.mvf;
const int min_pu_width = fc->ps.pps->min_pu_width;
const int min_pu_size = 1 << MIN_PU_LOG2;
for (int dy = 0; dy < h; dy += min_pu_size) {
for (int dx = 0; dx < w; dx += min_pu_size) {
const int x = x0 + dx;
const int y = y0 + dy;
TAB_MVF(x, y) = *mvf;
}
}
}
void ff_vvc_set_intra_mvf(const VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
MvField *tab_mvf = fc->tab.mvf;
const int min_pu_width = fc->ps.pps->min_pu_width;
const int min_pu_size = 1 << MIN_PU_LOG2;
for (int dy = 0; dy < cu->cb_height; dy += min_pu_size) {
for (int dx = 0; dx < cu->cb_width; dx += min_pu_size) {
const int x = cu->x0 + dx;
const int y = cu->y0 + dy;
TAB_MVF(x, y).pred_flag = PF_INTRA;
}
}
}
//cbProfFlagLX from 8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors
static int derive_cb_prof_flag_lx(const VVCLocalContext *lc, const PredictionUnit* pu, int lx, int is_fallback)
{
const MotionInfo* mi = &pu->mi;
const Mv* cp_mv = &mi->mv[lx][0];
if (lc->fc->ps.ph.r->ph_prof_disabled_flag || is_fallback)
return 0;
if (mi->motion_model_idc == MOTION_4_PARAMS_AFFINE) {
if (IS_SAME_MV(cp_mv, cp_mv + 1))
return 0;
}
if (mi->motion_model_idc == MOTION_6_PARAMS_AFFINE) {
if (IS_SAME_MV(cp_mv, cp_mv + 1) && IS_SAME_MV(cp_mv, cp_mv + 2))
return 0;
}
//fixme: RprConstraintsActiveFlag
return 1;
}
typedef struct SubblockParams {
int d_hor_x;
int d_ver_x;
int d_hor_y;
int d_ver_y;
int mv_scale_hor;
int mv_scale_ver;
int is_fallback;
int cb_width;
int cb_height;
} SubblockParams;
static int is_fallback_mode(const SubblockParams *sp, const PredFlag pred_flag)
{
const int a = 4 * (2048 + sp->d_hor_x);
const int b = 4 * sp->d_hor_y;
const int c = 4 * (2048 + sp->d_ver_y);
const int d = 4 * sp->d_ver_x;
if (pred_flag == PF_BI) {
const int max_w4 = FFMAX(0, FFMAX(a, FFMAX(b, a + b)));
const int min_w4 = FFMIN(0, FFMIN(a, FFMIN(b, a + b)));
const int max_h4 = FFMAX(0, FFMAX(c, FFMAX(d, c + d)));
const int min_h4 = FFMIN(0, FFMIN(c, FFMIN(d, c + d)));
const int bx_wx4 = ((max_w4 - min_w4) >> 11) + 9;
const int bx_hx4 = ((max_h4 - min_h4) >> 11) + 9;
return bx_wx4 * bx_hx4 > 225;
} else {
const int bx_wxh = (FFABS(a) >> 11) + 9;
const int bx_hxh = (FFABS(d) >> 11) + 9;
const int bx_wxv = (FFABS(b) >> 11) + 9;
const int bx_hxv = (FFABS(c) >> 11) + 9;
if (bx_wxh * bx_hxh <= 165 && bx_wxv * bx_hxv <= 165)
return 0;
}
return 1;
}
static void init_subblock_params(SubblockParams *sp, const MotionInfo* mi,
const int cb_width, const int cb_height, const int lx)
{
const int log2_cbw = av_log2(cb_width);
const int log2_cbh = av_log2(cb_height);
const Mv* cp_mv = mi->mv[lx];
const int num_cp_mv = mi->motion_model_idc + 1;
sp->d_hor_x = (cp_mv[1].x - cp_mv[0].x) << (MAX_CU_DEPTH - log2_cbw);
sp->d_ver_x = (cp_mv[1].y - cp_mv[0].y) << (MAX_CU_DEPTH - log2_cbw);
if (num_cp_mv == 3) {
sp->d_hor_y = (cp_mv[2].x - cp_mv[0].x) << (MAX_CU_DEPTH - log2_cbh);
sp->d_ver_y = (cp_mv[2].y - cp_mv[0].y) << (MAX_CU_DEPTH - log2_cbh);
} else {
sp->d_hor_y = -sp->d_ver_x;
sp->d_ver_y = sp->d_hor_x;
}
sp->mv_scale_hor = (cp_mv[0].x) << MAX_CU_DEPTH;
sp->mv_scale_ver = (cp_mv[0].y) << MAX_CU_DEPTH;
sp->cb_width = cb_width;
sp->cb_height = cb_height;
sp->is_fallback = is_fallback_mode(sp, mi->pred_flag);
}
static void derive_subblock_diff_mvs(const VVCLocalContext *lc, PredictionUnit* pu, const SubblockParams* sp, const int lx)
{
pu->cb_prof_flag[lx] = derive_cb_prof_flag_lx(lc, pu, lx, sp->is_fallback);
if (pu->cb_prof_flag[lx]) {
const int dmv_limit = 1 << 5;
const int pos_offset_x = 6 * (sp->d_hor_x + sp->d_hor_y);
const int pos_offset_y = 6 * (sp->d_ver_x + sp->d_ver_y);
for (int x = 0; x < AFFINE_MIN_BLOCK_SIZE; x++) {
for (int y = 0; y < AFFINE_MIN_BLOCK_SIZE; y++) {
Mv diff;
diff.x = x * (sp->d_hor_x << 2) + y * (sp->d_hor_y << 2) - pos_offset_x;
diff.y = x * (sp->d_ver_x << 2) + y * (sp->d_ver_y << 2) - pos_offset_y;
ff_vvc_round_mv(&diff, 0, 8);
pu->diff_mv_x[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff.x, -dmv_limit + 1, dmv_limit - 1);
pu->diff_mv_y[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff.y, -dmv_limit + 1, dmv_limit - 1);
}
}
}
}
static void store_cp_mv(const VVCLocalContext *lc, const MotionInfo *mi, const int lx)
{
VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
const int min_cb_size = fc->ps.sps->min_cb_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int num_cp_mv = mi->motion_model_idc + 1;
for (int dy = 0; dy < cu->cb_height; dy += min_cb_size) {
for (int dx = 0; dx < cu->cb_width; dx += min_cb_size) {
const int x_cb = (cu->x0 + dx) >> log2_min_cb_size;
const int y_cb = (cu->y0 + dy) >> log2_min_cb_size;
const int offset = (y_cb * min_cb_width + x_cb) * MAX_CONTROL_POINTS;
memcpy(&fc->tab.cp_mv[lx][offset], mi->mv[lx], sizeof(Mv) * num_cp_mv);
SAMPLE_CTB(fc->tab.mmi, x_cb, y_cb) = mi->motion_model_idc;
}
}
}
//8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors
void ff_vvc_store_sb_mvs(const VVCLocalContext *lc, PredictionUnit *pu)
{
const CodingUnit *cu = lc->cu;
const MotionInfo *mi = &pu->mi;
