mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
942 lines
36 KiB
942 lines
36 KiB
/* |
|
* This file is part of the Independent JPEG Group's software. |
|
* |
|
* The authors make NO WARRANTY or representation, either express or implied, |
|
* with respect to this software, its quality, accuracy, merchantability, or |
|
* fitness for a particular purpose. This software is provided "AS IS", and |
|
* you, its user, assume the entire risk as to its quality and accuracy. |
|
* |
|
* This software is copyright (C) 1991, 1992, Thomas G. Lane. |
|
* All Rights Reserved except as specified below. |
|
* |
|
* Permission is hereby granted to use, copy, modify, and distribute this |
|
* software (or portions thereof) for any purpose, without fee, subject to |
|
* these conditions: |
|
* (1) If any part of the source code for this software is distributed, then |
|
* this README file must be included, with this copyright and no-warranty |
|
* notice unaltered; and any additions, deletions, or changes to the original |
|
* files must be clearly indicated in accompanying documentation. |
|
* (2) If only executable code is distributed, then the accompanying |
|
* documentation must state that "this software is based in part on the work |
|
* of the Independent JPEG Group". |
|
* (3) Permission for use of this software is granted only if the user accepts |
|
* full responsibility for any undesirable consequences; the authors accept |
|
* NO LIABILITY for damages of any kind. |
|
* |
|
* These conditions apply to any software derived from or based on the IJG |
|
* code, not just to the unmodified library. If you use our work, you ought |
|
* to acknowledge us. |
|
* |
|
* Permission is NOT granted for the use of any IJG author's name or company |
|
* name in advertising or publicity relating to this software or products |
|
* derived from it. This software may be referred to only as "the Independent |
|
* JPEG Group's software". |
|
* |
|
* We specifically permit and encourage the use of this software as the basis |
|
* of commercial products, provided that all warranty or liability claims are |
|
* assumed by the product vendor. |
|
* |
|
* This file contains the basic inverse-DCT transformation subroutine. |
|
* |
|
* This implementation is based on an algorithm described in |
|
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
|
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
|
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
|
* The primary algorithm described there uses 11 multiplies and 29 adds. |
|
* We use their alternate method with 12 multiplies and 32 adds. |
|
* The advantage of this method is that no data path contains more than one |
|
* multiplication; this allows a very simple and accurate implementation in |
|
* scaled fixed-point arithmetic, with a minimal number of shifts. |
|
* |
|
* I've made lots of modifications to attempt to take advantage of the |
|
* sparse nature of the DCT matrices we're getting. Although the logic |
|
* is cumbersome, it's straightforward and the resulting code is much |
|
* faster. |
|
* |
|
* A better way to do this would be to pass in the DCT block as a sparse |
|
* matrix, perhaps with the difference cases encoded. |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Independent JPEG Group's LLM idct. |
|
*/ |
|
|
|
#include "libavutil/common.h" |
|
#include "dsputil.h" |
|
|
|
#define EIGHT_BIT_SAMPLES |
|
|
|
#define DCTSIZE 8 |
|
#define DCTSIZE2 64 |
|
|
|
#define GLOBAL |
|
|
|
#define RIGHT_SHIFT(x, n) ((x) >> (n)) |
|
|
|
typedef int16_t DCTBLOCK[DCTSIZE2]; |
|
|
|
#define CONST_BITS 13 |
|
|
|
/* |
|
* This routine is specialized to the case DCTSIZE = 8. |
|
*/ |
|
|
|
#if DCTSIZE != 8 |
|
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
|
#endif |
|
|
|
|
|
/* |
|
* A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT |
|
* on each column. Direct algorithms are also available, but they are |
|
