mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
632 lines
24 KiB
632 lines
24 KiB
/* |
|
* Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc., |
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
#include "checkasm.h" |
|
#include "libavcodec/vp9data.h" |
|
#include "libavcodec/vp9.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/mathematics.h" |
|
#include "libavutil/mem_internal.h" |
|
|
|
static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff }; |
|
#define SIZEOF_PIXEL ((bit_depth + 7) / 8) |
|
|
|
#define randomize_buffers() \ |
|
do { \ |
|
uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
|
int k; \ |
|
for (k = -4; k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \ |
|
uint32_t r = rnd() & mask; \ |
|
AV_WN32A(a + k, r); \ |
|
} \ |
|
for (k = 0; k < size * SIZEOF_PIXEL; k += 4) { \ |
|
uint32_t r = rnd() & mask; \ |
|
AV_WN32A(l + k, r); \ |
|
} \ |
|
} while (0) |
|
|
|
static void check_ipred(void) |
|
{ |
|
LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]); |
|
uint8_t *a = &a_buf[32 * 2]; |
|
LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); |
|
VP9DSPContext dsp; |
|
int tx, mode, bit_depth; |
|
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, |
|
const uint8_t *left, const uint8_t *top); |
|
static const char *const mode_names[N_INTRA_PRED_MODES] = { |
|
[VERT_PRED] = "vert", |
|
[HOR_PRED] = "hor", |
|
[DC_PRED] = "dc", |
|
[DIAG_DOWN_LEFT_PRED] = "diag_downleft", |
|
[DIAG_DOWN_RIGHT_PRED] = "diag_downright", |
|
[VERT_RIGHT_PRED] = "vert_right", |
|
[HOR_DOWN_PRED] = "hor_down", |
|
[VERT_LEFT_PRED] = "vert_left", |
|
[HOR_UP_PRED] = "hor_up", |
|
[TM_VP8_PRED] = "tm", |
|
[LEFT_DC_PRED] = "dc_left", |
|
[TOP_DC_PRED] = "dc_top", |
|
[DC_128_PRED] = "dc_128", |
|
[DC_127_PRED] = "dc_127", |
|
[DC_129_PRED] = "dc_129", |
|
}; |
|
|
|
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
|
ff_vp9dsp_init(&dsp, bit_depth, 0); |
|
for (tx = 0; tx < 4; tx++) { |
|
int size = 4 << tx; |
|
|
|
for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) { |
|
if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp", |
|
mode_names[mode], size, size, bit_depth)) { |
|
randomize_buffers(); |
|
call_ref(dst0, size * SIZEOF_PIXEL, l, a); |
|
call_new(dst1, size * SIZEOF_PIXEL, l, a); |
|
if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL)) |
|
fail(); |
|
bench_new(dst1, size * SIZEOF_PIXEL,l, a); |
|
} |
|
} |
|
} |
|
} |
|
report("ipred"); |
|
} |
|
|
|
#undef randomize_buffers |
|
|
|
#define randomize_buffers() \ |
|
do { \ |
|
uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
|
for (y = 0; y < sz; y++) { \ |
|
for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \ |
|
uint32_t r = rnd() & mask; \ |
|
AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \ |
|
AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \ |
|
} \ |
|
for (x = 0; x < sz; x++) { \ |
|
if (bit_depth == 8) { \ |
|
coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \ |
|
} else { \ |
|
((int32_t *) coef)[y * sz + x] = \ |
|
((uint16_t *) src)[y * sz + x] - \ |
|
((uint16_t *) dst)[y * sz + x]; \ |
|
} \ |
|
} \ |
|
} \ |
|
} while(0) |
|
|
|
// wht function copied from libvpx |
|
static void fwht_1d(double *out, const double *in, int sz) |
|
{ |
|
double t0 = in[0] + in[1]; |
|
double t3 = in[3] - in[2]; |
|
double t4 = trunc((t0 - t3) * 0.5); |
|
double t1 = t4 - in[1]; |
|
double t2 = t4 - in[2]; |
|
|
|
out[0] = t0 - t2; |
|
out[1] = t2; |
|
out[2] = t3 + t1; |
|
out[3] = t1; |
|
} |
|
|
|
// standard DCT-II |
|
static void fdct_1d(double *out, const double *in, int sz) |
|
{ |
|
int k, n; |
|
|
|
for (k = 0; k < sz; k++) { |
|