const int sbw = cu->cb_width / mi->num_sb_x;
const int sbh = cu->cb_height / mi->num_sb_y;
SubblockParams params[2];
MvField mvf;
mvf.pred_flag = mi->pred_flag;
mvf.bcw_idx = mi->bcw_idx;
mvf.hpel_if_idx = mi->hpel_if_idx;
mvf.ciip_flag = 0;
for (int i = 0; i < 2; i++) {
const PredFlag mask = i + 1;
if (mi->pred_flag & mask) {
store_cp_mv(lc, mi, i);
init_subblock_params(params + i, mi, cu->cb_width, cu->cb_height, i);
derive_subblock_diff_mvs(lc, pu, params + i, i);
mvf.ref_idx[i] = mi->ref_idx[i];
}
}
for (int sby = 0; sby < mi->num_sb_y; sby++) {
for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
const int x0 = cu->x0 + sbx * sbw;
const int y0 = cu->y0 + sby * sbh;
for (int i = 0; i < 2; i++) {
const PredFlag mask = i + 1;
if (mi->pred_flag & mask) {
const SubblockParams* sp = params + i;
const int x_pos_cb = sp->is_fallback ? (cu->cb_width >> 1) : (2 + (sbx << MIN_CU_LOG2));
const int y_pos_cb = sp->is_fallback ? (cu->cb_height >> 1) : (2 + (sby << MIN_CU_LOG2));
Mv *mv = mvf.mv + i;
mv->x = sp->mv_scale_hor + sp->d_hor_x * x_pos_cb + sp->d_hor_y * y_pos_cb;
mv->y = sp->mv_scale_ver + sp->d_ver_x * x_pos_cb + sp->d_ver_y * y_pos_cb;
ff_vvc_round_mv(mv, 0, MAX_CU_DEPTH);
ff_vvc_clip_mv(mv);
}
}
ff_vvc_set_mvf(lc, x0, y0, sbw, sbh, &mvf);
}
}
}
void ff_vvc_store_gpm_mvf(const VVCLocalContext *lc, const PredictionUnit *pu)
{
const CodingUnit *cu = lc->cu;
const int angle_idx = ff_vvc_gpm_angle_idx[pu->gpm_partition_idx];
const int distance_idx = ff_vvc_gpm_distance_idx[pu->gpm_partition_idx];
const int displacement_x = ff_vvc_gpm_distance_lut[angle_idx];
const int displacement_y = ff_vvc_gpm_distance_lut[(angle_idx + 8) % 32];
const int is_flip = angle_idx >= 13 &&angle_idx <= 27;
const int shift_hor = (angle_idx % 16 == 8 || (angle_idx % 16 && cu->cb_height >= cu->cb_width)) ? 0 : 1;
const int sign = angle_idx < 16 ? 1 : -1;
const int block_size = 4;
int offset_x = (-cu->cb_width) >> 1;
int offset_y = (-cu->cb_height) >> 1;
if (!shift_hor)
offset_y += sign * ((distance_idx * cu->cb_height) >> 3);
else
offset_x += sign * ((distance_idx * cu->cb_width) >> 3);
for (int y = 0; y < cu->cb_height; y += block_size) {
for (int x = 0; x < cu->cb_width; x += block_size) {
const int motion_idx = (((x + offset_x) << 1) + 5) * displacement_x +
(((y + offset_y) << 1) + 5) * displacement_y;
const int s_type = FFABS(motion_idx) < 32 ? 2 : (motion_idx <= 0 ? (1 - is_flip) : is_flip);
const int pred_flag = pu->gpm_mv[0].pred_flag | pu->gpm_mv[1].pred_flag;
const int x0 = cu->x0 + x;
const int y0 = cu->y0 + y;
if (!s_type)
ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 0);
else if (s_type == 1 || (s_type == 2 && pred_flag != PF_BI))
ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 1);
else {
MvField mvf = pu->gpm_mv[0];
const MvField *mv1 = &pu->gpm_mv[1];
const int lx = mv1->pred_flag - PF_L0;
mvf.pred_flag = PF_BI;
mvf.ref_idx[lx] = mv1->ref_idx[lx];
mvf.mv[lx] = mv1->mv[lx];
ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, &mvf);
}
}
}
}
void ff_vvc_store_mvf(const VVCLocalContext *lc, const MvField *mvf)
{
const CodingUnit *cu = lc->cu;
ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, mvf);
}
void ff_vvc_store_mv(const VVCLocalContext *lc, const MotionInfo *mi)
{
const CodingUnit *cu = lc->cu;
MvField mvf;
mvf.hpel_if_idx = mi->hpel_if_idx;
mvf.bcw_idx = mi->bcw_idx;
mvf.pred_flag = mi->pred_flag;
mvf.ciip_flag = 0;
for (int i = 0; i < 2; i++) {
const PredFlag mask = i + 1;
if (mvf.pred_flag & mask) {
mvf.mv[i] = mi->mv[i][0];
mvf.ref_idx[i] = mi->ref_idx[i];
}
}
ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, &mvf);
}
typedef enum NeighbourIdx {
A0,
A1,
A2,
B0,
B1,
B2,
B3,
NUM_NBS,
NB_IDX_NONE = NUM_NBS,
} NeighbourIdx;
typedef struct Neighbour {
int x;
int y;
int checked;
int available;
} Neighbour;
typedef struct NeighbourContext {
Neighbour neighbours[NUM_NBS];
const VVCLocalContext *lc;
} NeighbourContext;
static int is_a0_available(const VVCLocalContext *lc, const CodingUnit *cu)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int x0b = av_mod_uintp2(cu->x0, sps->ctb_log2_size_y);
int cand_bottom_left;
if (!x0b && !lc->ctb_left_flag) {
cand_bottom_left = 0;
} else {
const int log2_min_cb_size = sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int x = (cu->x0 - 1) >> log2_min_cb_size;
const int y = (cu->y0 + cu->cb_height) >> log2_min_cb_size;
const int max_y = FFMIN(fc->ps.pps->height, ((cu->y0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y);
if (cu->y0 + cu->cb_height >= max_y)
cand_bottom_left = 0;
else
cand_bottom_left = SAMPLE_CTB(fc->tab.cb_width[0], x, y) != 0;
}
return cand_bottom_left;
}
static void init_neighbour_context(NeighbourContext *ctx, const VVCLocalContext *lc)
{
const CodingUnit *cu = lc->cu;
const NeighbourAvailable *na = &lc->na;
const int x0 = cu->x0;
const int y0 = cu->y0;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
const int a0_available = is_a0_available(lc, cu);
Neighbour neighbours[NUM_NBS] = {
{ x0 - 1, y0 + cb_height, !a0_available }, //A0
