mirror of https://github.com/FFmpeg/FFmpeg.git
724 lines
28 KiB
724 lines
28 KiB
/* |
|
* Copyright (c) 2011 Jan Kokemüller |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
* |
|
* This file is based on libebur128 which is available at |
|
* https://github.com/jiixyj/libebur128/ |
|
* |
|
* Libebur128 has the following copyright: |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|
* of this software and associated documentation files (the "Software"), to deal |
|
* in the Software without restriction, including without limitation the rights |
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
* copies of the Software, and to permit persons to whom the Software is |
|
* furnished to do so, subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in |
|
* all copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
* THE SOFTWARE. |
|
*/ |
|
|
|
#include "ebur128.h" |
|
|
|
#include <float.h> |
|
#include <limits.h> |
|
#include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */ |
|
|
|
#include "libavutil/common.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/mem_internal.h" |
|
#include "libavutil/thread.h" |
|
|
|
#define CHECK_ERROR(condition, errorcode, goto_point) \ |
|
if ((condition)) { \ |
|
errcode = (errorcode); \ |
|
goto goto_point; \ |
|
} |
|
|
|
#define ALMOST_ZERO 0.000001 |
|
|
|
#define RELATIVE_GATE (-10.0) |
|
#define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0) |
|
#define MINUS_20DB pow(10.0, -20.0 / 10.0) |
|
|
|
struct FFEBUR128StateInternal { |
|
/** Filtered audio data (used as ring buffer). */ |
|
double *audio_data; |
|
/** Size of audio_data array. */ |
|
size_t audio_data_frames; |
|
/** Current index for audio_data. */ |
|
size_t audio_data_index; |
|
/** How many frames are needed for a gating block. Will correspond to 400ms |
|
* of audio at initialization, and 100ms after the first block (75% overlap |
|
* as specified in the 2011 revision of BS1770). */ |
|
unsigned long needed_frames; |
|
/** The channel map. Has as many elements as there are channels. */ |
|
int *channel_map; |
|
/** How many samples fit in 100ms (rounded). */ |
|
unsigned long samples_in_100ms; |
|
/** BS.1770 filter coefficients (nominator). */ |
|
double b[5]; |
|
/** BS.1770 filter coefficients (denominator). */ |
|
double a[5]; |
|
/** BS.1770 filter state. */ |
|
double v[5][5]; |
|
/** Histograms, used to calculate LRA. */ |
|
unsigned long *block_energy_histogram; |
|
unsigned long *short_term_block_energy_histogram; |
|
/** Keeps track of when a new short term block is needed. */ |
|
size_t short_term_frame_counter; |
|
/** Maximum sample peak, one per channel */ |
|
double *sample_peak; |
|
/** The maximum window duration in ms. */ |
|
unsigned long window; |
|
/** Data pointer array for interleaved data */ |
|
void **data_ptrs; |
|
}; |
|
|
|
static AVOnce histogram_init = AV_ONCE_INIT; |
|
static DECLARE_ALIGNED(32, double, histogram_energies)[1000]; |
|
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001]; |
|
|
|
static void ebur128_init_filter(FFEBUR128State * st) |
|
{ |
|
int i, j; |
|
|
|
double f0 = 1681.974450955533; |
|
double G = 3.999843853973347; |
|
double Q = 0.7071752369554196; |
|
|
|
double K = tan(M_PI * f0 / (double) st->samplerate); |
|
double Vh = pow(10.0, G / 20.0); |
|
double Vb = pow(Vh, 0.4996667741545416); |
|
|
|
double pb[3] = { 0.0, 0.0, 0.0 }; |
|
double pa[3] = { 1.0, 0.0, 0.0 }; |
|
double rb[3] = { 1.0, -2.0, 1.0 }; |
|
double ra[3] = { 1.0, 0.0, 0.0 }; |
|
|
|
double a0 = 1.0 + K / Q + K * K; |
|
pb[0] = (Vh + Vb * K / Q + K * K) / a0; |
|
pb[1] = 2.0 * (K * K - Vh) / a0; |
|
pb[2] = (Vh - Vb * K / Q + K * K) / a0; |
