mirror of https://github.com/FFmpeg/FFmpeg.git
1094 lines
29 KiB
1094 lines
29 KiB
/* |
|
* Simple free lossless/lossy audio codec |
|
* Copyright (c) 2004 Alex Beregszaszi |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "golomb.h" |
|
#include "internal.h" |
|
#include "rangecoder.h" |
|
|
|
|
|
/** |
|
* @file |
|
* Simple free lossless/lossy audio codec |
|
* Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk) |
|
* Written and designed by Alex Beregszaszi |
|
* |
|
* TODO: |
|
* - CABAC put/get_symbol |
|
* - independent quantizer for channels |
|
* - >2 channels support |
|
* - more decorrelation types |
|
* - more tap_quant tests |
|
* - selectable intlist writers/readers (bonk-style, golomb, cabac) |
|
*/ |
|
|
|
#define MAX_CHANNELS 2 |
|
|
|
#define MID_SIDE 0 |
|
#define LEFT_SIDE 1 |
|
#define RIGHT_SIDE 2 |
|
|
|
typedef struct SonicContext { |
|
int version; |
|
int minor_version; |
|
int lossless, decorrelation; |
|
|
|
int num_taps, downsampling; |
|
double quantization; |
|
|
|
int channels, samplerate, block_align, frame_size; |
|
|
|
int *tap_quant; |
|
int *int_samples; |
|
int *coded_samples[MAX_CHANNELS]; |
|
|
|
// for encoding |
|
int *tail; |
|
int tail_size; |
|
int *window; |
|
int window_size; |
|
|
|
// for decoding |
|
int *predictor_k; |
|
int *predictor_state[MAX_CHANNELS]; |
|
} SonicContext; |
|
|
|
#define LATTICE_SHIFT 10 |
|
#define SAMPLE_SHIFT 4 |
|
#define LATTICE_FACTOR (1 << LATTICE_SHIFT) |
|
#define SAMPLE_FACTOR (1 << SAMPLE_SHIFT) |
|
|
|
#define BASE_QUANT 0.6 |
|
#define RATE_VARIATION 3.0 |
|
|
|
static inline int shift(int a,int b) |
|
{ |
|
return (a+(1<<(b-1))) >> b; |
|
} |
|
|
|
static inline int shift_down(int a,int b) |
|
{ |
|
return (a>>b)+(a<0); |
|
} |
|
|
|
static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){ |
|
int i; |
|
|
|
#define put_rac(C,S,B) \ |
|
do{\ |
|
if(rc_stat){\ |
|
rc_stat[*(S)][B]++;\ |
|
rc_stat2[(S)-state][B]++;\ |
|
}\ |
|
put_rac(C,S,B);\ |
|
}while(0) |
|
|
|
if(v){ |
|
const int a= FFABS(v); |
|
const int e= av_log2(a); |
|
put_rac(c, state+0, 0); |
|
if(e<=9){ |
|
for(i=0; i<e; i++){ |
|
put_rac(c, state+1+i, 1); //1..10 |
|
} |
|
put_rac(c, state+1+i, 0); |
|
|
|
for(i=e-1; i>=0; i--){ |
|
put_rac(c, state+22+i, (a>>i)&1); //22..31 |
|
} |
|
|
|
if(is_signed) |
|
put_rac(c, state+11 + e, v < 0); //11..21 |
|
}else{ |
|
for(i=0; i<e; i++){ |
|
put_rac(c, state+1+FFMIN(i,9), 1); //1..10 |
|
} |
|
put_rac(c, state+1+9, 0); |
|
|
|
for(i=e-1; i>=0; i--){ |
|
put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31 |
|
} |
|
|
|
if(is_signed) |
|
put_rac(c, state+11 + 10, v < 0); //11..21 |
|
} |
|
}else{ |
|
put_rac(c, state+0, 1); |
|
} |
|
#undef put_rac |
|
} |
|
|
|
static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){ |
|
if(get_rac(c, state+0)) |
|
return 0; |
|
else{ |
|
int i, e, a; |
|
e= 0; |
|
while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10 |
|
e++; |
|
} |
|
|
|
a= 1; |
|
for(i=e-1; i>=0; i--){ |
|
a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31 |
|
} |
|
|
|
e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21 |
|
return (a^e)-e; |
|
} |
|
} |
|
|
|
#if 1 |
|
static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < entries; i++) |