{ x0 - 1, y0 + cb_height - 1, !na->cand_left }, //A1
{ x0 - 1, y0, !na->cand_left }, //A2
{ x0 + cb_width, y0 - 1, !na->cand_up_right }, //B0
{ x0 + cb_width - 1, y0 - 1, !na->cand_up }, //B1
{ x0 - 1, y0 - 1, !na->cand_up_left }, //B2
{ x0, y0 - 1, !na->cand_up }, //B3
};
memcpy(ctx->neighbours, neighbours, sizeof(neighbours));
ctx->lc = lc;
}
static int check_available(Neighbour *n, const VVCLocalContext *lc, const int is_mvp)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const CodingUnit *cu = lc->cu;
const MvField *tab_mvf = fc->tab.mvf;
const int min_pu_width = fc->ps.pps->min_pu_width;
if (!n->checked) {
n->checked = 1;
n->available = !sps->r->sps_entropy_coding_sync_enabled_flag || ((n->x >> sps->ctb_log2_size_y) <= (cu->x0 >> sps->ctb_log2_size_y));
n->available &= TAB_MVF(n->x, n->y).pred_flag != PF_INTRA;
if (!is_mvp)
n->available &= !is_same_mer(fc, n->x, n->y, cu->x0, cu->y0);
}
return n->available;
}
static const MvField *mv_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand)
{
const VVCFrameContext *fc = lc->fc;
const int min_pu_width = fc->ps.pps->min_pu_width;
const MvField* tab_mvf = fc->tab.mvf;
const MvField *mvf = &TAB_MVF(x_cand, y_cand);
return mvf;
}
static const MvField* mv_merge_from_nb(NeighbourContext *ctx, const NeighbourIdx nb)
{
const VVCLocalContext *lc = ctx->lc;
const int is_mvp = 0;
Neighbour *n = &ctx->neighbours[nb];
if (check_available(n, lc, is_mvp))
return mv_merge_candidate(lc, n->x, n->y);
return 0;
}
#define MV_MERGE_FROM_NB(nb) mv_merge_from_nb(&nctx, nb)
//8.5.2.3 Derivation process for spatial merging candidates
static int mv_merge_spatial_candidates(const VVCLocalContext *lc, const int merge_idx,
const MvField **nb_list, MvField *cand_list, int *nb_merge_cand)
{
const MvField *cand;
int num_cands = 0;
NeighbourContext nctx;
static NeighbourIdx nbs[][2] = {
{B1, NB_IDX_NONE },
{A1, B1 },
{B0, B1 },
{A0, A1 },
};
init_neighbour_context(&nctx, lc);
for (int i = 0; i < FF_ARRAY_ELEMS(nbs); i++) {
NeighbourIdx nb = nbs[i][0];
NeighbourIdx old = nbs[i][1];
cand = nb_list[nb] = MV_MERGE_FROM_NB(nb);
if (cand && !compare_mv_ref_idx(cand, nb_list[old])) {
cand_list[num_cands] = *cand;
if (merge_idx == num_cands)
return 1;
num_cands++;
}
}
if (num_cands != 4) {
cand = MV_MERGE_FROM_NB(B2);
if (cand && !compare_mv_ref_idx(cand, nb_list[A1])
&& !compare_mv_ref_idx(cand, nb_list[B1])) {
cand_list[num_cands] = *cand;
if (merge_idx == num_cands)
return 1;
num_cands++;
}
}
*nb_merge_cand = num_cands;
return 0;
}
static int mv_merge_temporal_candidate(const VVCLocalContext *lc, MvField *cand)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
memset(cand, 0, sizeof(*cand));
if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag && (cu->cb_width * cu->cb_height > 32)) {
int available_l0 = temporal_luma_motion_vector(lc, 0, cand->mv + 0, 0, 1, 0);
int available_l1 = IS_B(lc->sc->sh.r) ?
temporal_luma_motion_vector(lc, 0, cand->mv + 1, 1, 1, 0) : 0;
cand->pred_flag = available_l0 + (available_l1 << 1);
}
return cand->pred_flag;
}
//8.5.2.6 Derivation process for history-based merging candidates
static int mv_merge_history_candidates(const VVCLocalContext *lc, const int merge_idx,
const MvField **nb_list, MvField *cand_list, int *num_cands)
{
const VVCSPS *sps = lc->fc->ps.sps;
const EntryPoint* ep = lc->ep;
for (int i = 1; i <= ep->num_hmvp && (*num_cands < sps->max_num_merge_cand - 1); i++) {
const MvField *h = &ep->hmvp[ep->num_hmvp - i];
const int same_motion = i <= 2 && (compare_mv_ref_idx(h, nb_list[A1]) || compare_mv_ref_idx(h, nb_list[B1]));
if (!same_motion) {
cand_list[*num_cands] = *h;
if (merge_idx == *num_cands)
return 1;
(*num_cands)++;
}
}
return 0;
}
//8.5.2.4 Derivation process for pairwise average merging candidate
static int mv_merge_pairwise_candidate(MvField *cand_list, const int num_cands, const int is_b)
{
if (num_cands > 1) {
const int num_ref_rists = is_b ? 2 : 1;
const MvField* p0 = cand_list + 0;
const MvField* p1 = cand_list + 1;
MvField* cand = cand_list + num_cands;
cand->pred_flag = 0;
for (int i = 0; i < num_ref_rists; i++) {
PredFlag mask = i + 1;
if (p0->pred_flag & mask) {
cand->pred_flag |= mask;
cand->ref_idx[i] = p0->ref_idx[i];
if (p1->pred_flag & mask) {
Mv *mv = cand->mv + i;
mv->x = p0->mv[i].x + p1->mv[i].x;
mv->y = p0->mv[i].y + p1->mv[i].y;
ff_vvc_round_mv(mv, 0, 1);
} else {
cand->mv[i] = p0->mv[i];
}
} else if (p1->pred_flag & mask) {
cand->pred_flag |= mask;
cand->mv[i] = p1->mv[i];
cand->ref_idx[i] = p1->ref_idx[i];
}
}
if (cand->pred_flag) {
cand->hpel_if_idx = p0->hpel_if_idx == p1->hpel_if_idx ? p0->hpel_if_idx : 0;
cand->bcw_idx = 0;
cand->ciip_flag = 0;
return 1;
}
}
return 0;
}
//8.5.2.5 Derivation process for zero motion vector merging candidates
static void mv_merge_zero_motion_candidate(const VVCLocalContext *lc, const int merge_idx,
MvField *cand_list, int num_cands)
{
const VVCSPS *sps = lc->fc->ps.sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const int num_ref_idx = IS_P(rsh) ?
