mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
16 KiB
421 lines
16 KiB
/* |
|
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at) |
|
* Copyright (c) 2002 Fabrice Bellard |
|
* |
|
* This file is part of libswresample |
|
* |
|
* libswresample is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* libswresample is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License |
|
* along with libswresample; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/opt.h" |
|
#include "swresample.h" |
|
|
|
#undef time |
|
#include "time.h" |
|
#undef fprintf |
|
|
|
#define SAMPLES 1000 |
|
|
|
#define SWR_CH_MAX 32 |
|
|
|
#define ASSERT_LEVEL 2 |
|
|
|
static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){ |
|
const uint8_t *p; |
|
if(av_sample_fmt_is_planar(f)){ |
|
f= av_get_alt_sample_fmt(f, 0); |
|
p= a[ch]; |
|
}else{ |
|
p= a[0]; |
|
index= ch + index*ch_count; |
|
} |
|
|
|
switch(f){ |
|
case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0; |
|
case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0; |
|
case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0; |
|
case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index]; |
|
case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index]; |
|
default: av_assert0(0); |
|
} |
|
} |
|
|
|
static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){ |
|
uint8_t *p; |
|
if(av_sample_fmt_is_planar(f)){ |
|
f= av_get_alt_sample_fmt(f, 0); |
|
p= a[ch]; |
|
}else{ |
|
p= a[0]; |
|
index= ch + index*ch_count; |
|
} |
|
switch(f){ |
|
case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break; |
|
case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break; |
|
case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647)); break; |
|
case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break; |
|
case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break; |
|
default: av_assert2(0); |
|
} |
|
} |
|
|
|
static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){ |
|
int ch; |
|
|
|
if(av_sample_fmt_is_planar(f)){ |
|
f= av_get_alt_sample_fmt(f, 0); |
|
for(ch= 0; ch<ch_count; ch++) |
|
a[ch] += index*av_get_bytes_per_sample(f); |
|
}else{ |
|
a[0] += index*ch_count*av_get_bytes_per_sample(f); |
|
} |
|
} |
|
|
|
static const enum AVSampleFormat formats[] = { |
|
AV_SAMPLE_FMT_S16, |
|
AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_S16P, |
|
AV_SAMPLE_FMT_FLT, |
|
AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_S32, |
|
AV_SAMPLE_FMT_U8P, |
|
AV_SAMPLE_FMT_U8, |
|
AV_SAMPLE_FMT_DBLP, |
|
AV_SAMPLE_FMT_DBL, |
|
}; |
|
|
|
static const int rates[] = { |
|
8000, |
|
11025, |
|
16000, |
|
22050, |
|
32000, |
|
48000, |
|
}; |
|
|
|
static const uint64_t layouts[]={ |
|
AV_CH_LAYOUT_MONO , |
|
AV_CH_LAYOUT_STEREO , |
|
AV_CH_LAYOUT_2_1 , |
|
AV_CH_LAYOUT_SURROUND , |
|
AV_CH_LAYOUT_4POINT0 , |
|
AV_CH_LAYOUT_2_2 , |
|
AV_CH_LAYOUT_QUAD , |
|
AV_CH_LAYOUT_5POINT0 , |
|
AV_CH_LAYOUT_5POINT1 , |
|
AV_CH_LAYOUT_5POINT0_BACK , |
|
AV_CH_LAYOUT_5POINT1_BACK , |
|
AV_CH_LAYOUT_7POINT0 , |
|
AV_CH_LAYOUT_7POINT1 , |
|
AV_CH_LAYOUT_7POINT1_WIDE , |
|
}; |
|
|
|
static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){ |
|
if(av_sample_fmt_is_planar(format)){ |
|
int i; |
|
int plane_size= av_get_bytes_per_sample(format&0xFF)*samples; |
|
format&=0xFF; |
|
for(i=0; i<SWR_CH_MAX; i++){ |
|
out[i]= in + i*plane_size; |
|
} |
|
}else{ |
|
out[0]= in; |
|
} |
|
} |
|
|
|
static int cmp(const int *a, const int *b){ |
|
return *a - *b; |
|
} |
|
|
|
static void audiogen(void *data, enum AVSampleFormat sample_fmt, |
|
int channels, int sample_rate, int nb_samples) |
|
{ |
|
int i, ch, k; |
|
double v, f, a, ampa; |
|
double tabf1[SWR_CH_MAX]; |
|
double tabf2[SWR_CH_MAX]; |
|
double taba[SWR_CH_MAX]; |
|
unsigned static rnd; |
|
|
|
#define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v); |
|
#define uint_rand(x) ((x) = (x) * 1664525 + 1013904223) |
|
#define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1) |
|
k = 0; |
|
|
|
/* 1 second of single freq sinus at 1000 Hz */ |
|
a = 0; |
|
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { |
|
v = sin(a) * 0.30; |
|
for (ch = 0; ch < channels; ch++) |
|
PUT_SAMPLE |
|
a += M_PI * 1000.0 * 2.0 / sample_rate; |