* much more complex and seem not to be any faster when reduced to code. |
|
* |
|
* The poop on this scaling stuff is as follows: |
|
* |
|
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
|
* larger than the true IDCT outputs. The final outputs are therefore |
|
* a factor of N larger than desired; since N=8 this can be cured by |
|
* a simple right shift at the end of the algorithm. The advantage of |
|
* this arrangement is that we save two multiplications per 1-D IDCT, |
|
* because the y0 and y4 inputs need not be divided by sqrt(N). |
|
* |
|
* We have to do addition and subtraction of the integer inputs, which |
|
* is no problem, and multiplication by fractional constants, which is |
|
* a problem to do in integer arithmetic. We multiply all the constants |
|
* by CONST_SCALE and convert them to integer constants (thus retaining |
|
* CONST_BITS bits of precision in the constants). After doing a |
|
* multiplication we have to divide the product by CONST_SCALE, with proper |
|
* rounding, to produce the correct output. This division can be done |
|
* cheaply as a right shift of CONST_BITS bits. We postpone shifting |
|
* as long as possible so that partial sums can be added together with |
|
* full fractional precision. |
|
* |
|
* The outputs of the first pass are scaled up by PASS1_BITS bits so that |
|
* they are represented to better-than-integral precision. These outputs |
|
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
|
* with the recommended scaling. (To scale up 12-bit sample data further, an |
|
* intermediate int32 array would be needed.) |
|
* |
|
* To avoid overflow of the 32-bit intermediate results in pass 2, we must |
|
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
|
* shows that the values given below are the most effective. |
|
*/ |
|
|
|
#ifdef EIGHT_BIT_SAMPLES |
|
#define PASS1_BITS 2 |
|
#else |
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
|
#endif |
|
|
|
#define ONE ((int32_t) 1) |
|
|
|
#define CONST_SCALE (ONE << CONST_BITS) |
|
|
|
/* Convert a positive real constant to an integer scaled by CONST_SCALE. |
|
* IMPORTANT: if your compiler doesn't do this arithmetic at compile time, |
|
* you will pay a significant penalty in run time. In that case, figure |
|
* the correct integer constant values and insert them by hand. |
|
*/ |
|
|
|
/* Actually FIX is no longer used, we precomputed them all */ |
|
#define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
|
|
|
/* Descale and correctly round an int32_t value that's scaled by N bits. |
|
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
|
* the fudge factor is correct for either sign of X. |
|
*/ |
|
|
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
|
|
|
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
|
* For 8-bit samples with the recommended scaling, all the variable |
|
* and constant values involved are no more than 16 bits wide, so a |
|
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply; |
|
* this provides a useful speedup on many machines. |
|
* There is no way to specify a 16x16->32 multiply in portable C, but |
|
* some C compilers will do the right thing if you provide the correct |
|
* combination of casts. |
|
* NB: for 12-bit samples, a full 32-bit multiplication will be needed. |
|
*/ |
|
|
|
#ifdef EIGHT_BIT_SAMPLES |
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
|
#define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
|
#endif |
|
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
|
#define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
|
#endif |
|
#endif |
|
|
|
#ifndef MULTIPLY /* default definition */ |
|
#define MULTIPLY(var,const) ((var) * (const)) |
|
#endif |
|
|
|
|
|
/* |
|
Unlike our decoder where we approximate the FIXes, we need to use exact |
|
ones here or successive P-frames will drift too much with Reference frame coding |
|
*/ |
|
#define FIX_0_211164243 1730 |
|
#define FIX_0_275899380 2260 |
|
#define FIX_0_298631336 2446 |
