mirror of https://github.com/FFmpeg/FFmpeg.git
1768 lines
61 KiB
1768 lines
61 KiB
/* |
|
* FLAC audio encoder |
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/crc.h" |
|
#include "libavutil/intmath.h" |
|
#include "libavutil/md5.h" |
|
#include "libavutil/opt.h" |
|
|
|
#include "avcodec.h" |
|
#include "bswapdsp.h" |
|
#include "codec_internal.h" |
|
#include "encode.h" |
|
#include "put_bits.h" |
|
#include "lpc.h" |
|
#include "flac.h" |
|
#include "flacdata.h" |
|
#include "flacencdsp.h" |
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0 |
|
#define FLAC_SUBFRAME_VERBATIM 1 |
|
#define FLAC_SUBFRAME_FIXED 8 |
|
#define FLAC_SUBFRAME_LPC 32 |
|
|
|
#define MAX_FIXED_ORDER 4 |
|
#define MAX_PARTITION_ORDER 8 |
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) |
|
#define MAX_LPC_PRECISION 15 |
|
#define MIN_LPC_SHIFT 0 |
|
#define MAX_LPC_SHIFT 15 |
|
|
|
enum CodingMode { |
|
CODING_MODE_RICE = 4, |
|
CODING_MODE_RICE2 = 5, |
|
}; |
|
|
|
typedef struct CompressionOptions { |
|
int compression_level; |
|
int block_time_ms; |
|
enum FFLPCType lpc_type; |
|
int lpc_passes; |
|
int lpc_coeff_precision; |
|
int min_prediction_order; |
|
int max_prediction_order; |
|
int prediction_order_method; |
|
int min_partition_order; |
|
int max_partition_order; |
|
int ch_mode; |
|
int exact_rice_parameters; |
|
int multi_dim_quant; |
|
} CompressionOptions; |
|
|
|
typedef struct RiceContext { |
|
enum CodingMode coding_mode; |
|
int porder; |
|
int params[MAX_PARTITIONS]; |
|
} RiceContext; |
|
|
|
typedef struct FlacSubframe { |
|
int type; |
|
int type_code; |
|
int obits; |
|
int wasted; |
|
int order; |
|
int32_t coefs[MAX_LPC_ORDER]; |
|
int shift; |
|
|
|
RiceContext rc; |
|
uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]; |
|
uint64_t rc_sums[32][MAX_PARTITIONS]; |
|
|
|
int32_t samples[FLAC_MAX_BLOCKSIZE]; |
|
int32_t residual[FLAC_MAX_BLOCKSIZE+11]; |
|
} FlacSubframe; |
|
|
|
typedef struct FlacFrame { |
|
FlacSubframe subframes[FLAC_MAX_CHANNELS]; |
|
int64_t samples_33bps[FLAC_MAX_BLOCKSIZE]; |
|
int blocksize; |
|
int bs_code[2]; |
|
uint8_t crc8; |
|
int ch_mode; |
|
int verbatim_only; |
|
} FlacFrame; |
|
|
|
typedef struct FlacEncodeContext { |
|
AVClass *class; |
|
PutBitContext pb; |
|
int channels; |
|
int samplerate; |
|
int sr_code[2]; |
|
int bps_code; |
|
int max_blocksize; |
|
int min_framesize; |
|
int max_framesize; |
|
int max_encoded_framesize; |
|
uint32_t frame_count; |
|
uint64_t sample_count; |
|
uint8_t md5sum[16]; |
|
FlacFrame frame; |
|
CompressionOptions options; |
|
AVCodecContext *avctx; |
|
LPCContext lpc_ctx; |
|
struct AVMD5 *md5ctx; |
|
uint8_t *md5_buffer; |
|
unsigned int md5_buffer_size; |
|
BswapDSPContext bdsp; |
|
FLACEncDSPContext flac_dsp; |
|
|
|
int flushed; |
|
int64_t next_pts; |
|
} FlacEncodeContext; |
|
|
|
|
|
/** |
|
* Write streaminfo metadata block to byte array. |
|
*/ |
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) |
|
{ |
|
PutBitContext pb; |
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE); |
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); |
|
|
|
/* streaminfo metadata block */ |
|
put_bits(&pb, 16, s->max_blocksize); |
|
put_bits(&pb, 16, s->max_blocksize); |
|
put_bits(&pb, 24, s->min_framesize); |
|
put_bits(&pb, 24, s->max_framesize); |
|
put_bits(&pb, 20, s->samplerate); |
|
put_bits(&pb, 3, s->channels-1); |
|
put_bits(&pb, 5, s->avctx->bits_per_raw_sample - 1); |
|
/* write 36-bit sample count in 2 put_bits() calls */ |
|
put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12); |
|
put_bits(&pb, 12, s->sample_count & 0x000000FFFLL); |
|
flush_put_bits(&pb); |
|
memcpy(&header[18], s->md5sum, 16); |
|
} |
|
|
|
|
|
/** |
|
* Calculate an estimate for the maximum frame size based on verbatim mode. |
|
* @param blocksize block size, in samples |
|
* @param ch number of channels |
|
* @param bps bits-per-sample |
|
*/ |
|
static int flac_get_max_frame_size(int blocksize, int ch, int bps) |
|
{ |
|
/* Technically, there is no limit to FLAC frame size, but an encoder |
|
should not write a frame that is larger than if verbatim encoding mode |
|
were to be used. */ |
|
|
|
int count; |
|
|
|
count = 16; /* frame header */ |
|
count += ch * ((7+bps+7)/8); /* subframe headers */ |
|
if (ch == 2) { |
|
/* for stereo, need to account for using decorrelation */ |
|
count += (( 2*bps+1) * blocksize + 7) / 8; |
|
} else { |
|
count += ( ch*bps * blocksize + 7) / 8; |
|
} |
|
count += 2; /* frame footer */ |
|
|
|
return count; |
|
} |
|
|
|
|
|
/** |
|
* Set blocksize based on samplerate. |
|
* Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds. |
|
*/ |
|
static int select_blocksize(int samplerate, int block_time_ms) |
|
{ |
|
int i; |
|
int target; |
|
int blocksize; |
|
|
|
av_assert0(samplerate > 0); |
|
blocksize = ff_flac_blocksize_table[1]; |
|
target = (samplerate * block_time_ms) / 1000; |
|
for (i = 0; i < 16; i++) { |
|
if (target >= ff_flac_blocksize_table[i] && |
|
ff_flac_blocksize_table[i] > blocksize) { |
|
blocksize = ff_flac_blocksize_table[i]; |
|
} |
|
} |
|
return blocksize; |
|
} |
|
|
|
|
|
static av_cold void dprint_compression_options(FlacEncodeContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
CompressionOptions *opt = &s->options; |
|
|
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level); |
|
|
|
switch (opt->lpc_type) { |
|
case FF_LPC_TYPE_NONE: |
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n"); |
|
break; |
|
case FF_LPC_TYPE_FIXED: |
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n"); |
|
break; |
|
case FF_LPC_TYPE_LEVINSON: |
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n"); |
|
break; |
|
case FF_LPC_TYPE_CHOLESKY: |
|
av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n", |
|
opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es"); |
|
break; |
|
} |
|
|
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", |
|
opt->min_prediction_order, opt->max_prediction_order); |
|
|
|
switch (opt->prediction_order_method) { |
|
case ORDER_METHOD_EST: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate"); |
|
break; |
|
case ORDER_METHOD_2LEVEL: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level"); |
|
break; |