out[k] = 0.0; |
|
for (n = 0; n < sz; n++) |
|
out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0)); |
|
} |
|
out[0] *= M_SQRT1_2; |
|
} |
|
|
|
// see "Towards jointly optimal spatial prediction and adaptive transform in |
|
// video/image coding", by J. Han, A. Saxena, and K. Rose |
|
// IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. |
|
static void fadst4_1d(double *out, const double *in, int sz) |
|
{ |
|
int k, n; |
|
|
|
for (k = 0; k < sz; k++) { |
|
out[k] = 0.0; |
|
for (n = 0; n < sz; n++) |
|
out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0)); |
|
} |
|
} |
|
|
|
// see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", |
|
// by Jingning Han, Yaowu Xu, and Debargha Mukherjee |
|
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf |
|
static void fadst_1d(double *out, const double *in, int sz) |
|
{ |
|
int k, n; |
|
|
|
for (k = 0; k < sz; k++) { |
|
out[k] = 0.0; |
|
for (n = 0; n < sz; n++) |
|
out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0)); |
|
} |
|
} |
|
|
|
typedef void (*ftx1d_fn)(double *out, const double *in, int sz); |
|
static void ftx_2d(double *out, const double *in, enum TxfmMode tx, |
|
enum TxfmType txtp, int sz) |
|
{ |
|
static const double scaling_factors[5][4] = { |
|
{ 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 }, |
|
{ 2.0, 2.0, 2.0, 2.0 }, |
|
{ 1.0, 1.0, 1.0, 1.0 }, |
|
{ 0.25 }, |
|
{ 4.0 } |
|
}; |
|
static const ftx1d_fn ftx1d_tbl[5][4][2] = { |
|
{ |
|
{ fdct_1d, fdct_1d }, |
|
{ fadst4_1d, fdct_1d }, |
|
{ fdct_1d, fadst4_1d }, |
|
{ fadst4_1d, fadst4_1d }, |
|
}, { |
|
{ fdct_1d, fdct_1d }, |
|
{ fadst_1d, fdct_1d }, |
|
{ fdct_1d, fadst_1d }, |
|
{ fadst_1d, fadst_1d }, |
|
}, { |
|
{ fdct_1d, fdct_1d }, |
|
{ fadst_1d, fdct_1d }, |
|
{ fdct_1d, fadst_1d }, |
|
{ fadst_1d, fadst_1d }, |
|
}, { |
|
{ fdct_1d, fdct_1d }, |
|
}, { |
|
{ fwht_1d, fwht_1d }, |
|
}, |
|
}; |
|
double temp[1024]; |
|
double scaling_factor = scaling_factors[tx][txtp]; |
|
int i, j; |
|
|
|
// cols |
|
for (i = 0; i < sz; ++i) { |
|
double temp_out[32]; |
|
|
|
ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz); |
|
// scale and transpose |
|
for (j = 0; j < sz; ++j) |
|
temp[j * sz + i] = temp_out[j] * scaling_factor; |
|
} |
|
|
|
// rows |
|
for (i = 0; i < sz; i++) |
|
ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz); |
|
} |
|
|
|
static void ftx(int16_t *buf, enum TxfmMode tx, |
|
enum TxfmType txtp, int sz, int bit_depth) |
|
{ |
|
double ind[1024], outd[1024]; |
|
int n; |
|
|
|
emms_c(); |
|
for (n = 0; n < sz * sz; n++) { |
|
if (bit_depth == 8) |
|
ind[n] = buf[n]; |
|
else |
|
ind[n] = ((int32_t *) buf)[n]; |
|
} |
|
ftx_2d(outd, ind, tx, txtp, sz); |
|
for (n = 0; n < sz * sz; n++) { |
|
if (bit_depth == 8) |
|
buf[n] = lrint(outd[n]); |
|
else |
|
((int32_t *) buf)[n] = lrint(outd[n]); |
|
} |
|
} |
|
|
|
static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx, |
|
enum TxfmType txtp, int sz, int sub, int bit_depth) |
|
{ |
|
// copy the topleft coefficients such that the return value (being the |
|
// coefficient scantable index for the eob token) guarantees that only |
|
// the topleft $sub out of $sz (where $sz >= $sub) coefficients in both |
|
// dimensions are non-zero. This leads to braching to specific optimized |
|
// simd versions (e.g. dc-only) so that we get full asm coverage in this |
|
// test |
|
|
|
int n; |
|
const int16_t *scan = ff_vp9_scans[tx][txtp]; |
|
int eob; |
|
|
|
for (n = 0; n < sz * sz; n++) { |
|
int rc = scan[n], rcx = rc % sz, rcy = rc / sz; |
|
|
|
// find eob for this sub-idct |
|
if (rcx >= sub || rcy >= sub) |
|
break; |
|
|
|
// copy coef |
|
if (bit_depth == 8) { |