|
pa[1] = 2.0 * (K * K - 1.0) / a0; |
|
pa[2] = (1.0 - K / Q + K * K) / a0; |
|
|
|
f0 = 38.13547087602444; |
|
Q = 0.5003270373238773; |
|
K = tan(M_PI * f0 / (double) st->samplerate); |
|
|
|
ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K); |
|
ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K); |
|
|
|
st->d->b[0] = pb[0] * rb[0]; |
|
st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0]; |
|
st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0]; |
|
st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1]; |
|
st->d->b[4] = pb[2] * rb[2]; |
|
|
|
st->d->a[0] = pa[0] * ra[0]; |
|
st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0]; |
|
st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0]; |
|
st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1]; |
|
st->d->a[4] = pa[2] * ra[2]; |
|
|
|
for (i = 0; i < 5; ++i) { |
|
for (j = 0; j < 5; ++j) { |
|
st->d->v[i][j] = 0.0; |
|
} |
|
} |
|
} |
|
|
|
static int ebur128_init_channel_map(FFEBUR128State * st) |
|
{ |
|
size_t i; |
|
st->d->channel_map = |
|
(int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map)); |
|
if (!st->d->channel_map) |
|
return AVERROR(ENOMEM); |
|
if (st->channels == 4) { |
|
st->d->channel_map[0] = FF_EBUR128_LEFT; |
|
st->d->channel_map[1] = FF_EBUR128_RIGHT; |
|
st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND; |
|
st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND; |
|
} else if (st->channels == 5) { |
|
st->d->channel_map[0] = FF_EBUR128_LEFT; |
|
st->d->channel_map[1] = FF_EBUR128_RIGHT; |
|
st->d->channel_map[2] = FF_EBUR128_CENTER; |
|
st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND; |
|
st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND; |
|
} else { |
|
for (i = 0; i < st->channels; ++i) { |
|
switch (i) { |
|
case 0: |
|
st->d->channel_map[i] = FF_EBUR128_LEFT; |
|
break; |
|
case 1: |
|
st->d->channel_map[i] = FF_EBUR128_RIGHT; |
|
break; |
|
case 2: |
|
st->d->channel_map[i] = FF_EBUR128_CENTER; |
|
break; |
|
case 3: |
|
st->d->channel_map[i] = FF_EBUR128_UNUSED; |
|
break; |
|
case 4: |
|
st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND; |
|
break; |
|
case 5: |
|
st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND; |
|
break; |
|
default: |
|
st->d->channel_map[i] = FF_EBUR128_UNUSED; |
|
break; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static inline void init_histogram(void) |
|
{ |
|
int i; |
|
/* initialize static constants */ |
|
histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0); |
|
for (i = 0; i < 1000; ++i) { |
|
histogram_energies[i] = |
|
pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0); |
|
} |
|
for (i = 1; i < 1001; ++i) { |
|
histogram_energy_boundaries[i] = |
|
pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0); |
|
} |
|
} |
|
|
|
FFEBUR128State *ff_ebur128_init(unsigned int channels, |
|
unsigned long samplerate, |
|
unsigned long window, int mode) |
|
{ |
|
int errcode; |
|
FFEBUR128State *st; |
|
|
|
st = (FFEBUR128State *) av_malloc(sizeof(*st)); |
|
CHECK_ERROR(!st, 0, exit) |
|
st->d = (struct FFEBUR128StateInternal *) |
|
av_malloc(sizeof(*st->d)); |
|
CHECK_ERROR(!st->d, 0, free_state) |
|
st->channels = channels; |
|
errcode = ebur128_init_channel_map(st); |
|
CHECK_ERROR(errcode, 0, free_internal) |
|
|
|
st->d->sample_peak = |
|
(double *) av_calloc(channels, sizeof(*st->d->sample_peak)); |
|
CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map) |
|
|
|
st->samplerate = samplerate; |
|
st->d->samples_in_100ms = (st->samplerate + 5) / 10; |
|
st->mode = mode; |
|
if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) { |
|
st->d->window = FFMAX(window, 3000); |