|
case ORDER_METHOD_4LEVEL: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level"); |
|
break; |
|
case ORDER_METHOD_8LEVEL: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level"); |
|
break; |
|
case ORDER_METHOD_SEARCH: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search"); |
|
break; |
|
case ORDER_METHOD_LOG: |
|
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search"); |
|
break; |
|
} |
|
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", |
|
opt->min_partition_order, opt->max_partition_order); |
|
|
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size); |
|
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", |
|
opt->lpc_coeff_precision); |
|
} |
|
|
|
|
|
static av_cold int flac_encode_init(AVCodecContext *avctx) |
|
{ |
|
int freq = avctx->sample_rate; |
|
int channels = avctx->ch_layout.nb_channels; |
|
FlacEncodeContext *s = avctx->priv_data; |
|
int i, level, ret; |
|
uint8_t *streaminfo; |
|
|
|
s->avctx = avctx; |
|
|
|
switch (avctx->sample_fmt) { |
|
case AV_SAMPLE_FMT_S16: |
|
avctx->bits_per_raw_sample = 16; |
|
s->bps_code = 4; |
|
break; |
|
case AV_SAMPLE_FMT_S32: |
|
if (avctx->bits_per_raw_sample <= 24) { |
|
if (avctx->bits_per_raw_sample < 24) |
|
av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n"); |
|
avctx->bits_per_raw_sample = 24; |
|
s->bps_code = 6; |
|
} else if (avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) { |
|
av_log(avctx, AV_LOG_WARNING, |
|
"encoding as 24 bits-per-sample, more is considered " |
|
"experimental. Add -strict experimental if you want " |
|
"to encode more than 24 bits-per-sample\n"); |
|
avctx->bits_per_raw_sample = 24; |
|
s->bps_code = 6; |
|
} else { |
|
avctx->bits_per_raw_sample = 32; |
|
s->bps_code = 7; |
|
} |
|
break; |
|
} |
|
|
|
if (channels < 1 || channels > FLAC_MAX_CHANNELS) { |
|
av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n", |
|
channels, FLAC_MAX_CHANNELS); |
|
return AVERROR(EINVAL); |
|
} |
|
s->channels = channels; |
|
|
|
/* find samplerate in table */ |
|
if (freq < 1) |
|
return AVERROR(EINVAL); |
|
for (i = 1; i < 12; i++) { |
|
if (freq == ff_flac_sample_rate_table[i]) { |
|
s->samplerate = ff_flac_sample_rate_table[i]; |
|
s->sr_code[0] = i; |
|
s->sr_code[1] = 0; |
|
break; |
|
} |
|
} |
|
/* if not in table, samplerate is non-standard */ |
|
if (i == 12) { |
|
if (freq % 1000 == 0 && freq < 255000) { |
|
s->sr_code[0] = 12; |
|
s->sr_code[1] = freq / 1000; |
|
} else if (freq % 10 == 0 && freq < 655350) { |
|
s->sr_code[0] = 14; |
|
s->sr_code[1] = freq / 10; |
|
} else if (freq < 65535) { |
|
s->sr_code[0] = 13; |
|
s->sr_code[1] = freq; |
|
} else if (freq < 1048576) { |
|
s->sr_code[0] = 0; |
|
s->sr_code[1] = 0; |
|
} else { |
|
av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq); |
|
return AVERROR(EINVAL); |
|
} |
|
s->samplerate = freq; |
|
} |
|
|
|
/* set compression option defaults based on avctx->compression_level */ |
|
if (avctx->compression_level < 0) |
|
s->options.compression_level = 5; |
|
else |
|
s->options.compression_level = avctx->compression_level; |
|
|
|
level = s->options.compression_level; |
|
if (level > 12) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", |
|
s->options.compression_level); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; |
|
|
|
if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT) |
|
s->options.lpc_type = ((int[]){ FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, |
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, |
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, |
|
FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, |
|
FF_LPC_TYPE_LEVINSON})[level]; |
|
|
|
if (s->options.min_prediction_order < 0) |
|
s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
|
if (s->options.max_prediction_order < 0) |
|
s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; |
|
|
|
if (s->options.prediction_order_method < 0) |
|
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, |
|
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, |
|
ORDER_METHOD_SEARCH})[level]; |
|
|
|
if (s->options.min_partition_order > s->options.max_partition_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
return AVERROR(EINVAL); |
|
} |
|
if (s->options.min_partition_order < 0) |
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; |
|
if (s->options.max_partition_order < 0) |
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; |
|
|
|
if (s->options.lpc_type == FF_LPC_TYPE_NONE) { |
|
s->options.min_prediction_order = 0; |
|
s->options.max_prediction_order = 0; |
|
} else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) { |
|
if (s->options.min_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_WARNING, |
|
"invalid min prediction order %d, clamped to %d\n", |
|
s->options.min_prediction_order, MAX_FIXED_ORDER); |
|
s->options.min_prediction_order = MAX_FIXED_ORDER; |
|
} |
|
if (s->options.max_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_WARNING, |
|
"invalid max prediction order %d, clamped to %d\n", |
|
s->options.max_prediction_order, MAX_FIXED_ORDER); |
|
s->options.max_prediction_order = MAX_FIXED_ORDER; |
|
} |
|
} |
|
|
|
if (s->options.max_prediction_order < s->options.min_prediction_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (avctx->frame_size > 0) { |
|
if (avctx->frame_size < FLAC_MIN_BLOCKSIZE || |
|
avctx->frame_size > FLAC_MAX_BLOCKSIZE) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", |
|
avctx->frame_size); |
|
return AVERROR(EINVAL); |
|
} |
|
} else { |
|
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); |
|
} |
|
s->max_blocksize = s->avctx->frame_size; |
|
|
|
/* set maximum encoded frame size in verbatim mode */ |
|
s->max_framesize = flac_get_max_frame_size(s->avctx->frame_size, |
|
s->channels, |
|
s->avctx->bits_per_raw_sample); |
|
|
|
/* initialize MD5 context */ |
|
s->md5ctx = av_md5_alloc(); |
|
if (!s->md5ctx) |
|
return AVERROR(ENOMEM); |
|
av_md5_init(s->md5ctx); |
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); |
|
if (!streaminfo) |
|
return AVERROR(ENOMEM); |
|
write_streaminfo(s, streaminfo); |
|
avctx->extradata = streaminfo; |
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE; |
|
|
|