|
out[rc] = in[rc]; |
|
} else { |
|
AV_COPY32(&out[rc * 2], &in[rc * 2]); |
|
} |
|
} |
|
|
|
eob = n; |
|
|
|
for (; n < sz * sz; n++) { |
|
int rc = scan[n]; |
|
|
|
// zero |
|
if (bit_depth == 8) { |
|
out[rc] = 0; |
|
} else { |
|
AV_ZERO32(&out[rc * 2]); |
|
} |
|
} |
|
|
|
return eob; |
|
} |
|
|
|
static int is_zero(const int16_t *c, int sz) |
|
{ |
|
int n; |
|
|
|
for (n = 0; n < sz / sizeof(int16_t); n += 2) |
|
if (AV_RN32A(&c[n])) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
#define SIZEOF_COEF (2 * ((bit_depth + 7) / 8)) |
|
|
|
static void check_itxfm(void) |
|
{ |
|
LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]); |
|
LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]); |
|
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob); |
|
VP9DSPContext dsp; |
|
int y, x, tx, txtp, bit_depth, sub; |
|
static const char *const txtp_types[N_TXFM_TYPES] = { |
|
[DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct", |
|
[ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst" |
|
}; |
|
|
|
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
|
ff_vp9dsp_init(&dsp, bit_depth, 0); |
|
|
|
for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) { |
|
int sz = 4 << (tx & 3); |
|
int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1; |
|
|
|
for (txtp = 0; txtp < n_txtps; txtp++) { |
|
// skip testing sub-IDCTs for WHT or ADST since they don't |
|
// implement it in any of the SIMD functions. If they do, |
|
// consider changing this to ensure we have complete test |
|
// coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc, |
|
// since the arm version can distinguish them at that level. |
|
for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz; |
|
sub < 4 ? (sub <<= 1) : (sub += 4)) { |
|
if (check_func(dsp.itxfm_add[tx][txtp], |
|
"vp9_inv_%s_%dx%d_sub%d_add_%d", |
|
tx == 4 ? "wht_wht" : txtp_types[txtp], |
|
sz, sz, sub, bit_depth)) { |
|
int eob; |
|
|
|
randomize_buffers(); |
|
ftx(coef, tx, txtp, sz, bit_depth); |
|
|
|
if (sub < sz) { |
|
eob = copy_subcoefs(subcoef0, coef, tx, txtp, |
|
sz, sub, bit_depth); |
|
} else { |
|
eob = sz * sz; |
|
memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); |
|
} |
|
|
|
memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL); |
|
memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL); |
|
memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); |
|
call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob); |
|
call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob); |
|
if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) || |
|
!is_zero(subcoef0, sz * sz * SIZEOF_COEF) || |
|
!is_zero(subcoef1, sz * sz * SIZEOF_COEF)) |
|
fail(); |
|
|
|
bench_new(dst, sz * SIZEOF_PIXEL, coef, eob); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
report("itxfm"); |
|
} |
|
|
|
#undef randomize_buffers |
|
|
|
#define setpx(a,b,c) \ |
|
do { \ |
|
if (SIZEOF_PIXEL == 1) { \ |
|
buf0[(a) + (b) * jstride] = av_clip_uint8(c); \ |
|
} else { \ |
|
((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \ |
|
} \ |
|
} while (0) |
|
|
|
// c can be an assignment and must not be put under () |
|
#define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1))) |
|
#define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8)) |
|
static void randomize_loopfilter_buffers(int bidx, int lineoff, int str, |
|
int bit_depth, int dir, const int *E, |
|
const int *F, const int *H, const int *I, |
|
uint8_t *buf0, uint8_t *buf1) |
|
{ |
|
uint32_t mask = (1 << bit_depth) - 1; |
|
int off = dir ? lineoff : lineoff * 16; |
|
int istride = dir ? 1 : 16; |
|
int jstride = dir ? str : 1; |