|
put_symbol(c, state, buf[i], 1, NULL, NULL); |
|
|
|
return 1; |
|
} |
|
|
|
static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < entries; i++) |
|
buf[i] = get_symbol(c, state, 1); |
|
|
|
return 1; |
|
} |
|
#elif 1 |
|
static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < entries; i++) |
|
set_se_golomb(pb, buf[i]); |
|
|
|
return 1; |
|
} |
|
|
|
static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < entries; i++) |
|
buf[i] = get_se_golomb(gb); |
|
|
|
return 1; |
|
} |
|
|
|
#else |
|
|
|
#define ADAPT_LEVEL 8 |
|
|
|
static int bits_to_store(uint64_t x) |
|
{ |
|
int res = 0; |
|
|
|
while(x) |
|
{ |
|
res++; |
|
x >>= 1; |
|
} |
|
return res; |
|
} |
|
|
|
static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max) |
|
{ |
|
int i, bits; |
|
|
|
if (!max) |
|
return; |
|
|
|
bits = bits_to_store(max); |
|
|
|
for (i = 0; i < bits-1; i++) |
|
put_bits(pb, 1, value & (1 << i)); |
|
|
|
if ( (value | (1 << (bits-1))) <= max) |
|
put_bits(pb, 1, value & (1 << (bits-1))); |
|
} |
|
|
|
static unsigned int read_uint_max(GetBitContext *gb, int max) |
|
{ |
|
int i, bits, value = 0; |
|
|
|
if (!max) |
|
return 0; |
|
|
|
bits = bits_to_store(max); |
|
|
|
for (i = 0; i < bits-1; i++) |
|
if (get_bits1(gb)) |
|
value += 1 << i; |
|
|
|
if ( (value | (1<<(bits-1))) <= max) |
|
if (get_bits1(gb)) |
|
value += 1 << (bits-1); |
|
|
|
return value; |
|
} |
|
|
|
static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part) |
|
{ |
|
int i, j, x = 0, low_bits = 0, max = 0; |
|
int step = 256, pos = 0, dominant = 0, any = 0; |
|
int *copy, *bits; |
|
|
|
copy = av_calloc(entries, sizeof(*copy)); |
|
if (!copy) |
|
return AVERROR(ENOMEM); |
|
|
|
if (base_2_part) |
|
{ |
|
int energy = 0; |
|
|
|
for (i = 0; i < entries; i++) |
|
energy += abs(buf[i]); |
|
|
|
low_bits = bits_to_store(energy / (entries * 2)); |
|
if (low_bits > 15) |
|
low_bits = 15; |
|
|
|
put_bits(pb, 4, low_bits); |
|
} |
|
|
|
for (i = 0; i < entries; i++) |
|
{ |
|
put_bits(pb, low_bits, abs(buf[i])); |
|
copy[i] = abs(buf[i]) >> low_bits; |
|
if (copy[i] > max) |
|
max = abs(copy[i]); |
|
} |
|
|
|
bits = av_calloc(entries*max, sizeof(*bits)); |
|
if (!bits) |
|
{ |
|
av_free(copy); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (i = 0; i <= max; i++) |
|
{ |
|
for (j = 0; j < entries; j++) |
|
if (copy[j] >= i) |
|
bits[x++] = copy[j] > i; |
|
} |
|
|
|
// store bitstream |
|
while (pos < x) |
|
{ |
|
int steplet = step >> 8; |
|
|
|
if (pos + steplet > x) |
|
steplet = x - pos; |
|
|
|
for (i = 0; i < steplet; i++) |
|
if (bits[i+pos] != dominant) |
|
any = 1; |
|
|
|
put_bits(pb, 1, any); |
|
|
|
if (!any) |
|
{ |
|
pos += steplet; |
|
step += step / ADAPT_LEVEL; |
|
} |
|
else |
|
{ |
|
int interloper = 0; |
|
|
|
while (((pos + interloper) < x) && (bits[pos + interloper] == dominant)) |
|
interloper++; |
|
|
|
// note change |
|
write_uint_max(pb, interloper, (step >> 8) - 1); |
|
|
|
pos += interloper + 1; |
|
step -= step / ADAPT_LEVEL; |
|
} |
|
|
|
if (step < 256) |
|
{ |
|
step = 65536 / step; |
|
dominant = !dominant; |
|
} |
|
} |
|
|
|
// store signs |
|
for (i = 0; i < entries; i++) |
|