s->frame_count = 0; |
|
s->min_framesize = s->max_framesize; |
|
|
|
if ((channels == 3 && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_SURROUND)) || |
|
(channels == 4 && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2) && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_QUAD)) || |
|
(channels == 5 && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0) && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0_BACK)) || |
|
(channels == 6 && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1) && |
|
av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1_BACK))) { |
|
if (avctx->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) { |
|
av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, " |
|
"output stream will have incorrect " |
|
"channel layout.\n"); |
|
} else { |
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder " |
|
"will use Flac channel layout for " |
|
"%d channels.\n", channels); |
|
} |
|
} |
|
|
|
ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, |
|
s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON); |
|
|
|
ff_bswapdsp_init(&s->bdsp); |
|
ff_flacencdsp_init(&s->flac_dsp); |
|
|
|
dprint_compression_options(s); |
|
|
|
return ret; |
|
} |
|
|
|
|
|
static void init_frame(FlacEncodeContext *s, int nb_samples) |
|
{ |
|
int i, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
|
|
for (i = 0; i < 16; i++) { |
|
if (nb_samples == ff_flac_blocksize_table[i]) { |
|
frame->blocksize = ff_flac_blocksize_table[i]; |
|
frame->bs_code[0] = i; |
|
frame->bs_code[1] = 0; |
|
break; |
|
} |
|
} |
|
if (i == 16) { |
|
frame->blocksize = nb_samples; |
|
if (frame->blocksize <= 256) { |
|
frame->bs_code[0] = 6; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} else { |
|
frame->bs_code[0] = 7; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} |
|
} |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
FlacSubframe *sub = &frame->subframes[ch]; |
|
|
|
sub->wasted = 0; |
|
sub->obits = s->avctx->bits_per_raw_sample; |
|
|
|
if (sub->obits > 16) |
|
sub->rc.coding_mode = CODING_MODE_RICE2; |
|
else |
|
sub->rc.coding_mode = CODING_MODE_RICE; |
|
} |
|
|
|
frame->verbatim_only = 0; |
|
} |
|
|
|
|
|
/** |
|
* Copy channel-interleaved input samples into separate subframes. |
|
*/ |
|
static void copy_samples(FlacEncodeContext *s, const void *samples) |
|
{ |
|
int i, j, ch; |
|
FlacFrame *frame; |
|
int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 - |
|
s->avctx->bits_per_raw_sample; |
|
|
|
#define COPY_SAMPLES(bits) do { \ |
|
const int ## bits ## _t *samples0 = samples; \ |
|
frame = &s->frame; \ |
|
for (i = 0, j = 0; i < frame->blocksize; i++) \ |
|
for (ch = 0; ch < s->channels; ch++, j++) \ |
|
frame->subframes[ch].samples[i] = samples0[j] >> shift; \ |
|
} while (0) |
|
|
|
if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16) |
|
COPY_SAMPLES(16); |
|
else |
|
COPY_SAMPLES(32); |
|
} |
|
|
|
|
|
static uint64_t rice_count_exact(const int32_t *res, int n, int k) |
|
{ |
|
int i; |
|
uint64_t count = 0; |
|
|
|
for (i = 0; i < n; i++) { |
|
unsigned v = ((unsigned)(res[i]) << 1) ^ (res[i] >> 31); |
|
count += (v >> k) + 1 + k; |
|
} |
|
return count; |
|
} |
|
|
|
|
|
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, |
|
int pred_order) |
|
{ |
|
int p, porder, psize; |
|
int i, part_end; |
|
uint64_t count = 0; |
|
|
|
/* subframe header */ |
|
count += 8; |
|
|
|
if (sub->wasted) |
|
count += sub->wasted; |
|
|
|
/* subframe */ |
|
if (sub->type == FLAC_SUBFRAME_CONSTANT) { |
|
count += sub->obits; |
|
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) { |
|
count += s->frame.blocksize * sub->obits; |
|
} else { |
|
/* warm-up samples */ |
|
count += pred_order * sub->obits; |
|
|
|
/* LPC coefficients */ |
|
if (sub->type == FLAC_SUBFRAME_LPC) |
|
count += 4 + 5 + pred_order * s->options.lpc_coeff_precision; |
|
|
|
/* rice-encoded block */ |
|
count += 2; |
|
|
|
/* partition order */ |
|
porder = sub->rc.porder; |
|
psize = s->frame.blocksize >> porder; |
|
count += 4; |
|
|
|
/* residual */ |
|
i = pred_order; |
|
part_end = psize; |
|
for (p = 0; p < 1 << porder; p++) { |
|
int k = sub->rc.params[p]; |
|
count += sub->rc.coding_mode; |
|
count += rice_count_exact(&sub->residual[i], part_end - i, k); |
|
i = part_end; |
|
part_end = FFMIN(s->frame.blocksize, part_end + psize); |
|
} |
|
} |
|
|
|
return count; |
|
} |
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) |
|
|
|
/** |
|
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0. |
|
*/ |
|
static int find_optimal_param(uint64_t sum, int n, int max_param) |
|
{ |
|
int k; |
|
uint64_t sum2; |
|
|
|
if (sum <= n >> 1) |
|
return 0; |
|
sum2 = sum - (n >> 1); |
|
k = av_log2(av_clipl_int32(sum2 / n)); |
|
return FFMIN(k, max_param); |
|
} |
|
|
|
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param) |
|
{ |
|
int bestk = 0; |
|
int64_t bestbits = INT64_MAX; |
|
int k; |
|
|
|
for (k = 0; k <= max_param; k++) { |
|
int64_t bits = sums[k][i]; |
|
if (bits < bestbits) { |
|
bestbits = bits; |
|
bestk = k; |
|
} |
|
} |
|
|
|
return bestk; |
|
} |
|
|
|
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, |
|
uint64_t sums[32][MAX_PARTITIONS], |
|
int n, int pred_order, int max_param, int exact) |
|
{ |
|
int i; |
|
int k, cnt, part; |
|
uint64_t all_bits; |
|
|
|
part = (1 << porder); |
|
all_bits = 4 * part; |
|
|
|
cnt = (n >> porder) - pred_order; |
|
for (i = 0; i < part; i++) { |
|
if (exact) { |
|
k = find_optimal_param_exact(sums, i, max_param); |
|
all_bits += sums[k][i]; |
|
} else { |
|
k = find_optimal_param(sums[0][i], cnt, max_param); |
|
all_bits += rice_encode_count(sums[0][i], cnt, k); |
|
} |
|
rc->params[i] = k; |
|
cnt = n >> porder; |
|
} |
|
|
|
rc->porder = porder; |
|
|
|
return all_bits; |
|
} |
|
|
|
|
|
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, |
|
uint64_t sums[32][MAX_PARTITIONS]) |
|
{ |
|
int i, k; |
|
int parts; |
|
const uint32_t *res, *res_end; |
|
|
|
/* sums for highest level */ |
|
parts = (1 << pmax); |
|
|
|
for (k = 0; k <= kmax; k++) { |
|
res = &data[pred_order]; |
|
res_end = &data[n >> pmax]; |
|
for (i = 0; i < parts; i++) { |
|
if (kmax) { |
|
uint64_t sum = (1LL + k) * (res_end - res); |