|
#define FIX_0_390180644 3196 |
|
#define FIX_0_509795579 4176 |
|
#define FIX_0_541196100 4433 |
|
#define FIX_0_601344887 4926 |
|
#define FIX_0_765366865 6270 |
|
#define FIX_0_785694958 6436 |
|
#define FIX_0_899976223 7373 |
|
#define FIX_1_061594337 8697 |
|
#define FIX_1_111140466 9102 |
|
#define FIX_1_175875602 9633 |
|
#define FIX_1_306562965 10703 |
|
#define FIX_1_387039845 11363 |
|
#define FIX_1_451774981 11893 |
|
#define FIX_1_501321110 12299 |
|
#define FIX_1_662939225 13623 |
|
#define FIX_1_847759065 15137 |
|
#define FIX_1_961570560 16069 |
|
#define FIX_2_053119869 16819 |
|
#define FIX_2_172734803 17799 |
|
#define FIX_2_562915447 20995 |
|
#define FIX_3_072711026 25172 |
|
|
|
/* |
|
* Perform the inverse DCT on one block of coefficients. |
|
*/ |
|
|
|
void ff_j_rev_dct(DCTBLOCK data) |
|
{ |
|
int32_t tmp0, tmp1, tmp2, tmp3; |
|
int32_t tmp10, tmp11, tmp12, tmp13; |
|
int32_t z1, z2, z3, z4, z5; |
|
int32_t d0, d1, d2, d3, d4, d5, d6, d7; |
|
register int16_t *dataptr; |
|
int rowctr; |
|
|
|
/* Pass 1: process rows. */ |
|
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
|
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
|
|
|
dataptr = data; |
|
|
|
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { |
|
/* Due to quantization, we will usually find that many of the input |
|
* coefficients are zero, especially the AC terms. We can exploit this |
|
* by short-circuiting the IDCT calculation for any row in which all |
|
* the AC terms are zero. In that case each output is equal to the |
|
* DC coefficient (with scale factor as needed). |
|
* With typical images and quantization tables, half or more of the |
|
* row DCT calculations can be simplified this way. |
|
*/ |
|
|
|
register int *idataptr = (int*)dataptr; |
|
|
|
/* WARNING: we do the same permutation as MMX idct to simplify the |
|
video core */ |
|
d0 = dataptr[0]; |
|
d2 = dataptr[1]; |
|
d4 = dataptr[2]; |
|
d6 = dataptr[3]; |
|
d1 = dataptr[4]; |
|
d3 = dataptr[5]; |
|
d5 = dataptr[6]; |
|
d7 = dataptr[7]; |
|
|
|
if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
|
/* AC terms all zero */ |
|
if (d0) { |
|
/* Compute a 32 bit value to assign. */ |
|
int16_t dcval = (int16_t) (d0 << PASS1_BITS); |
|
register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); |
|
|
|
idataptr[0] = v; |
|
idataptr[1] = v; |
|
idataptr[2] = v; |
|
idataptr[3] = v; |
|
} |
|
|
|
dataptr += DCTSIZE; /* advance pointer to next row */ |
|
continue; |
|
} |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
{ |
|
if (d6) { |
|
if (d2) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX_0_541196100); |
|
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); |
|
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(-d6, FIX_1_306562965); |
|
tmp3 = MULTIPLY(d6, FIX_0_541196100); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} |
|
} else { |
|
if (d2) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX_0_541196100); |
|
tmp3 = MULTIPLY(d2, FIX_1_306562965); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = (d0 + d4) << CONST_BITS; |
|
tmp11 = tmp12 = (d0 - d4) << CONST_BITS; |
|
} |
|
} |
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
|
|
if (d7) { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d5, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(d7 + z4, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 = z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
tmp1 = MULTIPLY(-d5, FIX_0_509795579); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
z5 = MULTIPLY(d5 + d7, FIX_1_175875602); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z3; |
|
tmp1 += z4; |
|
tmp2 = z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d1, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-d3, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-d1, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 = z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z3 = d7 + d3; |