|
} else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) { |
|
st->d->window = FFMAX(window, 400); |
|
} else { |
|
goto free_sample_peak; |
|
} |
|
st->d->audio_data_frames = st->samplerate * st->d->window / 1000; |
|
if (st->d->audio_data_frames % st->d->samples_in_100ms) { |
|
/* round up to multiple of samples_in_100ms */ |
|
st->d->audio_data_frames = st->d->audio_data_frames |
|
+ st->d->samples_in_100ms |
|
- (st->d->audio_data_frames % st->d->samples_in_100ms); |
|
} |
|
st->d->audio_data = |
|
(double *) av_calloc(st->d->audio_data_frames, |
|
st->channels * sizeof(*st->d->audio_data)); |
|
CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak) |
|
|
|
ebur128_init_filter(st); |
|
|
|
st->d->block_energy_histogram = |
|
av_mallocz(1000 * sizeof(*st->d->block_energy_histogram)); |
|
CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data) |
|
st->d->short_term_block_energy_histogram = |
|
av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram)); |
|
CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0, |
|
free_block_energy_histogram) |
|
st->d->short_term_frame_counter = 0; |
|
|
|
/* the first block needs 400ms of audio data */ |
|
st->d->needed_frames = st->d->samples_in_100ms * 4; |
|
/* start at the beginning of the buffer */ |
|
st->d->audio_data_index = 0; |
|
|
|
if (ff_thread_once(&histogram_init, &init_histogram) != 0) |
|
goto free_short_term_block_energy_histogram; |
|
|
|
st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs)); |
|
CHECK_ERROR(!st->d->data_ptrs, 0, |
|
free_short_term_block_energy_histogram); |
|
|
|
return st; |
|
|
|
free_short_term_block_energy_histogram: |
|
av_free(st->d->short_term_block_energy_histogram); |
|
free_block_energy_histogram: |
|
av_free(st->d->block_energy_histogram); |
|
free_audio_data: |
|
av_free(st->d->audio_data); |
|
free_sample_peak: |
|
av_free(st->d->sample_peak); |
|
free_channel_map: |
|
av_free(st->d->channel_map); |
|
free_internal: |
|
av_free(st->d); |
|
free_state: |
|
av_free(st); |
|
exit: |
|
return NULL; |
|
} |
|
|
|
void ff_ebur128_destroy(FFEBUR128State ** st) |
|
{ |
|
av_free((*st)->d->block_energy_histogram); |
|
av_free((*st)->d->short_term_block_energy_histogram); |
|
av_free((*st)->d->audio_data); |
|
av_free((*st)->d->channel_map); |
|
av_free((*st)->d->sample_peak); |
|
av_free((*st)->d->data_ptrs); |
|
av_free((*st)->d); |
|
av_free(*st); |
|
*st = NULL; |
|
} |
|
|
|
#define EBUR128_FILTER(type, scaling_factor) \ |
|
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \ |
|
size_t src_index, size_t frames, \ |
|
int stride) { \ |
|
double* audio_data = st->d->audio_data + st->d->audio_data_index; \ |
|
size_t i, c; \ |
|
\ |
|
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \ |
|
for (c = 0; c < st->channels; ++c) { \ |
|
double max = 0.0; \ |
|
for (i = 0; i < frames; ++i) { \ |
|
type v = srcs[c][src_index + i * stride]; \ |
|
if (v > max) { \ |
|
max = v; \ |
|
} else if (-v > max) { \ |
|
max = -1.0 * v; \ |
|
} \ |
|
} \ |
|
max /= scaling_factor; \ |
|
if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \ |
|
} \ |
|
} \ |
|
for (c = 0; c < st->channels; ++c) { \ |
|
int ci = st->d->channel_map[c] - 1; \ |
|
if (ci < 0) continue; \ |
|
else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \ |
|
for (i = 0; i < frames; ++i) { \ |
|
st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \ |
|
- st->d->a[1] * st->d->v[ci][1] \ |
|
- st->d->a[2] * st->d->v[ci][2] \ |
|
- st->d->a[3] * st->d->v[ci][3] \ |
|
- st->d->a[4] * st->d->v[ci][4]; \ |
|
audio_data[i * st->channels + c] = \ |
|
st->d->b[0] * st->d->v[ci][0] \ |
|
+ st->d->b[1] * st->d->v[ci][1] \ |