|
while (res < res_end) |
|
sum += *(res++) >> k; |
|
sums[k][i] = sum; |
|
} else { |
|
uint64_t sum = 0; |
|
while (res < res_end) |
|
sum += *(res++); |
|
sums[k][i] = sum; |
|
} |
|
res_end += n >> pmax; |
|
} |
|
} |
|
} |
|
|
|
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax) |
|
{ |
|
int i, k; |
|
int parts = (1 << level); |
|
for (i = 0; i < parts; i++) { |
|
for (k=0; k<=kmax; k++) |
|
sums[k][i] = sums[k][2*i] + sums[k][2*i+1]; |
|
} |
|
} |
|
|
|
static uint64_t calc_rice_params(RiceContext *rc, |
|
uint32_t udata[FLAC_MAX_BLOCKSIZE], |
|
uint64_t sums[32][MAX_PARTITIONS], |
|
int pmin, int pmax, |
|
const int32_t *data, int n, int pred_order, int exact) |
|
{ |
|
int i; |
|
uint64_t bits[MAX_PARTITION_ORDER+1]; |
|
int opt_porder; |
|
RiceContext tmp_rc; |
|
int kmax = (1 << rc->coding_mode) - 2; |
|
|
|
av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); |
|
av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); |
|
av_assert1(pmin <= pmax); |
|
|
|
tmp_rc.coding_mode = rc->coding_mode; |
|
|
|
for (i = pred_order; i < n; i++) |
|
udata[i] = ((unsigned)(data[i]) << 1) ^ (data[i] >> 31); |
|
|
|
calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums); |
|
|
|
opt_porder = pmin; |
|
bits[pmin] = UINT32_MAX; |
|
for (i = pmax; ; ) { |
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact); |
|
if (bits[i] < bits[opt_porder] || pmax == pmin) { |
|
opt_porder = i; |
|
*rc = tmp_rc; |
|
} |
|
if (i == pmin) |
|
break; |
|
calc_sum_next(--i, sums, exact ? kmax : 0); |
|
} |
|
|
|
return bits[opt_porder]; |
|
} |
|
|
|
|
|
static int get_max_p_order(int max_porder, int n, int order) |
|
{ |
|
int porder = FFMIN(max_porder, av_log2(n^(n-1))); |
|
if (order > 0) |
|
porder = FFMIN(porder, av_log2(n/order)); |
|
return porder; |
|
} |
|
|
|
|
|
static uint64_t find_subframe_rice_params(FlacEncodeContext *s, |
|
FlacSubframe *sub, int pred_order) |
|
{ |
|
int pmin = get_max_p_order(s->options.min_partition_order, |
|
s->frame.blocksize, pred_order); |
|
int pmax = get_max_p_order(s->options.max_partition_order, |
|
s->frame.blocksize, pred_order); |
|
|
|
uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode; |
|
if (sub->type == FLAC_SUBFRAME_LPC) |
|
bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision; |
|
bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual, |
|
s->frame.blocksize, pred_order, s->options.exact_rice_parameters); |
|
return bits; |
|
} |
|
|
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, |
|
int order) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < order; i++) |
|
res[i] = smp[i]; |
|
|
|
if (order == 0) { |
|
for (i = order; i < n; i++) |
|
res[i] = smp[i]; |
|
} else if (order == 1) { |
|
for (i = order; i < n; i++) |
|
res[i] = smp[i] - smp[i-1]; |
|
} else if (order == 2) { |
|
int a = smp[order-1] - smp[order-2]; |
|
for (i = order; i < n; i += 2) { |
|
int b = smp[i ] - smp[i-1]; |
|
res[i] = b - a; |
|
a = smp[i+1] - smp[i ]; |
|
res[i+1] = a - b; |
|
} |
|
} else if (order == 3) { |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
for (i = order; i < n; i += 2) { |
|
int b = smp[i ] - smp[i-1]; |
|
int d = b - a; |
|
res[i] = d - c; |
|
a = smp[i+1] - smp[i ]; |
|
c = a - b; |
|
res[i+1] = c - d; |
|
} |
|
} else { |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4]; |
|
for (i = order; i < n; i += 2) { |
|
int b = smp[i ] - smp[i-1]; |
|
int d = b - a; |
|
int f = d - c; |
|
res[i ] = f - e; |
|
a = smp[i+1] - smp[i ]; |
|
c = a - b; |
|
e = c - d; |
|
res[i+1] = e - f; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* These four functions check for every residual whether it can be |
|
* contained in <INT32_MIN,INT32_MAX]. In case it doesn't, the |
|
* function that called this function has to try something else. |
|
* Each function is duplicated, once for int32_t input, once for |
|
* int64_t input */ |
|
#define ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT() \ |
|
{ \ |
|
for (int i = 0; i < order; i++) \ |
|
res[i] = smp[i]; \ |
|
if (order == 0) { \ |
|
for (int i = order; i < n; i++) { \ |
|
if (smp[i] == INT32_MIN) \ |
|
return 1; \ |
|
res[i] = smp[i]; \ |
|
} \ |
|
} else if (order == 1) { \ |
|
for (int i = order; i < n; i++) { \ |
|
int64_t res64 = (int64_t)smp[i] - smp[i-1]; \ |
|
if (res64 <= INT32_MIN || res64 > INT32_MAX) \ |
|
return 1; \ |
|
res[i] = res64; \ |
|
} \ |
|
} else if (order == 2) { \ |
|
for (int i = order; i < n; i++) { \ |
|
int64_t res64 = (int64_t)smp[i] - 2*(int64_t)smp[i-1] + smp[i-2]; \ |
|
if (res64 <= INT32_MIN || res64 > INT32_MAX) \ |
|
return 1; \ |
|
res[i] = res64; \ |
|
} \ |
|
} else if (order == 3) { \ |
|
for (int i = order; i < n; i++) { \ |
|
int64_t res64 = (int64_t)smp[i] - 3*(int64_t)smp[i-1] + 3*(int64_t)smp[i-2] - smp[i-3]; \ |
|
if (res64 <= INT32_MIN || res64 > INT32_MAX) \ |
|
return 1; \ |
|
res[i] = res64; \ |
|
} \ |
|
} else { \ |
|
for (int i = order; i < n; i++) { \ |
|
int64_t res64 = (int64_t)smp[i] - 4*(int64_t)smp[i-1] + 6*(int64_t)smp[i-2] - 4*(int64_t)smp[i-3] + smp[i-4]; \ |
|
if (res64 <= INT32_MIN || res64 > INT32_MAX) \ |
|
return 1; \ |
|
res[i] = res64; \ |
|
} \ |
|
} \ |
|
return 0; \ |
|
} |
|
|
|
static int encode_residual_fixed_with_residual_limit(int32_t *res, const int32_t *smp, |
|
int n, int order) |
|
{ |
|
ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT(); |
|
} |
|
|
|
|
|
static int encode_residual_fixed_with_residual_limit_33bps(int32_t *res, const int64_t *smp, |
|
int n, int order) |
|
{ |
|
ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT(); |
|
} |
|
|
|
#define LPC_ENCODE_WITH_RESIDUAL_LIMIT() \ |
|
{ \ |
|
for (int i = 0; i < order; i++) \ |
|
res[i] = smp[i]; \ |
|
for (int i = order; i < len; i++) { \ |
|
int64_t p = 0, tmp; \ |
|
for (int j = 0; j < order; j++) \ |
|
p += (int64_t)coefs[j]*smp[(i-1)-j]; \ |
|
p >>= shift; \ |
|
tmp = smp[i] - p; \ |
|
if (tmp <= INT32_MIN || tmp > INT32_MAX) \ |
|
return 1; \ |
|
res[i] = tmp; \ |
|
} \ |
|
return 0; \ |
|
} |
|
|
|
static int lpc_encode_with_residual_limit(int32_t *res, const int32_t *smp, int len, |
|
int order, int32_t *coefs, int shift) |
|
{ |
|
LPC_ENCODE_WITH_RESIDUAL_LIMIT(); |
|
} |
|
|
|