|
|
|
tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
tmp2 = MULTIPLY(d3, FIX_0_509795579); |
|
z2 = MULTIPLY(-d3, FIX_2_562915447); |
|
z5 = MULTIPLY(z3, FIX_1_175875602); |
|
z3 = MULTIPLY(-z3, FIX_0_785694958); |
|
|
|
tmp0 += z3; |
|
tmp1 = z2 + z5; |
|
tmp2 += z3; |
|
tmp3 = z1 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z5 = MULTIPLY(z1, FIX_1_175875602); |
|
|
|
z1 = MULTIPLY(z1, FIX_0_275899380); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
tmp0 = MULTIPLY(-d7, FIX_1_662939225); |
|
z4 = MULTIPLY(-d1, FIX_0_390180644); |
|
tmp3 = MULTIPLY(d1, FIX_1_111140466); |
|
|
|
tmp0 += z1; |
|
tmp1 = z4 + z5; |
|
tmp2 = z3 + z5; |
|
tmp3 += z1; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(-d7, FIX_1_387039845); |
|
tmp1 = MULTIPLY(d7, FIX_1_175875602); |
|
tmp2 = MULTIPLY(-d7, FIX_0_785694958); |
|
tmp3 = MULTIPLY(d7, FIX_0_275899380); |
|
} |
|
} |
|
} |
|
} else { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(d3 + z4, FIX_1_175875602); |
|
|
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-d1, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-d3, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 = z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
|
|
z5 = MULTIPLY(z2, FIX_1_175875602); |
|
tmp1 = MULTIPLY(d5, FIX_1_662939225); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
z2 = MULTIPLY(-z2, FIX_1_387039845); |
|
tmp2 = MULTIPLY(d3, FIX_1_111140466); |
|
z3 = MULTIPLY(-d3, FIX_1_961570560); |
|
|
|
tmp0 = z3 + z5; |
|
tmp1 += z2; |
|
tmp2 += z2; |
|
tmp3 = z4 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
z4 = d5 + d1; |
|
|
|
z5 = MULTIPLY(z4, FIX_1_175875602); |
|
z1 = MULTIPLY(-d1, FIX_0_899976223); |
|
tmp3 = MULTIPLY(d1, FIX_0_601344887); |
|
tmp1 = MULTIPLY(-d5, FIX_0_509795579); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z4 = MULTIPLY(z4, FIX_0_785694958); |
|
|
|
tmp0 = z1 + z5; |
|
tmp1 += z4; |
|
tmp2 = z2 + z5; |
|
tmp3 += z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d5, FIX_1_175875602); |
|
tmp1 = MULTIPLY(d5, FIX_0_275899380); |
|
tmp2 = MULTIPLY(-d5, FIX_1_387039845); |
|
tmp3 = MULTIPLY(d5, FIX_0_785694958); |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
z5 = d1 + d3; |
|
tmp3 = MULTIPLY(d1, FIX_0_211164243); |
|
tmp2 = MULTIPLY(-d3, FIX_1_451774981); |
|
z1 = MULTIPLY(d1, FIX_1_061594337); |
|
z2 = MULTIPLY(-d3, FIX_2_172734803); |
|
z4 = MULTIPLY(z5, FIX_0_785694958); |
|
z5 = MULTIPLY(z5, FIX_1_175875602); |
|
|
|
tmp0 = z1 - z4; |
|
tmp1 = z2 + z4; |
|
tmp2 += z5; |
|
tmp3 += z5; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(-d3, FIX_0_785694958); |
|
tmp1 = MULTIPLY(-d3, FIX_1_387039845); |
|
tmp2 = MULTIPLY(-d3, FIX_0_275899380); |
|
tmp3 = MULTIPLY(d3, FIX_1_175875602); |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d1, FIX_0_275899380); |
|
tmp1 = MULTIPLY(d1, FIX_0_785694958); |
|
tmp2 = MULTIPLY(d1, FIX_1_175875602); |
|
tmp3 = MULTIPLY(d1, FIX_1_387039845); |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = tmp1 = tmp2 = tmp3 = 0; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
|
dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
|
dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
|
dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
|
dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
|
dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
|
dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
|
dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
|
|
|
dataptr += DCTSIZE; /* advance pointer to next row */ |
|
} |
|
|
|
/* Pass 2: process columns. */ |
|
/* Note that we must descale the results by a factor of 8 == 2**3, */ |
|
/* and also undo the PASS1_BITS scaling. */ |
|
|
|
dataptr = data; |
|
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { |
|
/* Columns of zeroes can be exploited in the same way as we did with rows. |
|
* However, the row calculation has created many nonzero AC terms, so the |
|