rsh->num_ref_idx_active[L0] : FFMIN(rsh->num_ref_idx_active[L0], rsh->num_ref_idx_active[L1]);
int zero_idx = 0;
while (num_cands < sps->max_num_merge_cand) {
MvField *cand = cand_list + num_cands;
cand->pred_flag = PF_L0 + (IS_B(rsh) << 1);
AV_ZERO64(cand->mv + 0);
AV_ZERO64(cand->mv + 1);
cand->ref_idx[0] = zero_idx < num_ref_idx ? zero_idx : 0;
cand->ref_idx[1] = zero_idx < num_ref_idx ? zero_idx : 0;
cand->bcw_idx = 0;
cand->hpel_if_idx = 0;
if (merge_idx == num_cands)
return;
num_cands++;
zero_idx++;
}
}
static void mv_merge_mode(const VVCLocalContext *lc, const int merge_idx, MvField *cand_list)
{
int num_cands = 0;
const MvField *nb_list[NUM_NBS + 1] = { NULL };
if (mv_merge_spatial_candidates(lc, merge_idx, nb_list, cand_list, &num_cands))
return;
if (mv_merge_temporal_candidate(lc, &cand_list[num_cands])) {
if (merge_idx == num_cands)
return;
num_cands++;
}
if (mv_merge_history_candidates(lc, merge_idx, nb_list, cand_list, &num_cands))
return;
if (mv_merge_pairwise_candidate(cand_list, num_cands, IS_B(lc->sc->sh.r))) {
if (merge_idx == num_cands)
return;
num_cands++;
}
mv_merge_zero_motion_candidate(lc, merge_idx, cand_list, num_cands);
}
//8.5.2.2 Derivation process for luma motion vectors for merge mode
void ff_vvc_luma_mv_merge_mode(VVCLocalContext *lc, const int merge_idx, const int ciip_flag, MvField *mv)
{
const CodingUnit *cu = lc->cu;
MvField cand_list[MRG_MAX_NUM_CANDS];
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
mv_merge_mode(lc, merge_idx, cand_list);
*mv = cand_list[merge_idx];
//ciip flag in not inhritable
mv->ciip_flag = ciip_flag;
}
//8.5.4.2 Derivation process for luma motion vectors for geometric partitioning merge mode
void ff_vvc_luma_mv_merge_gpm(VVCLocalContext *lc, const int merge_gpm_idx[2], MvField *mv)
{
const CodingUnit *cu = lc->cu;
MvField cand_list[MRG_MAX_NUM_CANDS];
const int idx[] = { merge_gpm_idx[0], merge_gpm_idx[1] + (merge_gpm_idx[1] >= merge_gpm_idx[0]) };
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
mv_merge_mode(lc, FFMAX(idx[0], idx[1]), cand_list);
memset(mv, 0, 2 * sizeof(*mv));
for (int i = 0; i < 2; i++) {
int lx = idx[i] & 1;
int mask = lx + PF_L0;
MvField *cand = cand_list + idx[i];
if (!(cand->pred_flag & mask)) {
lx = !lx;
mask = lx + PF_L0;
}
mv[i].pred_flag = mask;
mv[i].ref_idx[lx] = cand->ref_idx[lx];
mv[i].mv[lx] = cand->mv[lx];
}
}
//8.5.5.5 Derivation process for luma affine control point motion vectors from a neighbouring block
static void affine_cps_from_nb(const VVCLocalContext *lc,
const int x_nb, int y_nb, const int nbw, const int nbh, const int lx,
Mv *cps, int num_cps)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const int x0 = cu->x0;
const int y0 = cu->y0;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
const MvField* tab_mvf = fc->tab.mvf;
const int min_cb_log2_size = fc->ps.sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int log2_nbw = ff_log2(nbw);
const int log2_nbh = ff_log2(nbh);
const int is_ctb_boundary = !((y_nb + nbh) % fc->ps.sps->ctb_size_y) && (y_nb + nbh == y0);
const Mv *l, *r;
int mv_scale_hor, mv_scale_ver, d_hor_x, d_ver_x, d_hor_y, d_ver_y, motion_model_idc_nb;
if (is_ctb_boundary) {
const int min_pu_width = fc->ps.pps->min_pu_width;
l = &TAB_MVF(x_nb, y_nb + nbh - 1).mv[lx];
r = &TAB_MVF(x_nb + nbw - 1, y_nb + nbh - 1).mv[lx];
} else {
const int x = x_nb >> min_cb_log2_size;
const int y = y_nb >> min_cb_log2_size;
motion_model_idc_nb = SAMPLE_CTB(fc->tab.mmi, x, y);
l = &TAB_CP_MV(lx, x_nb, y_nb);
r = &TAB_CP_MV(lx, x_nb + nbw - 1, y_nb) + 1;
}
mv_scale_hor = l->x << 7;
mv_scale_ver = l->y << 7;
d_hor_x = (r->x - l->x) << (7 - log2_nbw);
d_ver_x = (r->y - l->y) << (7 - log2_nbw);
if (!is_ctb_boundary && motion_model_idc_nb == MOTION_6_PARAMS_AFFINE) {
const Mv* lb = &TAB_CP_MV(lx, x_nb, y_nb + nbh - 1) + 2;
d_hor_y = (lb->x - l->x) << (7 - log2_nbh);
d_ver_y = (lb->y - l->y) << (7 - log2_nbh);
} else {
d_hor_y = -d_ver_x;
d_ver_y = d_hor_x;
}
if (is_ctb_boundary) {
y_nb = y0;
}
cps[0].x = mv_scale_hor + d_hor_x * (x0 - x_nb) + d_hor_y * (y0 - y_nb);
cps[0].y = mv_scale_ver + d_ver_x * (x0 - x_nb) + d_ver_y * (y0 - y_nb);
cps[1].x = mv_scale_hor + d_hor_x * (x0 + cb_width - x_nb) + d_hor_y * (y0 - y_nb);
cps[1].y = mv_scale_ver + d_ver_x * (x0 + cb_width - x_nb) + d_ver_y * (y0 - y_nb);
if (num_cps == 3) {
cps[2].x = mv_scale_hor + d_hor_x * (x0 - x_nb) + d_hor_y * (y0 + cb_height - y_nb);
cps[2].y = mv_scale_ver + d_ver_x * (x0 - x_nb) + d_ver_y * (y0 + cb_height - y_nb);
}
for (int i = 0; i < num_cps; i++) {
ff_vvc_round_mv(cps + i, 0, 7);
ff_vvc_clip_mv(cps + i);
}
}
//derive affine neighbour's postion, width and height,
static int affine_neighbour_cb(const VVCFrameContext *fc, const int x_nb, const int y_nb, int *x_cb, int *y_cb, int *cbw, int *cbh)
{
const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int x = x_nb >> log2_min_cb_size;
const int y = y_nb >> log2_min_cb_size;
const int motion_model_idc = SAMPLE_CTB(fc->tab.mmi, x, y);
if (motion_model_idc) {
*x_cb = SAMPLE_CTB(fc->tab.cb_pos_x[0], x, y);
*y_cb = SAMPLE_CTB(fc->tab.cb_pos_y[0], x, y);
*cbw = SAMPLE_CTB(fc->tab.cb_width[0], x, y);
*cbh = SAMPLE_CTB(fc->tab.cb_height[0], x, y);
}
return motion_model_idc;
}
//part of 8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode
static int affine_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand, MotionInfo* mi)
{
const VVCFrameContext *fc = lc->fc;
int x, y, w, h, motion_model_idc;
motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x, &y, &w, &h);
if (motion_model_idc) {
const int min_pu_width = fc->ps.pps->min_pu_width;
const MvField* tab_mvf = fc->tab.mvf;
const MvField *mvf = &TAB_MVF(x, y);
mi->bcw_idx = mvf->bcw_idx;
mi->pred_flag = mvf->pred_flag;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (mi->pred_flag & mask) {
affine_cps_from_nb(lc, x, y, w, h, i, &mi->mv[i][0], motion_model_idc + 1);
}
mi->ref_idx[i] = mvf->ref_idx[i];
}
mi->motion_model_idc = motion_model_idc;
}
return motion_model_idc;
}
static int affine_merge_from_nbs(NeighbourContext *ctx, const NeighbourIdx *nbs, const int num_nbs, MotionInfo* cand)
{
const VVCLocalContext *lc = ctx->lc;
const int is_mvp = 0;
for (int i = 0; i < num_nbs; i++) {
Neighbour *n = &ctx->neighbours[nbs[i]];
if (check_available(n, lc, is_mvp) && affine_merge_candidate(lc, n->x, n->y, cand))
return 1;
}
return 0;
}
#define AFFINE_MERGE_FROM_NBS(nbs) affine_merge_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), mi)
static const MvField* derive_corner_mvf(NeighbourContext *ctx, const NeighbourIdx *neighbour, const int num_neighbour)
{
const VVCFrameContext *fc = ctx->lc->fc;
const MvField *tab_mvf = fc->tab.mvf;
const int min_pu_width = fc->ps.pps->min_pu_width;
for (int i = 0; i < num_neighbour; i++) {
Neighbour *n = &ctx->neighbours[neighbour[i]];
if (check_available(n, ctx->lc, 0)) {
return &TAB_MVF(n->x, n->y);
}
}
return NULL;
}
#define DERIVE_CORNER_MV(nbs) derive_corner_mvf(nctx, nbs, FF_ARRAY_ELEMS(nbs))
// check if the mv's and refidx are the same between A and B
static av_always_inline int compare_pf_ref_idx(const MvField *A, const struct MvField *B, const struct MvField *C, const int lx)
{
const PredFlag mask = (lx + 1) & A->pred_flag;
if (!(B->pred_flag & mask))
return 0;
if (A->ref_idx[lx] != B->ref_idx[lx])
return 0;
if (C) {
if (!(C->pred_flag & mask))
return 0;
if (A->ref_idx[lx] != C->ref_idx[lx])
return 0;
}
return 1;
}
static av_always_inline void sb_clip_location(const VVCFrameContext *fc,
const int x_ctb, const int y_ctb, const Mv* temp_mv, int *x, int *y)
{
const VVCPPS *pps = fc->ps.pps;
const int ctb_log2_size = fc->ps.sps->ctb_log2_size_y;
*y = av_clip(*y + temp_mv->y, y_ctb, FFMIN(pps->height - 1, y_ctb + (1 << ctb_log2_size) - 1)) & ~7;
*x = av_clip(*x + temp_mv->x, x_ctb, FFMIN(pps->width - 1, x_ctb + (1 << ctb_log2_size) + 3)) & ~7;
}
static void sb_temproal_luma_motion(const VVCLocalContext *lc,
const int x_ctb, const int y_ctb, const Mv *temp_mv,
int x, int y, uint8_t *pred_flag, Mv *mv)
{
MvField temp_col;
Mv* mvLXCol;
const int refIdxLx = 0;
const VVCFrameContext *fc = lc->fc;
const VVCSH *sh = &lc->sc->sh;
const int min_pu_width = fc->ps.pps->min_pu_width;
VVCFrame *ref = fc->ref->collocated_ref;
MvField *tab_mvf = ref->tab_dmvr_mvf;
int colPic = ref->poc;
int X = 0;
sb_clip_location(fc, x_ctb, y_ctb, temp_mv, &x, &y);
temp_col = TAB_MVF(x, y);
mvLXCol = mv + 0;
*pred_flag = DERIVE_TEMPORAL_COLOCATED_MVS(1);
if (IS_B(sh->r)) {
X = 1;
mvLXCol = mv + 1;
*pred_flag |= (DERIVE_TEMPORAL_COLOCATED_MVS(1)) << 1;
}
}
//8.5.5.4 Derivation process for subblock-based temporal merging base motion data
static int sb_temporal_luma_motion_data(const VVCLocalContext *lc, const MvField *a1,
const int x_ctb, const int y_ctb, MvField *ctr_mvf, Mv *temp_mv)
{
const VVCFrameContext *fc = lc->fc;
const RefPicList *rpl = lc->sc->rpl;
const CodingUnit *cu = lc->cu;
const int x = cu->x0 + cu->cb_width / 2;
const int y = cu->y0 + cu->cb_height / 2;
const VVCFrame *ref = fc->ref->collocated_ref;
int colPic;
memset(temp_mv, 0, sizeof(*temp_mv));
if (!ref) {
memset(ctr_mvf, 0, sizeof(*ctr_mvf));
return 0;
}
colPic = ref->poc;
AV_ZERO64(temp_mv);
if (a1) {
if ((a1->pred_flag & PF_L0) && colPic == rpl[0].list[a1->ref_idx[0]])
*temp_mv = a1->mv[0];
else if ((a1->pred_flag & PF_L1) && colPic == rpl[1].list[a1->ref_idx[1]])
*temp_mv = a1->mv[1];
ff_vvc_round_mv(temp_mv, 0, 4);
}
sb_temproal_luma_motion(lc, x_ctb, y_ctb, temp_mv, x, y, &ctr_mvf->pred_flag , ctr_mvf->mv);
return ctr_mvf->pred_flag;
}
//8.5.5.3 Derivation process for subblock-based temporal merging candidates
static int sb_temporal_merge_candidate(const VVCLocalContext* lc, NeighbourContext *nctx, PredictionUnit *pu)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const VVCSPS *sps = fc->ps.sps;
const VVCPH *ph = &fc->ps.ph;
MotionInfo *mi = &pu->mi;
const int ctb_log2_size = sps->ctb_log2_size_y;
const int x0 = cu->x0;
const int y0 = cu->y0;
const NeighbourIdx n = A1;
const MvField *a1;
MvField ctr_mvf;
Mv temp_mv;
const int x_ctb = (x0 >> ctb_log2_size) << ctb_log2_size;
const int y_ctb = (y0 >> ctb_log2_size) << ctb_log2_size;
if (!ph->r->ph_temporal_mvp_enabled_flag ||
!sps->r->sps_sbtmvp_enabled_flag ||
(cu->cb_width < 8 && cu->cb_height < 8))
return 0;
mi->num_sb_x = cu->cb_width >> 3;
mi->num_sb_y = cu->cb_height >> 3;
a1 = derive_corner_mvf(nctx, &n, 1);
if (sb_temporal_luma_motion_data(lc, a1, x_ctb, y_ctb, &ctr_mvf, &temp_mv)) {
const int sbw = cu->cb_width / mi->num_sb_x;
const int sbh = cu->cb_height / mi->num_sb_y;
MvField mvf = {0};