static int lpc_encode_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int len, |
|
int order, int32_t *coefs, int shift) |
|
{ |
|
LPC_ENCODE_WITH_RESIDUAL_LIMIT(); |
|
} |
|
|
|
static int lpc_encode_choose_datapath(FlacEncodeContext *s, int32_t bps, |
|
int32_t *res, const int32_t *smp, |
|
const int64_t *smp_33bps, int len, |
|
int order, int32_t *coefs, int shift) |
|
{ |
|
uint64_t max_residual_value = 0; |
|
int64_t max_sample_value = ((int64_t)(1) << (bps-1)); |
|
/* This calculates the max size of any residual with the current |
|
* predictor, so we know whether we need to check the residual */ |
|
for (int i = 0; i < order; i++) |
|
max_residual_value += FFABS(max_sample_value * coefs[i]); |
|
max_residual_value >>= shift; |
|
max_residual_value += max_sample_value; |
|
if (bps > 32) { |
|
if (lpc_encode_with_residual_limit_33bps(res, smp_33bps, len, order, coefs, shift)) |
|
return 1; |
|
} else if (max_residual_value > INT32_MAX) { |
|
if (lpc_encode_with_residual_limit(res, smp, len, order, coefs, shift)) |
|
return 1; |
|
} else if (bps + s->options.lpc_coeff_precision + av_log2(order) <= 32) { |
|
s->flac_dsp.lpc16_encode(res, smp, len, order, coefs, shift); |
|
} else { |
|
s->flac_dsp.lpc32_encode(res, smp, len, order, coefs, shift); |
|
} |
|
return 0; |
|
} |
|
|
|
#define DEFAULT_TO_VERBATIM() \ |
|
{ \ |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; \ |
|
if (sub->obits <= 32) \ |
|
memcpy(res, smp, n * sizeof(int32_t)); \ |
|
return subframe_count_exact(s, sub, 0); \ |
|
} |
|
|
|
static int encode_residual_ch(FlacEncodeContext *s, int ch) |
|
{ |
|
int i, n; |
|
int min_order, max_order, opt_order, omethod; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int shift[MAX_LPC_ORDER]; |
|
int32_t *res, *smp; |
|
int64_t *smp_33bps; |
|
|
|
frame = &s->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
smp_33bps = frame->samples_33bps; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
if (sub->obits > 32) { |
|
for (i = 1; i < n; i++) |
|
if(smp_33bps[i] != smp_33bps[0]) |
|
break; |
|
if (i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
return subframe_count_exact(s, sub, 0); |
|
} |
|
} else { |
|
for (i = 1; i < n; i++) |
|
if(smp[i] != smp[0]) |
|
break; |
|
if (i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return subframe_count_exact(s, sub, 0); |
|
} |
|
} |
|
|
|
/* VERBATIM */ |
|
if (frame->verbatim_only || n < 5) { |
|
DEFAULT_TO_VERBATIM(); |
|
} |
|
|
|
min_order = s->options.min_prediction_order; |
|
max_order = s->options.max_prediction_order; |
|
omethod = s->options.prediction_order_method; |
|
|
|
/* FIXED */ |
|
sub->type = FLAC_SUBFRAME_FIXED; |
|
if (s->options.lpc_type == FF_LPC_TYPE_NONE || |
|
s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) { |
|
uint64_t bits[MAX_FIXED_ORDER+1]; |
|
if (max_order > MAX_FIXED_ORDER) |
|
max_order = MAX_FIXED_ORDER; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for (i = min_order; i <= max_order; i++) { |
|
if (sub->obits == 33) { |
|
if (encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, i)) |
|
continue; |
|
} else if (sub->obits + i >= 32) { |
|
if (encode_residual_fixed_with_residual_limit(res, smp, n, i)) |
|
continue; |
|
} else |
|
encode_residual_fixed(res, smp, n, i); |
|
bits[i] = find_subframe_rice_params(s, sub, i); |
|
if (bits[i] < bits[opt_order]) |
|
opt_order = i; |
|
} |
|
if (opt_order == 0 && bits[0] == UINT32_MAX) { |
|
/* No predictor found with residuals within <INT32_MIN,INT32_MAX], |
|
* so encode a verbatim subframe instead */ |
|
DEFAULT_TO_VERBATIM(); |
|
} |
|
sub->order = opt_order; |
|
sub->type_code = sub->type | sub->order; |
|
if (sub->order != max_order) { |
|
if (sub->obits == 33) |
|
encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, sub->order); |
|
else if (sub->obits + i >= 32) |
|
encode_residual_fixed_with_residual_limit(res, smp, n, sub->order); |
|
else |
|
encode_residual_fixed(res, smp, n, sub->order); |
|
find_subframe_rice_params(s, sub, sub->order); |
|
} |
|
return subframe_count_exact(s, sub, sub->order); |
|
} |
|
|
|
/* LPC */ |
|
sub->type = FLAC_SUBFRAME_LPC; |
|
if (sub->obits == 33) |
|
/* As ff_lpc_calc_coefs is shared with other codecs and the LSB |
|
* probably isn't predictable anyway, throw away LSB for analysis |
|
* so it fits 32 bit int and existing function can be used |
|
* unmodified */ |
|
for (i = 0; i < n; i++) |
|
smp[i] = smp_33bps[i] >> 1; |
|
|
|
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order, |
|
s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type, |
|
s->options.lpc_passes, omethod, |
|
MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0); |
|
|
|
if (omethod == ORDER_METHOD_2LEVEL || |
|
omethod == ORDER_METHOD_4LEVEL || |
|
omethod == ORDER_METHOD_8LEVEL) { |
|
int levels = 1 << omethod; |
|
uint64_t bits[1 << ORDER_METHOD_8LEVEL]; |
|
int order = -1; |
|
int opt_index = levels-1; |
|
opt_order = max_order-1; |
|
bits[opt_index] = UINT32_MAX; |
|
for (i = levels-1; i >= 0; i--) { |
|
int last_order = order; |
|
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; |
|
order = av_clip(order, min_order - 1, max_order - 1); |
|
if (order == last_order) |
|
continue; |
|
if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, order+1, coefs[order], shift[order])) |
|
continue; |
|
bits[i] = find_subframe_rice_params(s, sub, order+1); |
|
if (bits[i] < bits[opt_index]) { |
|
opt_index = i; |
|
opt_order = order; |
|
} |
|
} |
|
opt_order++; |
|
} else if (omethod == ORDER_METHOD_SEARCH) { |
|
// brute-force optimal order search |
|
uint64_t bits[MAX_LPC_ORDER]; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for (i = min_order-1; i < max_order; i++) { |
|
if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i])) |
|
continue; |
|
bits[i] = find_subframe_rice_params(s, sub, i+1); |
|
if (bits[i] < bits[opt_order]) |
|
opt_order = i; |
|
} |
|
opt_order++; |
|
} else if (omethod == ORDER_METHOD_LOG) { |
|
uint64_t bits[MAX_LPC_ORDER]; |
|
int step; |
|
|
|
opt_order = min_order - 1 + (max_order-min_order)/3; |
|
memset(bits, -1, sizeof(bits)); |
|
|
|
for (step = 16; step; step >>= 1) { |
|
int last = opt_order; |
|
for (i = last-step; i <= last+step; i += step) { |
|