if (buf[i]) |
|
put_bits(pb, 1, buf[i] < 0); |
|
|
|
av_free(bits); |
|
av_free(copy); |
|
|
|
return 0; |
|
} |
|
|
|
static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part) |
|
{ |
|
int i, low_bits = 0, x = 0; |
|
int n_zeros = 0, step = 256, dominant = 0; |
|
int pos = 0, level = 0; |
|
int *bits = av_calloc(entries, sizeof(*bits)); |
|
|
|
if (!bits) |
|
return AVERROR(ENOMEM); |
|
|
|
if (base_2_part) |
|
{ |
|
low_bits = get_bits(gb, 4); |
|
|
|
if (low_bits) |
|
for (i = 0; i < entries; i++) |
|
buf[i] = get_bits(gb, low_bits); |
|
} |
|
|
|
// av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits); |
|
|
|
while (n_zeros < entries) |
|
{ |
|
int steplet = step >> 8; |
|
|
|
if (!get_bits1(gb)) |
|
{ |
|
for (i = 0; i < steplet; i++) |
|
bits[x++] = dominant; |
|
|
|
if (!dominant) |
|
n_zeros += steplet; |
|
|
|
step += step / ADAPT_LEVEL; |
|
} |
|
else |
|
{ |
|
int actual_run = read_uint_max(gb, steplet-1); |
|
|
|
// av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run); |
|
|
|
for (i = 0; i < actual_run; i++) |
|
bits[x++] = dominant; |
|
|
|
bits[x++] = !dominant; |
|
|
|
if (!dominant) |
|
n_zeros += actual_run; |
|
else |
|
n_zeros++; |
|
|
|
step -= step / ADAPT_LEVEL; |
|
} |
|
|
|
if (step < 256) |
|
{ |
|
step = 65536 / step; |
|
dominant = !dominant; |
|
} |
|
} |
|
|
|
// reconstruct unsigned values |
|
n_zeros = 0; |
|
for (i = 0; n_zeros < entries; i++) |
|
{ |
|
while(1) |
|
{ |
|
if (pos >= entries) |
|
{ |
|
pos = 0; |
|
level += 1 << low_bits; |
|
} |
|
|
|
if (buf[pos] >= level) |
|
break; |
|
|
|
pos++; |
|
} |
|
|
|
if (bits[i]) |
|
buf[pos] += 1 << low_bits; |
|
else |
|
n_zeros++; |
|
|
|
pos++; |
|
} |
|
av_free(bits); |
|
|
|
// read signs |
|
for (i = 0; i < entries; i++) |
|
if (buf[i] && get_bits1(gb)) |
|
buf[i] = -buf[i]; |
|
|
|
// av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos); |
|
|
|
return 0; |
|
} |
|
#endif |
|
|
|
static void predictor_init_state(int *k, int *state, int order) |
|
{ |
|
int i; |
|
|
|
for (i = order-2; i >= 0; i--) |
|
{ |
|
int j, p, x = state[i]; |
|
|
|
for (j = 0, p = i+1; p < order; j++,p++) |
|
{ |
|
int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT); |
|
state[p] += shift_down(k[j]*x, LATTICE_SHIFT); |
|
x = tmp; |
|
} |
|
} |
|
} |
|
|
|
static int predictor_calc_error(int *k, int *state, int order, int error) |
|
{ |
|
int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT); |
|
|
|
#if 1 |
|
int *k_ptr = &(k[order-2]), |
|
*state_ptr = &(state[order-2]); |
|
for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--) |
|
{ |
|
int k_value = *k_ptr, state_value = *state_ptr; |
|
x -= shift_down(k_value * state_value, LATTICE_SHIFT); |
|
state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT); |
|
} |
|
#else |
|
for (i = order-2; i >= 0; i--) |
|
{ |
|
x -= shift_down(k[i] * state[i], LATTICE_SHIFT); |
|
state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT); |
|
} |
|
#endif |
|
|
|
// don't drift too far, to avoid overflows |
|
if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16); |
|
if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16); |
|
|
|
state[0] = x; |
|
|
|
return x; |
|
} |
|
|
|