|
+ st->d->b[2] * st->d->v[ci][2] \ |
|
+ st->d->b[3] * st->d->v[ci][3] \ |
|
+ st->d->b[4] * st->d->v[ci][4]; \ |
|
st->d->v[ci][4] = st->d->v[ci][3]; \ |
|
st->d->v[ci][3] = st->d->v[ci][2]; \ |
|
st->d->v[ci][2] = st->d->v[ci][1]; \ |
|
st->d->v[ci][1] = st->d->v[ci][0]; \ |
|
} \ |
|
st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \ |
|
st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \ |
|
st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \ |
|
st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \ |
|
} \ |
|
} |
|
EBUR128_FILTER(double, 1.0) |
|
|
|
static double ebur128_energy_to_loudness(double energy) |
|
{ |
|
return 10 * log10(energy) - 0.691; |
|
} |
|
|
|
static size_t find_histogram_index(double energy) |
|
{ |
|
size_t index_min = 0; |
|
size_t index_max = 1000; |
|
size_t index_mid; |
|
|
|
do { |
|
index_mid = (index_min + index_max) / 2; |
|
if (energy >= histogram_energy_boundaries[index_mid]) { |
|
index_min = index_mid; |
|
} else { |
|
index_max = index_mid; |
|
} |
|
} while (index_max - index_min != 1); |
|
|
|
return index_min; |
|
} |
|
|
|
static void ebur128_calc_gating_block(FFEBUR128State * st, |
|
size_t frames_per_block, |
|
double *optional_output) |
|
{ |
|
size_t i, c; |
|
double sum = 0.0; |
|
double channel_sum; |
|
for (c = 0; c < st->channels; ++c) { |
|
if (st->d->channel_map[c] == FF_EBUR128_UNUSED) |
|
continue; |
|
channel_sum = 0.0; |
|
if (st->d->audio_data_index < frames_per_block * st->channels) { |
|
for (i = 0; i < st->d->audio_data_index / st->channels; ++i) { |
|
channel_sum += st->d->audio_data[i * st->channels + c] * |
|
st->d->audio_data[i * st->channels + c]; |
|
} |
|
for (i = st->d->audio_data_frames - |
|
(frames_per_block - |
|
st->d->audio_data_index / st->channels); |
|
i < st->d->audio_data_frames; ++i) { |
|
channel_sum += st->d->audio_data[i * st->channels + c] * |
|
st->d->audio_data[i * st->channels + c]; |
|
} |
|
} else { |
|
for (i = |
|
st->d->audio_data_index / st->channels - frames_per_block; |
|
i < st->d->audio_data_index / st->channels; ++i) { |
|
channel_sum += |
|
st->d->audio_data[i * st->channels + |
|
c] * st->d->audio_data[i * |
|
st->channels + |
|
c]; |
|
} |
|
} |
|
if (st->d->channel_map[c] == FF_EBUR128_Mp110 || |
|
st->d->channel_map[c] == FF_EBUR128_Mm110 || |
|
st->d->channel_map[c] == FF_EBUR128_Mp060 || |
|
st->d->channel_map[c] == FF_EBUR128_Mm060 || |
|
st->d->channel_map[c] == FF_EBUR128_Mp090 || |
|
st->d->channel_map[c] == FF_EBUR128_Mm090) { |
|
channel_sum *= 1.41; |
|
} else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) { |
|
channel_sum *= 2.0; |
|
} |
|
sum += channel_sum; |
|
} |
|
sum /= (double) frames_per_block; |
|
if (optional_output) { |
|
*optional_output = sum; |
|
} else if (sum >= histogram_energy_boundaries[0]) { |
|
++st->d->block_energy_histogram[find_histogram_index(sum)]; |
|
} |
|
} |
|
|
|
int ff_ebur128_set_channel(FFEBUR128State * st, |
|
unsigned int channel_number, int value) |
|
{ |
|
if (channel_number >= st->channels) { |
|
return 1; |
|
} |
|
if (value == FF_EBUR128_DUAL_MONO && |
|
(st->channels != 1 || channel_number != 0)) { |
|
return 1; |
|
} |
|
st->d->channel_map[channel_number] = value; |
|
return 0; |
|
} |
|
|
|
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out); |
|
#define EBUR128_ADD_FRAMES_PLANAR(type) \ |
|
static void ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \ |
|
size_t frames, int stride) { \ |
|
size_t src_index = 0; \ |
|
while (frames > 0) { \ |
|
if (frames >= st->d->needed_frames) { \ |
|
ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \ |
|
src_index += st->d->needed_frames * stride; \ |
|