if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX) |
|
continue; |
|
if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i])) |
|
continue; |
|
bits[i] = find_subframe_rice_params(s, sub, i+1); |
|
if (bits[i] < bits[opt_order]) |
|
opt_order = i; |
|
} |
|
} |
|
opt_order++; |
|
} |
|
|
|
if (s->options.multi_dim_quant) { |
|
int allsteps = 1; |
|
int i, step, improved; |
|
int64_t best_score = INT64_MAX; |
|
int32_t qmax; |
|
|
|
qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1; |
|
|
|
for (i=0; i<opt_order; i++) |
|
allsteps *= 3; |
|
|
|
do { |
|
improved = 0; |
|
for (step = 0; step < allsteps; step++) { |
|
int tmp = step; |
|
int32_t lpc_try[MAX_LPC_ORDER]; |
|
int64_t score = 0; |
|
int diffsum = 0; |
|
|
|
for (i=0; i<opt_order; i++) { |
|
int diff = ((tmp + 1) % 3) - 1; |
|
lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax); |
|
tmp /= 3; |
|
diffsum += !!diff; |
|
} |
|
if (diffsum >8) |
|
continue; |
|
|
|
if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, opt_order, lpc_try, shift[opt_order-1])) |
|
continue; |
|
score = find_subframe_rice_params(s, sub, opt_order); |
|
if (score < best_score) { |
|
best_score = score; |
|
memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs)); |
|
improved=1; |
|
} |
|
} |
|
} while(improved); |
|
} |
|
|
|
sub->order = opt_order; |
|
sub->type_code = sub->type | (sub->order-1); |
|
sub->shift = shift[sub->order-1]; |
|
for (i = 0; i < sub->order; i++) |
|
sub->coefs[i] = coefs[sub->order-1][i]; |
|
|
|
if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, sub->order, sub->coefs, sub->shift)) { |
|
/* No predictor found with residuals within <INT32_MIN,INT32_MAX], |
|
* so encode a verbatim subframe instead */ |
|
DEFAULT_TO_VERBATIM(); |
|
} |
|
|
|
find_subframe_rice_params(s, sub, sub->order); |
|
|
|
return subframe_count_exact(s, sub, sub->order); |
|
} |
|
|
|
|
|
static int count_frame_header(FlacEncodeContext *s) |
|
{ |
|
uint8_t av_unused tmp; |
|
int count; |
|
|
|
/* |
|
<14> Sync code |
|
<1> Reserved |
|
<1> Blocking strategy |
|
<4> Block size in inter-channel samples |
|
<4> Sample rate |
|
<4> Channel assignment |
|
<3> Sample size in bits |
|
<1> Reserved |
|
*/ |
|
count = 32; |
|
|
|
/* coded frame number */ |
|
PUT_UTF8(s->frame_count, tmp, count += 8;) |
|
|
|
/* explicit block size */ |
|
if (s->frame.bs_code[0] == 6) |
|
count += 8; |
|
else if (s->frame.bs_code[0] == 7) |
|
count += 16; |
|
|
|
/* explicit sample rate */ |
|
count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8; |
|
|
|
/* frame header CRC-8 */ |
|
count += 8; |
|
|
|
return count; |
|
} |
|
|
|
|
|
static int encode_frame(FlacEncodeContext *s) |
|
{ |
|
int ch; |
|
uint64_t count; |
|
|
|
count = count_frame_header(s); |
|
|
|
for (ch = 0; ch < s->channels; ch++) |
|
count += encode_residual_ch(s, ch); |
|
|
|
count += (8 - (count & 7)) & 7; // byte alignment |
|
count += 16; // CRC-16 |
|
|
|
count >>= 3; |
|
if (count > INT_MAX) |
|
return AVERROR_BUG; |
|
return count; |
|
} |
|
|
|
|
|
static void remove_wasted_bits(FlacEncodeContext *s) |
|
{ |
|
int ch, i, wasted_bits; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
FlacSubframe *sub = &s->frame.subframes[ch]; |
|
|
|
if (sub->obits > 32) { |
|
int64_t v = 0; |
|
for (i = 0; i < s->frame.blocksize; i++) { |
|
v |= s->frame.samples_33bps[i]; |
|
if (v & 1) |
|
break; |
|
} |
|
|
|
if (!v || (v & 1)) |
|
return; |
|
|
|
v = ff_ctzll(v); |
|
|
|
/* If any wasted bits are found, samples are moved |
|
* from frame.samples_33bps to frame.subframes[ch] */ |
|
for (i = 0; i < s->frame.blocksize; i++) |
|
sub->samples[i] = s->frame.samples_33bps[i] >> v; |
|
wasted_bits = v; |
|
} else { |
|
int32_t v = 0; |
|
for (i = 0; i < s->frame.blocksize; i++) { |
|
v |= sub->samples[i]; |
|
if (v & 1) |
|
break; |
|
} |
|
|
|
if (!v || (v & 1)) |
|
return; |
|
|
|
v = ff_ctz(v); |
|
|
|
for (i = 0; i < s->frame.blocksize; i++) |
|
sub->samples[i] >>= v; |
|
wasted_bits = v; |
|
} |
|
|
|
sub->wasted = wasted_bits; |
|
sub->obits -= wasted_bits; |
|
|
|
/* for 24-bit, check if removing wasted bits makes the range better |
|
* suited for using RICE instead of RICE2 for entropy coding */ |
|
if (sub->obits <= 17) |
|
sub->rc.coding_mode = CODING_MODE_RICE; |
|
} |
|
} |
|
|
|
|
|
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, |
|
int max_rice_param, int bps) |
|
{ |
|
int best; |
|
uint64_t sum[4]; |
|
uint64_t score[4]; |
|
int k; |
|
|
|
/* calculate sum of 2nd order residual for each channel */ |
|
sum[0] = sum[1] = sum[2] = sum[3] = 0; |
|
if(bps < 30) { |
|
int32_t lt, rt; |
|
for (int i = 2; i < n; i++) { |
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; |
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; |
|
sum[2] += FFABS((lt + rt) >> 1); |
|
sum[3] += FFABS(lt - rt); |
|
sum[0] += FFABS(lt); |
|
sum[1] += FFABS(rt); |
|
} |
|
} else { |
|
int64_t lt, rt; |
|
for (int i = 2; i < n; i++) { |
|
lt = (int64_t)left_ch[i] - 2*(int64_t)left_ch[i-1] + left_ch[i-2]; |
|
rt = (int64_t)right_ch[i] - 2*(int64_t)right_ch[i-1] + right_ch[i-2]; |
|
sum[2] += FFABS((lt + rt) >> 1); |
|
sum[3] += FFABS(lt - rt); |
|
sum[0] += FFABS(lt); |
|
sum[1] += FFABS(rt); |
|
} |
|
} |
|
/* estimate bit counts */ |
|
for (int i = 0; i < 4; i++) { |
|
k = find_optimal_param(2 * sum[i], n, max_rice_param); |
|
sum[i] = rice_encode_count( 2 * sum[i], n, k); |
|
} |
|
|
|
/* calculate score for each mode */ |
|
score[0] = sum[0] + sum[1]; |
|
score[1] = sum[0] + sum[3]; |
|
score[2] = sum[1] + sum[3]; |
|
score[3] = sum[2] + sum[3]; |
|
|
|
/* return mode with lowest score */ |
|
best = 0; |
|
for (int i = 1; i < 4; i++) |
|
if (score[i] < score[best]) |
|
best = i; |
|
|
|
return best; |
|
} |
|
|
|
|
|
/** |
|
* Perform stereo channel decorrelation. |
|
*/ |
|
static void channel_decorrelation(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
int32_t *left, *right; |
|
int64_t *side_33bps; |
|
int n; |
|
|
|
frame = &s->frame; |
|
n = frame->blocksize; |
|
left = frame->subframes[0].samples; |
|
right = frame->subframes[1].samples; |
|
side_33bps = frame->samples_33bps; |
|
|
|
if (s->channels != 2) { |
|
frame->ch_mode = FLAC_CHMODE_INDEPENDENT; |
|
return; |
|
} |
|
|
|
if (s->options.ch_mode < 0) { |