#if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER |
|
// Heavily modified Levinson-Durbin algorithm which |
|
// copes better with quantization, and calculates the |
|
// actual whitened result as it goes. |
|
|
|
static void modified_levinson_durbin(int *window, int window_entries, |
|
int *out, int out_entries, int channels, int *tap_quant) |
|
{ |
|
int i; |
|
int *state = av_calloc(window_entries, sizeof(*state)); |
|
|
|
memcpy(state, window, 4* window_entries); |
|
|
|
for (i = 0; i < out_entries; i++) |
|
{ |
|
int step = (i+1)*channels, k, j; |
|
double xx = 0.0, xy = 0.0; |
|
#if 1 |
|
int *x_ptr = &(window[step]); |
|
int *state_ptr = &(state[0]); |
|
j = window_entries - step; |
|
for (;j>0;j--,x_ptr++,state_ptr++) |
|
{ |
|
double x_value = *x_ptr; |
|
double state_value = *state_ptr; |
|
xx += state_value*state_value; |
|
xy += x_value*state_value; |
|
} |
|
#else |
|
for (j = 0; j <= (window_entries - step); j++); |
|
{ |
|
double stepval = window[step+j]; |
|
double stateval = window[j]; |
|
// xx += (double)window[j]*(double)window[j]; |
|
// xy += (double)window[step+j]*(double)window[j]; |
|
xx += stateval*stateval; |
|
xy += stepval*stateval; |
|
} |
|
#endif |
|
if (xx == 0.0) |
|
k = 0; |
|
else |
|
k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5)); |
|
|
|
if (k > (LATTICE_FACTOR/tap_quant[i])) |
|
k = LATTICE_FACTOR/tap_quant[i]; |
|
if (-k > (LATTICE_FACTOR/tap_quant[i])) |
|
k = -(LATTICE_FACTOR/tap_quant[i]); |
|
|
|
out[i] = k; |
|
k *= tap_quant[i]; |
|
|
|
#if 1 |
|
x_ptr = &(window[step]); |
|
state_ptr = &(state[0]); |
|
j = window_entries - step; |
|
for (;j>0;j--,x_ptr++,state_ptr++) |
|
{ |
|
int x_value = *x_ptr; |
|
int state_value = *state_ptr; |
|
*x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT); |
|
*state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT); |
|
} |
|
#else |
|
for (j=0; j <= (window_entries - step); j++) |
|
{ |
|
int stepval = window[step+j]; |
|
int stateval=state[j]; |
|
window[step+j] += shift_down(k * stateval, LATTICE_SHIFT); |
|
state[j] += shift_down(k * stepval, LATTICE_SHIFT); |
|
} |
|
#endif |
|
} |
|
|
|
av_free(state); |
|
} |
|
|
|
static inline int code_samplerate(int samplerate) |
|
{ |
|
switch (samplerate) |
|
{ |
|
case 44100: return 0; |
|
case 22050: return 1; |
|
case 11025: return 2; |
|
case 96000: return 3; |
|
case 48000: return 4; |
|
case 32000: return 5; |
|
case 24000: return 6; |
|
case 16000: return 7; |
|
case 8000: return 8; |
|
} |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
static av_cold int sonic_encode_init(AVCodecContext *avctx) |
|
{ |
|
SonicContext *s = avctx->priv_data; |
|
PutBitContext pb; |
|
int i; |
|
|
|
s->version = 2; |
|
|
|
if (avctx->channels > MAX_CHANNELS) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n"); |
|
return AVERROR(EINVAL); /* only stereo or mono for now */ |
|
} |
|
|
|
if (avctx->channels == 2) |
|
s->decorrelation = MID_SIDE; |
|
else |
|
s->decorrelation = 3; |
|
|
|
if (avctx->codec->id == AV_CODEC_ID_SONIC_LS) |
|
{ |
|
s->lossless = 1; |
|
s->num_taps = 32; |
|
s->downsampling = 1; |
|
s->quantization = 0.0; |
|
} |
|
else |
|
{ |
|
s->num_taps = 128; |
|
s->downsampling = 2; |
|