frames -= st->d->needed_frames; \ |
|
st->d->audio_data_index += st->d->needed_frames * st->channels; \ |
|
/* calculate the new gating block */ \ |
|
if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \ |
|
ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \ |
|
} \ |
|
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ |
|
st->d->short_term_frame_counter += st->d->needed_frames; \ |
|
if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \ |
|
double st_energy; \ |
|
ebur128_energy_shortterm(st, &st_energy); \ |
|
if (st_energy >= histogram_energy_boundaries[0]) { \ |
|
++st->d->short_term_block_energy_histogram[ \ |
|
find_histogram_index(st_energy)]; \ |
|
} \ |
|
st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \ |
|
} \ |
|
} \ |
|
/* 100ms are needed for all blocks besides the first one */ \ |
|
st->d->needed_frames = st->d->samples_in_100ms; \ |
|
/* reset audio_data_index when buffer full */ \ |
|
if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \ |
|
st->d->audio_data_index = 0; \ |
|
} \ |
|
} else { \ |
|
ebur128_filter_##type(st, srcs, src_index, frames, stride); \ |
|
st->d->audio_data_index += frames * st->channels; \ |
|
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ |
|
st->d->short_term_frame_counter += frames; \ |
|
} \ |
|
st->d->needed_frames -= frames; \ |
|
frames = 0; \ |
|
} \ |
|
} \ |
|
} |
|
EBUR128_ADD_FRAMES_PLANAR(double) |
|
#define FF_EBUR128_ADD_FRAMES(type) \ |
|
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \ |
|
size_t frames) { \ |
|
int i; \ |
|
const type **buf = (const type**)st->d->data_ptrs; \ |
|
for (i = 0; i < st->channels; i++) \ |
|
buf[i] = src + i; \ |
|
ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \ |
|
} |
|
FF_EBUR128_ADD_FRAMES(double) |
|
|
|
static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size, |
|
double *relative_threshold) |
|
{ |
|
size_t i, j; |
|
int above_thresh_counter = 0; |
|
*relative_threshold = 0.0; |
|
|
|
for (i = 0; i < size; i++) { |
|
unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram; |
|
for (j = 0; j < 1000; ++j) { |
|
*relative_threshold += block_energy_histogram[j] * histogram_energies[j]; |
|
above_thresh_counter += block_energy_histogram[j]; |
|
} |
|
} |
|
|
|
if (above_thresh_counter != 0) { |
|
*relative_threshold /= (double)above_thresh_counter; |
|
*relative_threshold *= RELATIVE_GATE_FACTOR; |
|
} |
|
|
|
return above_thresh_counter; |
|
} |
|
|
|
static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size, |
|
double *out) |
|
{ |
|
double gated_loudness = 0.0; |
|
double relative_threshold; |
|
size_t above_thresh_counter; |
|
size_t i, j, start_index; |
|
|
|
for (i = 0; i < size; i++) |
|
if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) |
|
return AVERROR(EINVAL); |
|
|
|
if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) { |
|
*out = -HUGE_VAL; |
|
return 0; |
|
} |
|
|
|
above_thresh_counter = 0; |
|
if (relative_threshold < histogram_energy_boundaries[0]) { |
|
start_index = 0; |
|
} else { |
|
start_index = find_histogram_index(relative_threshold); |
|
if (relative_threshold > histogram_energies[start_index]) { |
|
++start_index; |
|
} |
|
} |
|
for (i = 0; i < size; i++) { |
|
for (j = start_index; j < 1000; ++j) { |
|
gated_loudness += sts[i]->d->block_energy_histogram[j] * |
|
histogram_energies[j]; |
|
above_thresh_counter += sts[i]->d->block_energy_histogram[j]; |
|
} |
|
} |
|
if (!above_thresh_counter) { |
|
*out = -HUGE_VAL; |
|
return 0; |
|
} |
|
gated_loudness /= (double) above_thresh_counter; |
|
*out = ebur128_energy_to_loudness(gated_loudness); |
|
return 0; |
|
} |
|
|
|
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out) |