for (int sby = 0; sby < mi->num_sb_y; sby++) {
for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
int x = x0 + sbx * sbw;
int y = y0 + sby * sbh;
sb_temproal_luma_motion(lc, x_ctb, y_ctb, &temp_mv, x + sbw / 2, y + sbh / 2, &mvf.pred_flag, mvf.mv);
if (!mvf.pred_flag) {
mvf.pred_flag = ctr_mvf.pred_flag;
memcpy(mvf.mv, ctr_mvf.mv, sizeof(mvf.mv));
}
ff_vvc_set_mvf(lc, x, y, sbw, sbh, &mvf);
}
}
return 1;
}
return 0;
}
static int affine_merge_const1(const MvField *c0, const MvField *c1, const MvField *c2, MotionInfo *mi)
{
if (c0 && c1 && c2) {
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c0, c1, c2, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c0->ref_idx[i];
mi->mv[i][0] = c0->mv[i];
mi->mv[i][1] = c1->mv[i];
mi->mv[i][2] = c2->mv[i];
}
}
if (mi->pred_flag) {
if (mi->pred_flag == PF_BI)
mi->bcw_idx = c0->bcw_idx;
mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static int affine_merge_const2(const MvField *c0, const MvField *c1, const MvField *c3, MotionInfo *mi)
{
if (c0 && c1 && c3) {
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c0, c1, c3, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c0->ref_idx[i];
mi->mv[i][0] = c0->mv[i];
mi->mv[i][1] = c1->mv[i];
mi->mv[i][2].x = c3->mv[i].x + c0->mv[i].x - c1->mv[i].x;
mi->mv[i][2].y = c3->mv[i].y + c0->mv[i].y - c1->mv[i].y;
ff_vvc_clip_mv(&mi->mv[i][2]);
}
}
if (mi->pred_flag) {
mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0;
mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static int affine_merge_const3(const MvField *c0, const MvField *c2, const MvField *c3, MotionInfo *mi)
{
if (c0 && c2 && c3) {
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c0, c2, c3, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c0->ref_idx[i];
mi->mv[i][0] = c0->mv[i];
mi->mv[i][1].x = c3->mv[i].x + c0->mv[i].x - c2->mv[i].x;
mi->mv[i][1].y = c3->mv[i].y + c0->mv[i].y - c2->mv[i].y;
ff_vvc_clip_mv(&mi->mv[i][1]);
mi->mv[i][2] = c2->mv[i];
}
}
if (mi->pred_flag) {
mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0;
mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static int affine_merge_const4(const MvField *c1, const MvField *c2, const MvField *c3, MotionInfo *mi)
{
if (c1 && c2 && c3) {
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c1, c2, c3, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c1->ref_idx[i];
mi->mv[i][0].x = c1->mv[i].x + c2->mv[i].x - c3->mv[i].x;
mi->mv[i][0].y = c1->mv[i].y + c2->mv[i].y - c3->mv[i].y;
ff_vvc_clip_mv(&mi->mv[i][0]);
mi->mv[i][1] = c1->mv[i];
mi->mv[i][2] = c2->mv[i];
}
}
if (mi->pred_flag) {
mi->bcw_idx = mi->pred_flag == PF_BI ? c1->bcw_idx : 0;
mi->motion_model_idc = MOTION_6_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static int affine_merge_const5(const MvField *c0, const MvField *c1, MotionInfo *mi)
{
if (c0 && c1) {
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c0, c1, NULL, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c0->ref_idx[i];
mi->mv[i][0] = c0->mv[i];
mi->mv[i][1] = c1->mv[i];
}
}
if (mi->pred_flag) {
if (mi->pred_flag == PF_BI)
mi->bcw_idx = c0->bcw_idx;
mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static int affine_merge_const6(const MvField* c0, const MvField* c2, const int cb_width, const int cb_height, MotionInfo *mi)
{
if (c0 && c2) {
const int shift = 7 + av_log2(cb_width) - av_log2(cb_height);
mi->pred_flag = 0;
for (int i = 0; i < 2; i++) {
PredFlag mask = i + 1;
if (compare_pf_ref_idx(c0, c2, NULL, i)) {
mi->pred_flag |= mask;
mi->ref_idx[i] = c0->ref_idx[i];
mi->mv[i][0] = c0->mv[i];
mi->mv[i][1].x = (c0->mv[i].x << 7) + ((c2->mv[i].y - c0->mv[i].y) << shift);
mi->mv[i][1].y = (c0->mv[i].y << 7) - ((c2->mv[i].x - c0->mv[i].x) << shift);
ff_vvc_round_mv(&mi->mv[i][1], 0, 7);
ff_vvc_clip_mv(&mi->mv[i][1]);
}
}
if (mi->pred_flag) {
if (mi->pred_flag == PF_BI)
mi->bcw_idx = c0->bcw_idx;
mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
return 1;
}
}
return 0;
}
static void affine_merge_zero_motion(const VVCLocalContext *lc, MotionInfo *mi)
{
const CodingUnit *cu = lc->cu;
memset(mi, 0, sizeof(*mi));
mi->pred_flag = PF_L0 + (IS_B(lc->sc->sh.r) << 1);
mi->motion_model_idc = MOTION_4_PARAMS_AFFINE;
mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2;
mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2;
}
//8.5.5.6 Derivation process for constructed affine control point motion vector merging candidates
static int affine_merge_const_candidates(const VVCLocalContext *lc, MotionInfo *mi,
NeighbourContext *nctx, const int merge_subblock_idx, int num_cands)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const NeighbourIdx tl[] = { B2, B3, A2 };
const NeighbourIdx tr[] = { B1, B0};
const NeighbourIdx bl[] = { A1, A0};
const MvField *c0, *c1, *c2;
c0 = DERIVE_CORNER_MV(tl);
c1 = DERIVE_CORNER_MV(tr);
c2 = DERIVE_CORNER_MV(bl);
if (fc->ps.sps->r->sps_6param_affine_enabled_flag) {
MvField corner3, *c3 = NULL;
//Const1
if (affine_merge_const1(c0, c1, c2, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
memset(&corner3, 0, sizeof(corner3));
if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag){
const int available_l0 = temporal_luma_motion_vector(lc, 0, corner3.mv + 0, 0, 0, 0);
const int available_l1 = (lc->sc->sh.r->sh_slice_type == VVC_SLICE_TYPE_B) ?