s->quantization = 1.0; |
|
} |
|
|
|
// max tap 2048 |
|
if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// generate taps |
|
s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant)); |
|
for (i = 0; i < s->num_taps; i++) |
|
s->tap_quant[i] = ff_sqrt(i+1); |
|
|
|
s->channels = avctx->channels; |
|
s->samplerate = avctx->sample_rate; |
|
|
|
s->block_align = 2048LL*s->samplerate/(44100*s->downsampling); |
|
s->frame_size = s->channels*s->block_align*s->downsampling; |
|
|
|
s->tail_size = s->num_taps*s->channels; |
|
s->tail = av_calloc(s->tail_size, sizeof(*s->tail)); |
|
if (!s->tail) |
|
return AVERROR(ENOMEM); |
|
|
|
s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) ); |
|
if (!s->predictor_k) |
|
return AVERROR(ENOMEM); |
|
|
|
for (i = 0; i < s->channels; i++) |
|
{ |
|
s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples)); |
|
if (!s->coded_samples[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples)); |
|
|
|
s->window_size = ((2*s->tail_size)+s->frame_size); |
|
s->window = av_calloc(s->window_size, sizeof(*s->window)); |
|
if (!s->window) |
|
return AVERROR(ENOMEM); |
|
|
|
avctx->extradata = av_mallocz(16); |
|
if (!avctx->extradata) |
|
return AVERROR(ENOMEM); |
|
init_put_bits(&pb, avctx->extradata, 16*8); |
|
|
|
put_bits(&pb, 2, s->version); // version |
|
if (s->version >= 1) |
|
{ |
|
if (s->version >= 2) { |
|
put_bits(&pb, 8, s->version); |
|
put_bits(&pb, 8, s->minor_version); |
|
} |
|
put_bits(&pb, 2, s->channels); |
|
put_bits(&pb, 4, code_samplerate(s->samplerate)); |
|
} |
|
put_bits(&pb, 1, s->lossless); |
|
if (!s->lossless) |
|
put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision |
|
put_bits(&pb, 2, s->decorrelation); |
|
put_bits(&pb, 2, s->downsampling); |
|
put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024 |
|
put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table |
|
|
|
flush_put_bits(&pb); |
|
avctx->extradata_size = put_bits_count(&pb)/8; |
|
|
|
av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n", |
|
s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling); |
|
|
|
avctx->frame_size = s->block_align*s->downsampling; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int sonic_encode_close(AVCodecContext *avctx) |
|
{ |
|
SonicContext *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < s->channels; i++) |
|
av_freep(&s->coded_samples[i]); |
|
|
|
av_freep(&s->predictor_k); |
|
av_freep(&s->tail); |
|
av_freep(&s->tap_quant); |
|
av_freep(&s->window); |
|
av_freep(&s->int_samples); |
|
|
|
return 0; |
|
} |
|
|
|
static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
SonicContext *s = avctx->priv_data; |
|
RangeCoder c; |
|
int i, j, ch, quant = 0, x = 0; |
|
int ret; |
|
const short *samples = (const int16_t*)frame->data[0]; |
|
uint8_t state[32]; |
|
|
|
if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size * 5 + 1000)) < 0) |
|
return ret; |
|
|
|
ff_init_range_encoder(&c, avpkt->data, avpkt->size); |
|
ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8); |
|
memset(state, 128, sizeof(state)); |
|
|
|
// short -> internal |
|
for (i = 0; i < s->frame_size; i++) |
|
s->int_samples[i] = samples[i]; |
|
|
|
if (!s->lossless) |
|