|
int i, j; |
|
for (i = 0; i < 2; i++) /* flat16 */ { |
|
int idx = off + i * istride, p0, q0; |
|
setpx(idx, 0, q0 = rnd() & mask); |
|
setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
|
for (j = 1; j < 8; j++) { |
|
setsx(idx, -1 - j, p0, F[bidx]); |
|
setsx(idx, j, q0, F[bidx]); |
|
} |
|
} |
|
for (i = 2; i < 4; i++) /* flat8 */ { |
|
int idx = off + i * istride, p0, q0; |
|
setpx(idx, 0, q0 = rnd() & mask); |
|
setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
|
for (j = 1; j < 4; j++) { |
|
setsx(idx, -1 - j, p0, F[bidx]); |
|
setsx(idx, j, q0, F[bidx]); |
|
} |
|
for (j = 4; j < 8; j++) { |
|
setpx(idx, -1 - j, rnd() & mask); |
|
setpx(idx, j, rnd() & mask); |
|
} |
|
} |
|
for (i = 4; i < 6; i++) /* regular */ { |
|
int idx = off + i * istride, p2, p1, p0, q0, q1, q2; |
|
setpx(idx, 0, q0 = rnd() & mask); |
|
setsx(idx, 1, q1 = q0, I[bidx]); |
|
setsx(idx, 2, q2 = q1, I[bidx]); |
|
setsx(idx, 3, q2, I[bidx]); |
|
setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
|
setsx(idx, -2, p1 = p0, I[bidx]); |
|
setsx(idx, -3, p2 = p1, I[bidx]); |
|
setsx(idx, -4, p2, I[bidx]); |
|
for (j = 4; j < 8; j++) { |
|
setpx(idx, -1 - j, rnd() & mask); |
|
setpx(idx, j, rnd() & mask); |
|
} |
|
} |
|
for (i = 6; i < 8; i++) /* off */ { |
|
int idx = off + i * istride; |
|
for (j = 0; j < 8; j++) { |
|
setpx(idx, -1 - j, rnd() & mask); |
|
setpx(idx, j, rnd() & mask); |
|
} |
|
} |
|
} |
|
#define randomize_buffers(bidx, lineoff, str) \ |
|
randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \ |
|
E, F, H, I, buf0, buf1) |
|
|
|
static void check_loopfilter(void) |
|
{ |
|
LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]); |
|
VP9DSPContext dsp; |
|
int dir, wd, wd2, bit_depth; |
|
static const char *const dir_name[2] = { "h", "v" }; |
|
static const int E[2] = { 20, 28 }, I[2] = { 10, 16 }; |
|
static const int H[2] = { 7, 11 }, F[2] = { 1, 1 }; |
|
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H); |
|
|
|
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
|
ff_vp9dsp_init(&dsp, bit_depth, 0); |
|
|
|
for (dir = 0; dir < 2; dir++) { |
|
int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL; |
|
int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL; |
|
uint8_t *buf0 = base0 + midoff_aligned; |
|
uint8_t *buf1 = base1 + midoff_aligned; |
|
|
|
for (wd = 0; wd < 3; wd++) { |
|
// 4/8/16wd_8px |
|
if (check_func(dsp.loop_filter_8[wd][dir], |
|
"vp9_loop_filter_%s_%d_8_%dbpp", |
|
dir_name[dir], 4 << wd, bit_depth)) { |
|
randomize_buffers(0, 0, 8); |
|
memcpy(buf1 - midoff, buf0 - midoff, |
|
16 * 8 * SIZEOF_PIXEL); |
|
call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
|
call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
|
if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL)) |
|
fail(); |
|
bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
|
} |
|
} |
|
|
|
midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL; |
|
midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL; |
|
|
|
buf0 = base0 + midoff_aligned; |
|
buf1 = base1 + midoff_aligned; |
|
|
|
// 16wd_16px loopfilter |
|
if (check_func(dsp.loop_filter_16[dir], |
|
"vp9_loop_filter_%s_16_16_%dbpp", |
|
dir_name[dir], bit_depth)) { |
|
randomize_buffers(0, 0, 16); |
|
randomize_buffers(0, 8, 16); |
|
memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); |
|
call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
|
call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
|
if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) |
|
fail(); |
|
bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
|
} |
|
|
|
for (wd = 0; wd < 2; wd++) { |
|