|
int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2; |
|
frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param, s->avctx->bits_per_raw_sample); |
|
} else |
|
frame->ch_mode = s->options.ch_mode; |
|
|
|
/* perform decorrelation and adjust bits-per-sample */ |
|
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) |
|
return; |
|
if(s->avctx->bits_per_raw_sample == 32) { |
|
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { |
|
int64_t tmp; |
|
for (int i = 0; i < n; i++) { |
|
tmp = left[i]; |
|
left[i] = (tmp + right[i]) >> 1; |
|
side_33bps[i] = tmp - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
|
for (int i = 0; i < n; i++) |
|
side_33bps[i] = (int64_t)left[i] - right[i]; |
|
frame->subframes[1].obits++; |
|
} else { |
|
for (int i = 0; i < n; i++) |
|
side_33bps[i] = (int64_t)left[i] - right[i]; |
|
frame->subframes[0].obits++; |
|
} |
|
} else { |
|
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { |
|
int32_t tmp; |
|
for (int i = 0; i < n; i++) { |
|
tmp = left[i]; |
|
left[i] = (tmp + right[i]) >> 1; |
|
right[i] = tmp - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
|
for (int i = 0; i < n; i++) |
|
right[i] = left[i] - right[i]; |
|
frame->subframes[1].obits++; |
|
} else { |
|
for (int i = 0; i < n; i++) |
|
left[i] -= right[i]; |
|
frame->subframes[0].obits++; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val) |
|
{ |
|
uint8_t tmp; |
|
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);) |
|
} |
|
|
|
|
|
static void write_frame_header(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
int crc; |
|
|
|
frame = &s->frame; |
|
|
|
put_bits(&s->pb, 16, 0xFFF8); |
|
put_bits(&s->pb, 4, frame->bs_code[0]); |
|
put_bits(&s->pb, 4, s->sr_code[0]); |
|
|
|
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) |
|
put_bits(&s->pb, 4, s->channels-1); |
|
else |
|
put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1); |
|
|
|
put_bits(&s->pb, 3, s->bps_code); |
|
put_bits(&s->pb, 1, 0); |
|
write_utf8(&s->pb, s->frame_count); |
|
|
|
if (frame->bs_code[0] == 6) |
|
put_bits(&s->pb, 8, frame->bs_code[1]); |
|
else if (frame->bs_code[0] == 7) |
|
put_bits(&s->pb, 16, frame->bs_code[1]); |
|
|
|
if (s->sr_code[0] == 12) |
|
put_bits(&s->pb, 8, s->sr_code[1]); |
|
else if (s->sr_code[0] > 12) |
|
put_bits(&s->pb, 16, s->sr_code[1]); |
|
|
|
flush_put_bits(&s->pb); |
|
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf, |
|
put_bytes_output(&s->pb)); |
|
put_bits(&s->pb, 8, crc); |
|
} |
|
|
|
|
|
static inline void set_sr_golomb_flac(PutBitContext *pb, int i, int k) |
|
{ |
|
unsigned v, e; |
|
|
|
v = ((unsigned)(i) << 1) ^ (i >> 31); |
|
|
|
e = (v >> k) + 1; |
|
while (e > 31) { |
|
put_bits(pb, 31, 0); |
|
e -= 31; |
|
} |
|
put_bits(pb, e, 1); |
|
if (k) { |
|
unsigned mask = UINT32_MAX >> (32-k); |
|
put_bits(pb, k, v & mask); |
|
} |
|
} |
|
|
|
|
|
static void write_subframes(FlacEncodeContext *s) |
|
{ |
|
int ch; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
FlacSubframe *sub = &s->frame.subframes[ch]; |
|
int p, porder, psize; |
|
int32_t *part_end; |
|
int32_t *res = sub->residual; |
|
int32_t *frame_end = &sub->residual[s->frame.blocksize]; |
|
|
|
/* subframe header */ |
|
put_bits(&s->pb, 1, 0); |
|
put_bits(&s->pb, 6, sub->type_code); |
|
put_bits(&s->pb, 1, !!sub->wasted); |
|
if (sub->wasted) |
|
put_bits(&s->pb, sub->wasted, 1); |
|
|
|
/* subframe */ |
|
if (sub->type == FLAC_SUBFRAME_CONSTANT) { |
|
if(sub->obits == 33) |
|
put_sbits63(&s->pb, 33, s->frame.samples_33bps[0]); |
|
else if(sub->obits == 32) |
|
put_bits32(&s->pb, res[0]); |
|
else |
|
put_sbits(&s->pb, sub->obits, res[0]); |
|
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) { |
|
if (sub->obits == 33) { |
|
int64_t *res64 = s->frame.samples_33bps; |
|
int64_t *frame_end64 = &s->frame.samples_33bps[s->frame.blocksize]; |
|
while (res64 < frame_end64) |
|
put_sbits63(&s->pb, 33, (*res64++)); |
|
} else if (sub->obits == 32) { |
|
while (res < frame_end) |
|
put_bits32(&s->pb, *res++); |
|
} else { |
|
while (res < frame_end) |
|
put_sbits(&s->pb, sub->obits, *res++); |
|
} |
|
} else { |
|
/* warm-up samples */ |
|
if (sub->obits == 33) { |
|
for (int i = 0; i < sub->order; i++) |
|
put_sbits63(&s->pb, 33, s->frame.samples_33bps[i]); |
|
res += sub->order; |
|
} else if (sub->obits == 32) { |
|
for (int i = 0; i < sub->order; i++) |
|
put_bits32(&s->pb, *res++); |
|
} else { |
|
for (int i = 0; i < sub->order; i++) |
|
put_sbits(&s->pb, sub->obits, *res++); |
|
} |
|
|
|
/* LPC coefficients */ |
|
if (sub->type == FLAC_SUBFRAME_LPC) { |
|
int cbits = s->options.lpc_coeff_precision; |
|
put_bits( &s->pb, 4, cbits-1); |
|
put_sbits(&s->pb, 5, sub->shift); |
|
for (int i = 0; i < sub->order; i++) |
|
put_sbits(&s->pb, cbits, sub->coefs[i]); |
|
} |
|
|
|
/* rice-encoded block */ |
|
put_bits(&s->pb, 2, sub->rc.coding_mode - 4); |
|
|
|
/* partition order */ |
|
porder = sub->rc.porder; |
|
psize = s->frame.blocksize >> porder; |
|
put_bits(&s->pb, 4, porder); |
|
|
|
/* residual */ |
|
part_end = &sub->residual[psize]; |
|
for (p = 0; p < 1 << porder; p++) { |
|
int k = sub->rc.params[p]; |
|
put_bits(&s->pb, sub->rc.coding_mode, k); |
|
while (res < part_end) |
|
set_sr_golomb_flac(&s->pb, *res++, k); |
|
part_end = FFMIN(frame_end, part_end + psize); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static void write_frame_footer(FlacEncodeContext *s) |
|
{ |
|
int crc; |
|
flush_put_bits(&s->pb); |
|
crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf, |
|
put_bytes_output(&s->pb))); |
|
put_bits(&s->pb, 16, crc); |
|
flush_put_bits(&s->pb); |
|
} |
|
|
|
|
|
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt) |
|
{ |
|
init_put_bits(&s->pb, avpkt->data, avpkt->size); |
|
write_frame_header(s); |
|
write_subframes(s); |
|
write_frame_footer(s); |
|
return put_bytes_output(&s->pb); |
|
} |
|
|
|
|
|
static int update_md5_sum(FlacEncodeContext *s, const void *samples) |
|
{ |
|
const uint8_t *buf; |
|
int buf_size = s->frame.blocksize * s->channels * |
|
((s->avctx->bits_per_raw_sample + 7) / 8); |
|
|
|
if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) { |
|
av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size); |