|
{ |
|
double relative_threshold; |
|
|
|
if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) |
|
return AVERROR(EINVAL); |
|
|
|
if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) { |
|
*out = -70.0; |
|
return 0; |
|
} |
|
|
|
*out = ebur128_energy_to_loudness(relative_threshold); |
|
return 0; |
|
} |
|
|
|
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out) |
|
{ |
|
return ebur128_gated_loudness(&st, 1, out); |
|
} |
|
|
|
static int ebur128_energy_in_interval(FFEBUR128State * st, |
|
size_t interval_frames, double *out) |
|
{ |
|
if (interval_frames > st->d->audio_data_frames) { |
|
return AVERROR(EINVAL); |
|
} |
|
ebur128_calc_gating_block(st, interval_frames, out); |
|
return 0; |
|
} |
|
|
|
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out) |
|
{ |
|
return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30, |
|
out); |
|
} |
|
|
|
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out) |
|
{ |
|
double energy; |
|
int error = ebur128_energy_shortterm(st, &energy); |
|
if (error) { |
|
return error; |
|
} else if (energy <= 0.0) { |
|
*out = -HUGE_VAL; |
|
return 0; |
|
} |
|
*out = ebur128_energy_to_loudness(energy); |
|
return 0; |
|
} |
|
|
|
/* EBU - TECH 3342 */ |
|
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size, |
|
double *out) |
|
{ |
|
size_t i, j; |
|
size_t stl_size; |
|
double stl_power, stl_integrated; |
|
/* High and low percentile energy */ |
|
double h_en, l_en; |
|
unsigned long hist[1000] = { 0 }; |
|
size_t percentile_low, percentile_high; |
|
size_t index; |
|
|
|
for (i = 0; i < size; ++i) { |
|
if (sts[i]) { |
|
if ((sts[i]->mode & FF_EBUR128_MODE_LRA) != |
|
FF_EBUR128_MODE_LRA) { |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
} |
|
|
|
stl_size = 0; |
|
stl_power = 0.0; |
|
for (i = 0; i < size; ++i) { |
|
if (!sts[i]) |
|
continue; |
|
for (j = 0; j < 1000; ++j) { |
|
hist[j] += sts[i]->d->short_term_block_energy_histogram[j]; |
|
stl_size += sts[i]->d->short_term_block_energy_histogram[j]; |
|
stl_power += sts[i]->d->short_term_block_energy_histogram[j] |
|
* histogram_energies[j]; |
|
} |
|
} |
|
if (!stl_size) { |
|
*out = 0.0; |
|
return 0; |
|
} |
|
|
|
stl_power /= stl_size; |
|
stl_integrated = MINUS_20DB * stl_power; |
|
|
|
if (stl_integrated < histogram_energy_boundaries[0]) { |
|
index = 0; |
|
} else { |
|
index = find_histogram_index(stl_integrated); |
|
if (stl_integrated > histogram_energies[index]) { |
|
++index; |
|
} |
|
} |
|
stl_size = 0; |
|
for (j = index; j < 1000; ++j) { |
|
stl_size += hist[j]; |
|
} |
|
if (!stl_size) { |
|
*out = 0.0; |
|
return 0; |
|
} |
|
|
|
percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5); |
|
percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5); |
|
|
|
stl_size = 0; |
|
j = index; |
|
while (stl_size <= percentile_low) { |
|
stl_size += hist[j++]; |
|
} |
|
l_en = histogram_energies[j - 1]; |
|
while (stl_size <= percentile_high) { |
|
stl_size += hist[j++]; |
|
} |
|
h_en = histogram_energies[j - 1]; |
|
*out = |
|
ebur128_energy_to_loudness(h_en) - |
|
ebur128_energy_to_loudness(l_en); |
|
return 0; |
|
} |
|
|
|
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out) |
|
{ |
|
return ff_ebur128_loudness_range_multiple(&st, 1, out); |
|
} |
|
|
|
int ff_ebur128_sample_peak(FFEBUR128State * st, |
|
unsigned int channel_number, double *out) |
|
{ |
|
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) != |
|
FF_EBUR128_MODE_SAMPLE_PEAK) { |
|
return AVERROR(EINVAL); |
|
} else if (channel_number >= st->channels) { |
|
return AVERROR(EINVAL); |
|
} |
|
*out = st->d->sample_peak[channel_number]; |
|
return 0; |
|
}
|
|
|