for (wd2 = 0; wd2 < 2; wd2++) { |
|
// mix2 loopfilter |
|
if (check_func(dsp.loop_filter_mix2[wd][wd2][dir], |
|
"vp9_loop_filter_mix2_%s_%d%d_16_%dbpp", |
|
dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) { |
|
randomize_buffers(0, 0, 16); |
|
randomize_buffers(1, 8, 16); |
|
memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); |
|
#define M(a) (((a)[1] << 8) | (a)[0]) |
|
call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
|
call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
|
if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) |
|
fail(); |
|
bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
|
#undef M |
|
} |
|
} |
|
} |
|
} |
|
} |
|
report("loopfilter"); |
|
} |
|
|
|
#undef setsx |
|
#undef setpx |
|
#undef setdx |
|
#undef randomize_buffers |
|
|
|
#define DST_BUF_SIZE (size * size * SIZEOF_PIXEL) |
|
#define SRC_BUF_STRIDE 72 |
|
#define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL) |
|
#define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1)) |
|
|
|
#define randomize_buffers() \ |
|
do { \ |
|
uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
|
int k; \ |
|
for (k = 0; k < SRC_BUF_SIZE; k += 4) { \ |
|
uint32_t r = rnd() & mask; \ |
|
AV_WN32A(buf + k, r); \ |
|
} \ |
|
if (op == 1) { \ |
|
for (k = 0; k < DST_BUF_SIZE; k += 4) { \ |
|
uint32_t r = rnd() & mask; \ |
|
AV_WN32A(dst0 + k, r); \ |
|
AV_WN32A(dst1 + k, r); \ |
|
} \ |
|
} \ |
|
} while (0) |
|
|
|
static void check_mc(void) |
|
{ |
|
LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]); |
|
LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]); |
|
VP9DSPContext dsp; |
|
int op, hsize, bit_depth, filter, dx, dy; |
|
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride, |
|
const uint8_t *ref, ptrdiff_t ref_stride, |
|
int h, int mx, int my); |
|
static const char *const filter_names[4] = { |
|
"8tap_smooth", "8tap_regular", "8tap_sharp", "bilin" |
|
}; |
|
static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } }; |
|
static const char *const op_names[2] = { "put", "avg" }; |
|
char str[256]; |
|
|
|
for (op = 0; op < 2; op++) { |
|
for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
|
ff_vp9dsp_init(&dsp, bit_depth, 0); |
|
for (hsize = 0; hsize < 5; hsize++) { |
|
int size = 64 >> hsize; |
|
|
|
for (filter = 0; filter < 4; filter++) { |
|
for (dx = 0; dx < 2; dx++) { |
|
for (dy = 0; dy < 2; dy++) { |
|
if (dx || dy) { |
|
snprintf(str, sizeof(str), |
|
"%s_%s_%d%s", op_names[op], |
|
filter_names[filter], size, |
|
subpel_names[dy][dx]); |
|
} else { |
|
snprintf(str, sizeof(str), |
|
"%s%d", op_names[op], size); |
|
} |
|
if (check_func(dsp.mc[hsize][filter][op][dx][dy], |
|
"vp9_%s_%dbpp", str, bit_depth)) { |
|
int mx = dx ? 1 + (rnd() % 14) : 0; |
|
int my = dy ? 1 + (rnd() % 14) : 0; |
|
randomize_buffers(); |
|
call_ref(dst0, size * SIZEOF_PIXEL, |
|
src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
|
size, mx, my); |
|
call_new(dst1, size * SIZEOF_PIXEL, |
|
src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
|
size, mx, my); |
|
if (memcmp(dst0, dst1, DST_BUF_SIZE)) |
|
fail(); |
|
|
|
// simd implementations for each filter of subpel |
|
// functions are identical |
|
if (filter >= 1 && filter <= 2) continue; |
|
// 10/12 bpp for bilin are identical |
|
if (bit_depth == 12 && filter == 3) continue; |
|
|
|
bench_new(dst1, size * SIZEOF_PIXEL, |
|
src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
|
size, mx, my); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
report("mc"); |
|
} |
|
|
|
void checkasm_check_vp9dsp(void) |
|
{ |
|
check_ipred(); |
|
check_itxfm(); |
|
check_loopfilter(); |
|
check_mc(); |
|
}
|
|
|