temporal_luma_motion_vector(lc, 0, corner3.mv + 1, 1, 0, 0) : 0;
corner3.pred_flag = available_l0 + (available_l1 << 1);
if (corner3.pred_flag)
c3 = &corner3;
}
//Const2
if (affine_merge_const2(c0, c1, c3, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
//Const3
if (affine_merge_const3(c0, c2, c3, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
//Const4
if (affine_merge_const4(c1, c2, c3, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
}
//Const5
if (affine_merge_const5(c0, c1, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
if (affine_merge_const6(c0, c2, cu->cb_width, cu->cb_height, mi)) {
if (merge_subblock_idx == num_cands)
return 1;
}
return 0;
}
//8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode
//return 1 if candidate is SbCol
static int sb_mv_merge_mode(const VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu)
{
const VVCSPS *sps = lc->fc->ps.sps;
const CodingUnit *cu = lc->cu;
MotionInfo *mi = &pu->mi;
int num_cands = 0;
NeighbourContext nctx;
init_neighbour_context(&nctx, lc);
//SbCol
if (sb_temporal_merge_candidate(lc, &nctx, pu)) {
if (merge_subblock_idx == num_cands)
return 1;
num_cands++;
}
pu->inter_affine_flag = 1;
mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2;
mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2;
if (sps->r->sps_affine_enabled_flag) {
const NeighbourIdx ak[] = { A0, A1 };
const NeighbourIdx bk[] = { B0, B1, B2 };
//A
if (AFFINE_MERGE_FROM_NBS(ak)) {
if (merge_subblock_idx == num_cands)
return 0;
num_cands++;
}
//B
if (AFFINE_MERGE_FROM_NBS(bk)) {
if (merge_subblock_idx == num_cands)
return 0;
num_cands++;
}
//Const1 to Const6
if (affine_merge_const_candidates(lc, mi, &nctx, merge_subblock_idx, num_cands))
return 0;
}
//Zero
affine_merge_zero_motion(lc, mi);
return 0;
}
void ff_vvc_sb_mv_merge_mode(VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu)
{
const CodingUnit *cu = lc->cu;
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (!sb_mv_merge_mode(lc, merge_subblock_idx, pu)) {
ff_vvc_store_sb_mvs(lc, pu);
}
}
static int mvp_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand,
const int lx, const int8_t *ref_idx, Mv *mv)
{
const VVCFrameContext *fc = lc->fc;
const RefPicList *rpl = lc->sc->rpl;
const int min_pu_width = fc->ps.pps->min_pu_width;
const MvField* tab_mvf = fc->tab.mvf;
const MvField *mvf = &TAB_MVF(x_cand, y_cand);
const PredFlag maskx = lx + 1;
const int poc = rpl[lx].list[ref_idx[lx]];
int available = 0;
if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) {
available = 1;
*mv = mvf->mv[lx];
} else {
const int ly = !lx;
const PredFlag masky = ly + 1;
if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) {
available = 1;
*mv = mvf->mv[ly];
}
}
return available;
}
static int affine_mvp_candidate(const VVCLocalContext *lc,
const int x_cand, const int y_cand, const int lx, const int8_t *ref_idx,
Mv *cps, const int num_cp)
{
const VVCFrameContext *fc = lc->fc;
int x_nb, y_nb, nbw, nbh, motion_model_idc, available = 0;
motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x_nb, &y_nb, &nbw, &nbh);
if (motion_model_idc) {
const int min_pu_width = fc->ps.pps->min_pu_width;
const MvField* tab_mvf = fc->tab.mvf;
const MvField *mvf = &TAB_MVF(x_nb, y_nb);
RefPicList* rpl = lc->sc->rpl;
const PredFlag maskx = lx + 1;
const int poc = rpl[lx].list[ref_idx[lx]];
if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) {
available = 1;
affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, lx, cps, num_cp);
} else {
const int ly = !lx;
const PredFlag masky = ly + 1;
if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) {
available = 1;
affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, ly, cps, num_cp);
}
}
}
return available;
}
static int mvp_from_nbs(NeighbourContext *ctx,
const NeighbourIdx *nbs, const int num_nbs, const int lx, const int8_t *ref_idx, const int amvr_shift,
Mv *cps, const int num_cps)
{
const VVCLocalContext *lc = ctx->lc;
const int is_mvp = 1;
int available = 0;
for (int i = 0; i < num_nbs; i++) {
Neighbour *n = &ctx->neighbours[nbs[i]];
if (check_available(n, lc, is_mvp)) {
if (num_cps > 1)
available = affine_mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps, num_cps);
else
available = mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps);
if (available) {
for (int c = 0; c < num_cps; c++)
ff_vvc_round_mv(cps + c, amvr_shift, amvr_shift);
return 1;
}
}
}
return 0;
}
//get mvp from neighbours
#define AFFINE_MVP_FROM_NBS(nbs) \
mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, cps, num_cp) \
#define MVP_FROM_NBS(nbs) \
mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, mv, 1) \
static int mvp_spatial_candidates(const VVCLocalContext *lc,
const int mvp_lx_flag, const int lx, const int8_t* ref_idx, const int amvr_shift,
Mv* mv, int *nb_merge_cand)
{
const NeighbourIdx ak[] = { A0, A1 };
const NeighbourIdx bk[] = { B0, B1, B2 };
NeighbourContext nctx;
int available_a, num_cands = 0;
Mv mv_a;
init_neighbour_context(&nctx, lc);
available_a = MVP_FROM_NBS(ak);
if (available_a) {
if (mvp_lx_flag == num_cands)
return 1;
num_cands++;
mv_a = *mv;
}
if (MVP_FROM_NBS(bk)) {
if (!available_a || !IS_SAME_MV(&mv_a, mv)) {
if (mvp_lx_flag == num_cands)
return 1;
num_cands++;
}
}
*nb_merge_cand = num_cands;
return 0;
}
static int mvp_temporal_candidates(const VVCLocalContext* lc,
const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift,
Mv* mv, int *num_cands)
{
if (temporal_luma_motion_vector(lc, ref_idx[lx], mv, lx, 1, 0)) {
if (mvp_lx_flag == *num_cands) {
ff_vvc_round_mv(mv, amvr_shift, amvr_shift);
return 1;
}
(*num_cands)++;
}
return 0;
}
static int mvp_history_candidates(const VVCLocalContext *lc,
const int mvp_lx_flag, const int lx, const int8_t ref_idx, const int amvr_shift,
Mv *mv, int num_cands)
{
const EntryPoint* ep = lc->ep;
const RefPicList* rpl = lc->sc->rpl;
const int poc = rpl[lx].list[ref_idx];
if (ep->num_hmvp == 0)
return 0;
for (int i = 1; i <= FFMIN(4, ep->num_hmvp); i++) {
const MvField* h = &ep->hmvp[i - 1];
for (int j = 0; j < 2; j++) {
const int ly = (j ? !lx : lx);
PredFlag mask = PF_L0 + ly;
if ((h->pred_flag & mask) && poc == rpl[ly].list[h->ref_idx[ly]]) {
if (mvp_lx_flag == num_cands) {
*mv = h->mv[ly];
ff_vvc_round_mv(mv, amvr_shift, amvr_shift);
return 1;
}
num_cands++;
}
}
}
return 0;
}