|
if (!s->md5_buffer) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (s->avctx->bits_per_raw_sample <= 16) { |
|
buf = (const uint8_t *)samples; |
|
#if HAVE_BIGENDIAN |
|
s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer, |
|
(const uint16_t *) samples, buf_size / 2); |
|
buf = s->md5_buffer; |
|
#endif |
|
} else if (s->avctx->bits_per_raw_sample <= 24) { |
|
int i; |
|
const int32_t *samples0 = samples; |
|
uint8_t *tmp = s->md5_buffer; |
|
|
|
for (i = 0; i < s->frame.blocksize * s->channels; i++) { |
|
int32_t v = samples0[i] >> 8; |
|
AV_WL24(tmp + 3*i, v); |
|
} |
|
buf = s->md5_buffer; |
|
} else { |
|
/* s->avctx->bits_per_raw_sample <= 32 */ |
|
int i; |
|
const int32_t *samples0 = samples; |
|
uint8_t *tmp = s->md5_buffer; |
|
|
|
for (i = 0; i < s->frame.blocksize * s->channels; i++) |
|
AV_WL32(tmp + 4*i, samples0[i]); |
|
buf = s->md5_buffer; |
|
} |
|
av_md5_update(s->md5ctx, buf, buf_size); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
FlacEncodeContext *s; |
|
int frame_bytes, out_bytes, ret; |
|
|
|
s = avctx->priv_data; |
|
|
|
/* when the last block is reached, update the header in extradata */ |
|
if (!frame) { |
|
s->max_framesize = s->max_encoded_framesize; |
|
av_md5_final(s->md5ctx, s->md5sum); |
|
write_streaminfo(s, avctx->extradata); |
|
|
|
if (!s->flushed) { |
|
uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, |
|
avctx->extradata_size); |
|
if (!side_data) |
|
return AVERROR(ENOMEM); |
|
memcpy(side_data, avctx->extradata, avctx->extradata_size); |
|
|
|
avpkt->pts = s->next_pts; |
|
|
|
*got_packet_ptr = 1; |
|
s->flushed = 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* change max_framesize for small final frame */ |
|
if (frame->nb_samples < s->frame.blocksize) { |
|
s->max_framesize = flac_get_max_frame_size(frame->nb_samples, |
|
s->channels, |
|
avctx->bits_per_raw_sample); |
|
} |
|
|
|
init_frame(s, frame->nb_samples); |
|
|
|
copy_samples(s, frame->data[0]); |
|
|
|
channel_decorrelation(s); |
|
|
|
remove_wasted_bits(s); |
|
|
|
frame_bytes = encode_frame(s); |
|
|
|
/* Fall back on verbatim mode if the compressed frame is larger than it |
|
would be if encoded uncompressed. */ |
|
if (frame_bytes < 0 || frame_bytes > s->max_framesize) { |
|
s->frame.verbatim_only = 1; |
|
frame_bytes = encode_frame(s); |
|
if (frame_bytes < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Bad frame count\n"); |
|
return frame_bytes; |
|
} |
|
} |
|
|
|
if ((ret = ff_get_encode_buffer(avctx, avpkt, frame_bytes, 0)) < 0) |
|
return ret; |
|
|
|
out_bytes = write_frame(s, avpkt); |
|
|
|
s->frame_count++; |
|
s->sample_count += frame->nb_samples; |
|
if ((ret = update_md5_sum(s, frame->data[0])) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n"); |
|
return ret; |
|
} |
|
if (out_bytes > s->max_encoded_framesize) |
|
s->max_encoded_framesize = out_bytes; |
|
if (out_bytes < s->min_framesize) |
|
s->min_framesize = out_bytes; |
|
|
|
s->next_pts = frame->pts + ff_samples_to_time_base(avctx, frame->nb_samples); |
|
|
|
av_shrink_packet(avpkt, out_bytes); |
|
|
|
*got_packet_ptr = 1; |
|
return 0; |
|
} |
|
|
|
|
|
static av_cold int flac_encode_close(AVCodecContext *avctx) |
|
{ |
|
FlacEncodeContext *s = avctx->priv_data; |
|
|
|
av_freep(&s->md5ctx); |
|
av_freep(&s->md5_buffer); |
|
ff_lpc_end(&s->lpc_ctx); |
|
return 0; |
|
} |
|
|
|
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
|
static const AVOption options[] = { |
|
{ "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS }, |
|
{ "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" }, |
|
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, |
|
{ "fixed", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, |
|
{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, |
|
{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, |
|
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes), AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS }, |
|
{ "min_partition_order", NULL, offsetof(FlacEncodeContext, options.min_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, |
|
{ "max_partition_order", NULL, offsetof(FlacEncodeContext, options.max_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, |
|
{ "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" }, |
|
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "2level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "4level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "8level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "log", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG }, INT_MIN, INT_MAX, FLAGS, "predm" }, |
|
{ "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" }, |
|
{ "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, |
|
{ "indep", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, |
|
{ "left_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, |
|
{ "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, |
|
{ "mid_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, |
|
{ "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
|
{ "multi_dim_quant", "Multi-dimensional quantization", offsetof(FlacEncodeContext, options.multi_dim_quant), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
|
{ "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, |
|
{ "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, |
|
|
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass flac_encoder_class = { |
|
.class_name = "FLAC encoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
const FFCodec ff_flac_encoder = { |
|
.p.name = "flac", |
|
CODEC_LONG_NAME("FLAC (Free Lossless Audio Codec)"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_FLAC, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | |
|
AV_CODEC_CAP_SMALL_LAST_FRAME | |
|
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, |
|
.priv_data_size = sizeof(FlacEncodeContext), |
|
.init = flac_encode_init, |
|
FF_CODEC_ENCODE_CB(flac_encode_frame), |
|
.close = flac_encode_close, |
|
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, |
|
AV_SAMPLE_FMT_S32, |
|
AV_SAMPLE_FMT_NONE }, |
|
.p.priv_class = &flac_encoder_class, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_EOF_FLUSH, |
|
};
|
|
|