for (i = 0; i < s->frame_size; i++) |
|
s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT; |
|
|
|
switch(s->decorrelation) |
|
{ |
|
case MID_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
{ |
|
s->int_samples[i] += s->int_samples[i+1]; |
|
s->int_samples[i+1] -= shift(s->int_samples[i], 1); |
|
} |
|
break; |
|
case LEFT_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
s->int_samples[i+1] -= s->int_samples[i]; |
|
break; |
|
case RIGHT_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
s->int_samples[i] -= s->int_samples[i+1]; |
|
break; |
|
} |
|
|
|
memset(s->window, 0, 4* s->window_size); |
|
|
|
for (i = 0; i < s->tail_size; i++) |
|
s->window[x++] = s->tail[i]; |
|
|
|
for (i = 0; i < s->frame_size; i++) |
|
s->window[x++] = s->int_samples[i]; |
|
|
|
for (i = 0; i < s->tail_size; i++) |
|
s->window[x++] = 0; |
|
|
|
for (i = 0; i < s->tail_size; i++) |
|
s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i]; |
|
|
|
// generate taps |
|
modified_levinson_durbin(s->window, s->window_size, |
|
s->predictor_k, s->num_taps, s->channels, s->tap_quant); |
|
if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0) |
|
return ret; |
|
|
|
for (ch = 0; ch < s->channels; ch++) |
|
{ |
|
x = s->tail_size+ch; |
|
for (i = 0; i < s->block_align; i++) |
|
{ |
|
int sum = 0; |
|
for (j = 0; j < s->downsampling; j++, x += s->channels) |
|
sum += s->window[x]; |
|
s->coded_samples[ch][i] = sum; |
|
} |
|
} |
|
|
|
// simple rate control code |
|
if (!s->lossless) |
|
{ |
|
double energy1 = 0.0, energy2 = 0.0; |
|
for (ch = 0; ch < s->channels; ch++) |
|
{ |
|
for (i = 0; i < s->block_align; i++) |
|
{ |
|
double sample = s->coded_samples[ch][i]; |
|
energy2 += sample*sample; |
|
energy1 += fabs(sample); |
|
} |
|
} |
|
|
|
energy2 = sqrt(energy2/(s->channels*s->block_align)); |
|
energy1 = M_SQRT2*energy1/(s->channels*s->block_align); |
|
|
|
// increase bitrate when samples are like a gaussian distribution |
|
// reduce bitrate when samples are like a two-tailed exponential distribution |
|
|
|
if (energy2 > energy1) |
|
energy2 += (energy2-energy1)*RATE_VARIATION; |
|
|
|
quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR); |
|
// av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2); |
|
|
|
quant = av_clip(quant, 1, 65534); |
|
|
|
put_symbol(&c, state, quant, 0, NULL, NULL); |
|
|
|
quant *= SAMPLE_FACTOR; |
|
} |
|
|
|
// write out coded samples |
|
for (ch = 0; ch < s->channels; ch++) |
|
{ |
|
if (!s->lossless) |
|
for (i = 0; i < s->block_align; i++) |
|
s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant); |
|
|
|
if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0) |
|
return ret; |
|
} |
|
|
|
// av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8); |
|
|
|
avpkt->size = ff_rac_terminate(&c); |
|
*got_packet_ptr = 1; |
|
return 0; |
|
|
|
} |
|
#endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */ |
|
|
|
#if CONFIG_SONIC_DECODER |
|
static const int samplerate_table[] = |
|
{ 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 }; |
|
|
|
static av_cold int sonic_decode_init(AVCodecContext *avctx) |
|
{ |
|
SonicContext *s = avctx->priv_data; |
|
GetBitContext gb; |
|
int i; |
|
|
|