//8.5.2.8 Derivation process for luma motion vector prediction
static void mvp(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx,
const int8_t *ref_idx, const int amvr_shift, Mv *mv)
{
int num_cands;
if (mvp_spatial_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands))
return;
if (mvp_temporal_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands))
return;
if (mvp_history_candidates(lc, mvp_lx_flag, lx, ref_idx[lx], amvr_shift, mv, num_cands))
return;
memset(mv, 0, sizeof(*mv));
}
void ff_vvc_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift, MotionInfo *mi)
{
const CodingUnit *cu = lc->cu;
mi->num_sb_x = 1;
mi->num_sb_y = 1;
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (mi->pred_flag != PF_L1)
mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, &mi->mv[L0][0]);
if (mi->pred_flag != PF_L0)
mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, &mi->mv[L1][0]);
}
static int affine_mvp_constructed_cp(NeighbourContext *ctx,
const NeighbourIdx *neighbour, const int num_neighbour,
const int lx, const int8_t ref_idx, const int amvr_shift, Mv *cp)
{
const VVCLocalContext *lc = ctx->lc;
const VVCFrameContext *fc = lc->fc;
const MvField *tab_mvf = fc->tab.mvf;
const int min_pu_width = fc->ps.pps->min_pu_width;
const RefPicList* rpl = lc->sc->rpl;
const int is_mvp = 1;
int available = 0;
for (int i = 0; i < num_neighbour; i++) {
Neighbour *n = &ctx->neighbours[neighbour[i]];
if (check_available(n, ctx->lc, is_mvp)) {
const PredFlag maskx = lx + 1;
const MvField* mvf = &TAB_MVF(n->x, n->y);
const int poc = rpl[lx].list[ref_idx];
if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) {
available = 1;
*cp = mvf->mv[lx];
} else {
const int ly = !lx;
const PredFlag masky = ly + 1;
if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) {
available = 1;
*cp = mvf->mv[ly];
}
}
if (available) {
ff_vvc_round_mv(cp, amvr_shift, amvr_shift);
return 1;
}
}
}
return 0;
}
#define AFFINE_MVP_CONSTRUCTED_CP(cands, cp) \
affine_mvp_constructed_cp(nctx, cands, FF_ARRAY_ELEMS(cands), lx, ref_idx, \
amvr_shift, cp)
//8.5.5.8 Derivation process for constructed affine control point motion vector prediction candidates
static int affine_mvp_const1(NeighbourContext* nctx,
const int lx, const int8_t ref_idx, const int amvr_shift,
Mv *cps, int *available)
{
const NeighbourIdx tl[] = { B2, B3, A2 };
const NeighbourIdx tr[] = { B1, B0 };
const NeighbourIdx bl[] = { A1, A0 };
available[0] = AFFINE_MVP_CONSTRUCTED_CP(tl, cps + 0);
available[1] = AFFINE_MVP_CONSTRUCTED_CP(tr, cps + 1);
available[2] = AFFINE_MVP_CONSTRUCTED_CP(bl, cps + 2);
return available[0] && available[1];
}
//8.5.5.7 item 7
static void affine_mvp_const2(const int idx, Mv *cps, const int num_cp)
{
const Mv mv = cps[idx];
for (int j = 0; j < num_cp; j++)
cps[j] = mv;
}
//8.5.5.7 Derivation process for luma affine control point motion vector predictors
static void affine_mvp(const VVCLocalContext *lc,
const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift,
MotionModelIdc motion_model_idc, Mv *cps)
{
const NeighbourIdx ak[] = { A0, A1 };
const NeighbourIdx bk[] = { B0, B1, B2 };
const int num_cp = motion_model_idc + 1;
NeighbourContext nctx;
int available[MAX_CONTROL_POINTS];
int num_cands = 0;
init_neighbour_context(&nctx, lc);
//Ak
if (AFFINE_MVP_FROM_NBS(ak)) {
if (mvp_lx_flag == num_cands)
return;
num_cands++;
}
//Bk
if (AFFINE_MVP_FROM_NBS(bk)) {
if (mvp_lx_flag == num_cands)
return;
num_cands++;
}
//Const1
if (affine_mvp_const1(&nctx, lx, ref_idx[lx], amvr_shift, cps, available)) {
if (available[2] || motion_model_idc == MOTION_4_PARAMS_AFFINE) {
if (mvp_lx_flag == num_cands)
return;
num_cands++;
}
}
//Const2
for (int i = 2; i >= 0; i--) {
if (available[i]) {
if (mvp_lx_flag == num_cands) {
affine_mvp_const2(i, cps, num_cp);
return;
}
num_cands++;
}
}
if (temporal_luma_motion_vector(lc, ref_idx[lx], cps, lx, 1, 0)) {
if (mvp_lx_flag == num_cands) {
ff_vvc_round_mv(cps, amvr_shift, amvr_shift);
for (int i = 1; i < num_cp; i++)
cps[i] = cps[0];
return;
}
num_cands++;
}
//Zero Mv
memset(cps, 0, num_cp * sizeof(Mv));
}
void ff_vvc_affine_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift, MotionInfo *mi)
{
const CodingUnit *cu = lc->cu;
mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2;
mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2;
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (mi->pred_flag != PF_L1)
affine_mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L0][0]);
if (mi->pred_flag != PF_L0)
affine_mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L1][0]);
}
//8.5.2.14 Rounding process for motion vectors
void ff_vvc_round_mv(Mv *mv, const int lshift, const int rshift)
{
if (rshift) {
const int offset = 1 << (rshift - 1);
mv->x = ((mv->x + offset - (mv->x >= 0)) >> rshift) << lshift;
mv->y = ((mv->y + offset - (mv->y >= 0)) >> rshift) << lshift;
} else {
mv->x = mv->x << lshift;
mv->y = mv->y << lshift;
}
}
void ff_vvc_clip_mv(Mv *mv)
{
mv->x = av_clip(mv->x, -(1 << 17), (1 << 17) - 1);
mv->y = av_clip(mv->y, -(1 << 17), (1 << 17) - 1);
}
//8.5.2.1 Derivation process for motion vector components and reference indices
static av_always_inline int is_greater_mer(const VVCFrameContext *fc, const int x0, const int y0, const int x0_br, const int y0_br)
{
const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level;
return x0_br >> plevel > x0 >> plevel &&
y0_br >> plevel > y0 >> plevel;
}
//8.5.2.16 Updating process for the history-based motion vector predictor candidate list
void ff_vvc_update_hmvp(VVCLocalContext *lc, const MotionInfo *mi)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const int min_pu_width = fc->ps.pps->min_pu_width;
const MvField* tab_mvf = fc->tab.mvf;
EntryPoint* ep = lc->ep;
const MvField *mvf;
int i;
if (!is_greater_mer(fc, cu->x0, cu->y0, cu->x0 + cu->cb_width, cu->y0 + cu->cb_height))
return;
mvf = &TAB_MVF(cu->x0, cu->y0);
for (i = 0; i < ep->num_hmvp; i++) {
if (compare_mv_ref_idx(mvf, ep->hmvp + i)) {
ep->num_hmvp--;
break;
}
}
if (i == MAX_NUM_HMVP_CANDS) {
ep->num_hmvp--;
i = 0;
}
memmove(ep->hmvp + i, ep->hmvp + i + 1, (ep->num_hmvp - i) * sizeof(MvField));
ep->hmvp[ep->num_hmvp++] = *mvf;
}
MvField* ff_vvc_get_mvf(const VVCFrameContext *fc, const int x0, const int y0)
{
const int min_pu_width = fc->ps.pps->min_pu_width;
MvField* tab_mvf = fc->tab.mvf;
return &TAB_MVF(x0, y0);
}