|
} |
|
|
|
/* 1 second of varying frequency between 100 and 10000 Hz */ |
|
a = 0; |
|
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { |
|
v = sin(a) * 0.30; |
|
for (ch = 0; ch < channels; ch++) |
|
PUT_SAMPLE |
|
f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate); |
|
a += M_PI * f * 2.0 / sample_rate; |
|
} |
|
|
|
/* 0.5 second of low amplitude white noise */ |
|
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { |
|
v = dbl_rand(rnd) * 0.30; |
|
for (ch = 0; ch < channels; ch++) |
|
PUT_SAMPLE |
|
} |
|
|
|
/* 0.5 second of high amplitude white noise */ |
|
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { |
|
v = dbl_rand(rnd); |
|
for (ch = 0; ch < channels; ch++) |
|
PUT_SAMPLE |
|
} |
|
|
|
/* 1 second of unrelated ramps for each channel */ |
|
for (ch = 0; ch < channels; ch++) { |
|
taba[ch] = 0; |
|
tabf1[ch] = 100 + uint_rand(rnd) % 5000; |
|
tabf2[ch] = 100 + uint_rand(rnd) % 5000; |
|
} |
|
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { |
|
for (ch = 0; ch < channels; ch++) { |
|
v = sin(taba[ch]) * 0.30; |
|
PUT_SAMPLE |
|
f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate); |
|
taba[ch] += M_PI * f * 2.0 / sample_rate; |
|
} |
|
} |
|
|
|
/* 2 seconds of 500 Hz with varying volume */ |
|
a = 0; |
|
ampa = 0; |
|
for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) { |
|
for (ch = 0; ch < channels; ch++) { |
|
double amp = (1.0 + sin(ampa)) * 0.15; |
|
if (ch & 1) |
|
amp = 0.30 - amp; |
|
v = sin(a) * amp; |
|
PUT_SAMPLE |
|
a += M_PI * 500.0 * 2.0 / sample_rate; |
|
ampa += M_PI * 2.0 / sample_rate; |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, char **argv){ |
|
int in_sample_rate, out_sample_rate, ch ,i, flush_count; |
|
uint64_t in_ch_layout, out_ch_layout; |
|
enum AVSampleFormat in_sample_fmt, out_sample_fmt; |
|
uint8_t array_in[SAMPLES*8*8]; |
|
uint8_t array_mid[SAMPLES*8*8*3]; |
|
uint8_t array_out[SAMPLES*8*8+100]; |
|
uint8_t *ain[SWR_CH_MAX]; |
|
uint8_t *aout[SWR_CH_MAX]; |
|
uint8_t *amid[SWR_CH_MAX]; |
|
int flush_i=0; |
|
int mode; |
|
int num_tests = 10000; |
|
uint32_t seed = 0; |
|
uint32_t rand_seed = 0; |
|
int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)]; |
|
int max_tests = FF_ARRAY_ELEMS(remaining_tests); |
|
int test; |
|
int specific_test= -1; |
|
|
|
struct SwrContext * forw_ctx= NULL; |
|
struct SwrContext *backw_ctx= NULL; |
|
|
|
if (argc > 1) { |
|
if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) { |
|
av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]] \n" |
|
"num_tests Default is %d\n", num_tests); |
|
return 0; |
|
} |
|
num_tests = strtol(argv[1], NULL, 0); |
|
if(num_tests < 0) { |
|
num_tests = -num_tests; |
|
rand_seed = time(0); |
|
} |
|
if(num_tests<= 0 || num_tests>max_tests) |
|
num_tests = max_tests; |
|
if(argc > 2) { |
|
specific_test = strtol(argv[1], NULL, 0); |
|
} |
|
} |
|
|
|
for(i=0; i<max_tests; i++) |
|
remaining_tests[i] = i; |
|
|
|
for(test=0; test<num_tests; test++){ |
|
unsigned r; |
|
uint_rand(seed); |
|
r = (seed * (uint64_t)(max_tests - test)) >>32; |
|
FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]); |
|
} |
|
qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp); |
|
in_sample_rate=16000; |
|
for(test=0; test<num_tests; test++){ |
|
char in_layout_string[256]; |
|
char out_layout_string[256]; |
|
unsigned vector= remaining_tests[max_tests - test - 1]; |
|
int in_ch_count; |
|
int out_count, mid_count, out_ch_count; |
|
|
|
in_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts); |
|
out_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts); |
|
in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); |
|
out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); |
|
out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates); |
|
av_assert0(!vector); |
|
|
|
if(specific_test == 0){ |
|
if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout) |
|
continue; |
|
} |
|
|
|
in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout); |
|
out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout); |
|
av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string), in_ch_count, in_ch_layout); |
|
av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout); |
|
fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n", |
|
in_layout_string, out_layout_string, |
|
in_sample_rate, out_sample_rate, |
|
av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt)); |
|
forw_ctx = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt, out_sample_rate, |
|
in_ch_layout, in_sample_fmt, in_sample_rate, |
|
0, 0); |
|
backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout, in_sample_fmt, in_sample_rate, |
|
out_ch_layout, out_sample_fmt, out_sample_rate, |
|
0, 0); |
|
if(!forw_ctx) { |
|
fprintf(stderr, "Failed to init forw_cts\n"); |
|
return 1; |
|
} |
|
if(!backw_ctx) { |
|
fprintf(stderr, "Failed to init backw_ctx\n"); |
|
return 1; |
|
} |
|
if (uint_rand(rand_seed) % 3 == 0) |
|
av_opt_set_int(forw_ctx, "ich", 0, 0); |
|
if (uint_rand(rand_seed) % 3 == 0) |
|
av_opt_set_int(forw_ctx, "och", 0, 0); |
|
|
|
if(swr_init( forw_ctx) < 0) |
|
fprintf(stderr, "swr_init(->) failed\n"); |
|
if(swr_init(backw_ctx) < 0) |
|
fprintf(stderr, "swr_init(<-) failed\n"); |
|
//FIXME test planar |
|
setup_array(ain , array_in , in_sample_fmt, SAMPLES); |
|
setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES); |
|
setup_array(aout, array_out, in_sample_fmt , SAMPLES); |
|
#if 0 |
|
for(ch=0; ch<in_ch_count; ch++){ |
|
for(i=0; i<SAMPLES; i++) |
|
set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES)); |
|
} |
|
#else |
|
audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES); |
|
#endif |
|
mode = uint_rand(rand_seed) % 3; |
|
if(mode==0 /*|| out_sample_rate == in_sample_rate*/) { |
|
mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES); |
|
} else if(mode==1){ |
|
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES); |
|
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); |
|
} else { |
|
int tmp_count; |
|
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1); |
|
av_assert0(mid_count==0); |
|
shift(ain, 1, in_ch_count, in_sample_fmt); |
|
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); |
|
shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; |
|
mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2); |
|
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; |
|
shift(ain, 2, in_ch_count, in_sample_fmt); |
|
mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3); |
|
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; |
|
shift(ain, -3, in_ch_count, in_sample_fmt); |
|
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); |
|
shift(amid, -tmp_count, out_ch_count, out_sample_fmt); |
|
} |
|
out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count); |
|
|
|
for(ch=0; ch<in_ch_count; ch++){ |
|
double sse, maxdiff=0; |
|
double sum_a= 0; |
|
double sum_b= 0; |
|
double sum_aa= 0; |
|
double sum_bb= 0; |
|
double sum_ab= 0; |
|
for(i=0; i<out_count; i++){ |
|
double a= get(ain , ch, i, in_ch_count, in_sample_fmt); |
|
double b= get(aout, ch, i, in_ch_count, in_sample_fmt); |
|
sum_a += a; |
|
sum_b += b; |
|
sum_aa+= a*a; |
|
sum_bb+= b*b; |
|
sum_ab+= a*b; |
|
maxdiff= FFMAX(maxdiff, fabs(a-b)); |
|
} |
|
sse= sum_aa + sum_bb - 2*sum_ab; |
|
if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error |
|
|
|
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count); |
|
} |
|
|
|
flush_i++; |
|
flush_i%=21; |
|
flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0); |
|
shift(aout, flush_i, in_ch_count, in_sample_fmt); |
|
flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0); |
|
shift(aout, -flush_i, in_ch_count, in_sample_fmt); |
|
if(flush_count){ |
|
for(ch=0; ch<in_ch_count; ch++){ |
|
double sse, maxdiff=0; |
|
double sum_a= 0; |
|
double sum_b= 0; |
|
double sum_aa= 0; |
|
double sum_bb= 0; |
|
double sum_ab= 0; |
|
for(i=0; i<flush_count; i++){ |
|
double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt); |
|
double b= get(aout, ch, i, in_ch_count, in_sample_fmt); |
|
sum_a += a; |
|
sum_b += b; |
|
sum_aa+= a*a; |
|
sum_bb+= b*b; |
|
sum_ab+= a*b; |
|
maxdiff= FFMAX(maxdiff, fabs(a-b)); |
|
} |
|
sse= sum_aa + sum_bb - 2*sum_ab; |
|
if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error |
|
|
|
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i); |
|
} |
|
} |
|
|
|
|
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
return 0; |
|
}
|
|
|