s->channels = avctx->channels; |
|
s->samplerate = avctx->sample_rate; |
|
|
|
if (!avctx->extradata) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
init_get_bits8(&gb, avctx->extradata, avctx->extradata_size); |
|
|
|
s->version = get_bits(&gb, 2); |
|
if (s->version >= 2) { |
|
s->version = get_bits(&gb, 8); |
|
s->minor_version = get_bits(&gb, 8); |
|
} |
|
if (s->version != 2) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->version >= 1) |
|
{ |
|
s->channels = get_bits(&gb, 2); |
|
s->samplerate = samplerate_table[get_bits(&gb, 4)]; |
|
av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n", |
|
s->channels, s->samplerate); |
|
} |
|
|
|
if (s->channels > MAX_CHANNELS) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->lossless = get_bits1(&gb); |
|
if (!s->lossless) |
|
skip_bits(&gb, 3); // XXX FIXME |
|
s->decorrelation = get_bits(&gb, 2); |
|
if (s->decorrelation != 3 && s->channels != 2) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->downsampling = get_bits(&gb, 2); |
|
if (!s->downsampling) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->num_taps = (get_bits(&gb, 5)+1)<<5; |
|
if (get_bits1(&gb)) // XXX FIXME |
|
av_log(avctx, AV_LOG_INFO, "Custom quant table\n"); |
|
|
|
s->block_align = 2048LL*s->samplerate/(44100*s->downsampling); |
|
s->frame_size = s->channels*s->block_align*s->downsampling; |
|
// avctx->frame_size = s->block_align; |
|
|
|
av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n", |
|
s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling); |
|
|
|
// generate taps |
|
s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant)); |
|
for (i = 0; i < s->num_taps; i++) |
|
s->tap_quant[i] = ff_sqrt(i+1); |
|
|
|
s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k)); |
|
|
|
for (i = 0; i < s->channels; i++) |
|
{ |
|
s->predictor_state[i] = av_calloc(s->num_taps, sizeof(**s->predictor_state)); |
|
if (!s->predictor_state[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (i = 0; i < s->channels; i++) |
|
{ |
|
s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples)); |
|
if (!s->coded_samples[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples)); |
|
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
return 0; |
|
} |
|
|
|
static av_cold int sonic_decode_close(AVCodecContext *avctx) |
|
{ |
|
SonicContext *s = avctx->priv_data; |
|
int i; |
|
|
|
av_freep(&s->int_samples); |
|
av_freep(&s->tap_quant); |
|
av_freep(&s->predictor_k); |
|
|
|
for (i = 0; i < s->channels; i++) |
|
{ |
|
av_freep(&s->predictor_state[i]); |
|
av_freep(&s->coded_samples[i]); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int sonic_decode_frame(AVCodecContext *avctx, |
|
void *data, int *got_frame_ptr, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
SonicContext *s = avctx->priv_data; |
|
RangeCoder c; |
|
uint8_t state[32]; |
|
int i, quant, ch, j, ret; |
|
int16_t *samples; |
|
AVFrame *frame = data; |
|
|
|
if (buf_size == 0) return 0; |
|
|
|
frame->nb_samples = s->frame_size / avctx->channels; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
samples = (int16_t *)frame->data[0]; |
|
|
|
// av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size); |
|
|
|
memset(state, 128, sizeof(state)); |
|
ff_init_range_decoder(&c, buf, buf_size); |
|
ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8); |
|
|
|
intlist_read(&c, state, s->predictor_k, s->num_taps, 0); |
|
|
|
// dequantize |
|
for (i = 0; i < s->num_taps; i++) |
|
s->predictor_k[i] *= s->tap_quant[i]; |
|
|
|
if (s->lossless) |
|
quant = 1; |
|
else |
|
quant = get_symbol(&c, state, 0) * SAMPLE_FACTOR; |
|
|
|
// av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant); |
|
|
|
for (ch = 0; ch < s->channels; ch++) |
|
{ |
|
int x = ch; |
|
|
|
predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps); |
|
|
|
intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1); |
|
|
|
for (i = 0; i < s->block_align; i++) |
|
{ |
|
for (j = 0; j < s->downsampling - 1; j++) |
|
{ |
|
s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0); |
|
x += s->channels; |
|
} |
|
|
|
s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant); |
|
x += s->channels; |
|
} |
|
|
|
for (i = 0; i < s->num_taps; i++) |
|
s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels]; |
|
} |
|
|
|
switch(s->decorrelation) |
|
{ |
|
case MID_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
{ |
|
s->int_samples[i+1] += shift(s->int_samples[i], 1); |
|
s->int_samples[i] -= s->int_samples[i+1]; |
|
} |
|
break; |
|
case LEFT_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
s->int_samples[i+1] += s->int_samples[i]; |
|
break; |
|
case RIGHT_SIDE: |
|
for (i = 0; i < s->frame_size; i += s->channels) |
|
s->int_samples[i] += s->int_samples[i+1]; |
|
break; |
|
} |
|
|
|
if (!s->lossless) |
|
for (i = 0; i < s->frame_size; i++) |
|
s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT); |
|
|
|
// internal -> short |
|
for (i = 0; i < s->frame_size; i++) |
|
samples[i] = av_clip_int16(s->int_samples[i]); |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return buf_size; |
|
} |
|
|
|
AVCodec ff_sonic_decoder = { |
|
.name = "sonic", |
|
.long_name = NULL_IF_CONFIG_SMALL("Sonic"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_SONIC, |
|
.priv_data_size = sizeof(SonicContext), |
|
.init = sonic_decode_init, |
|
.close = sonic_decode_close, |
|
.decode = sonic_decode_frame, |
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_EXPERIMENTAL, |
|
}; |
|
#endif /* CONFIG_SONIC_DECODER */ |
|
|
|
#if CONFIG_SONIC_ENCODER |
|
AVCodec ff_sonic_encoder = { |
|
.name = "sonic", |
|
.long_name = NULL_IF_CONFIG_SMALL("Sonic"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_SONIC, |
|
.priv_data_size = sizeof(SonicContext), |
|
.init = sonic_encode_init, |
|
.encode2 = sonic_encode_frame, |
|
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }, |
|
.capabilities = CODEC_CAP_EXPERIMENTAL, |
|
.close = sonic_encode_close, |
|
}; |
|
#endif |
|
|
|
#if CONFIG_SONIC_LS_ENCODER |
|
AVCodec ff_sonic_ls_encoder = { |
|
.name = "sonicls", |
|
.long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_SONIC_LS, |
|
.priv_data_size = sizeof(SonicContext), |
|
.init = sonic_encode_init, |
|
.encode2 = sonic_encode_frame, |
|
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }, |
|
.capabilities = CODEC_CAP_EXPERIMENTAL, |
|
.close = sonic_encode_close, |
|
}; |
|
#endif
|
|
|