* simplification applies less often (typically 5% to 10% of the time). |
|
* On machines with very fast multiplication, it's possible that the |
|
* test takes more time than it's worth. In that case this section |
|
* may be commented out. |
|
*/ |
|
|
|
d0 = dataptr[DCTSIZE*0]; |
|
d1 = dataptr[DCTSIZE*1]; |
|
d2 = dataptr[DCTSIZE*2]; |
|
d3 = dataptr[DCTSIZE*3]; |
|
d4 = dataptr[DCTSIZE*4]; |
|
d5 = dataptr[DCTSIZE*5]; |
|
d6 = dataptr[DCTSIZE*6]; |
|
d7 = dataptr[DCTSIZE*7]; |
|
|
|
/* Even part: reverse the even part of the forward DCT. */ |
|
/* The rotator is sqrt(2)*c(-6). */ |
|
if (d6) { |
|
if (d2) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ |
|
z1 = MULTIPLY(d2 + d6, FIX_0_541196100); |
|
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); |
|
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ |
|
tmp2 = MULTIPLY(-d6, FIX_1_306562965); |
|
tmp3 = MULTIPLY(d6, FIX_0_541196100); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} |
|
} else { |
|
if (d2) { |
|
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ |
|
tmp2 = MULTIPLY(d2, FIX_0_541196100); |
|
tmp3 = MULTIPLY(d2, FIX_1_306562965); |
|
|
|
tmp0 = (d0 + d4) << CONST_BITS; |
|
tmp1 = (d0 - d4) << CONST_BITS; |
|
|
|
tmp10 = tmp0 + tmp3; |
|
tmp13 = tmp0 - tmp3; |
|
tmp11 = tmp1 + tmp2; |
|
tmp12 = tmp1 - tmp2; |
|
} else { |
|
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ |
|
tmp10 = tmp13 = (d0 + d4) << CONST_BITS; |
|
tmp11 = tmp12 = (d0 - d4) << CONST_BITS; |
|
} |
|
} |
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its |
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
|
*/ |
|
if (d7) { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ |
|
z2 = d5 + d3; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d5, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z3 = d7; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 = z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
tmp1 = MULTIPLY(-d5, FIX_0_509795579); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
z5 = MULTIPLY(d5 + d7, FIX_1_175875602); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z3; |
|
tmp1 += z4; |
|
tmp2 = z2 + z3; |
|
tmp3 = z1 + z4; |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z3 = d7 + d3; |
|
z5 = MULTIPLY(z3 + d1, FIX_1_175875602); |
|
|
|
tmp0 = MULTIPLY(d7, FIX_0_298631336); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-z1, FIX_0_899976223); |
|
z2 = MULTIPLY(-d3, FIX_2_562915447); |
|
z3 = MULTIPLY(-z3, FIX_1_961570560); |
|
z4 = MULTIPLY(-d1, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 += z1 + z3; |
|
tmp1 = z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ |
|
z3 = d7 + d3; |
|
|
|
tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
|
z1 = MULTIPLY(-d7, FIX_0_899976223); |
|
tmp2 = MULTIPLY(d3, FIX_0_509795579); |
|
z2 = MULTIPLY(-d3, FIX_2_562915447); |
|
z5 = MULTIPLY(z3, FIX_1_175875602); |
|
z3 = MULTIPLY(-z3, FIX_0_785694958); |
|
|
|
tmp0 += z3; |
|
tmp1 = z2 + z5; |
|
tmp2 += z3; |
|
tmp3 = z1 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
z1 = d7 + d1; |
|
z5 = MULTIPLY(z1, FIX_1_175875602); |
|
|
|
z1 = MULTIPLY(z1, FIX_0_275899380); |
|
z3 = MULTIPLY(-d7, FIX_1_961570560); |
|
tmp0 = MULTIPLY(-d7, FIX_1_662939225); |
|
z4 = MULTIPLY(-d1, FIX_0_390180644); |
|
tmp3 = MULTIPLY(d1, FIX_1_111140466); |
|
|
|
tmp0 += z1; |
|
tmp1 = z4 + z5; |
|
tmp2 = z3 + z5; |
|
tmp3 += z1; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ |
|
tmp0 = MULTIPLY(-d7, FIX_1_387039845); |
|
tmp1 = MULTIPLY(d7, FIX_1_175875602); |
|
tmp2 = MULTIPLY(-d7, FIX_0_785694958); |
|
tmp3 = MULTIPLY(d7, FIX_0_275899380); |
|
} |
|
} |
|
} |
|
} else { |
|
if (d5) { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
z4 = d5 + d1; |
|
z5 = MULTIPLY(d3 + z4, FIX_1_175875602); |
|
|
|
tmp1 = MULTIPLY(d5, FIX_2_053119869); |
|
tmp2 = MULTIPLY(d3, FIX_3_072711026); |
|
tmp3 = MULTIPLY(d1, FIX_1_501321110); |
|
z1 = MULTIPLY(-d1, FIX_0_899976223); |
|
z2 = MULTIPLY(-z2, FIX_2_562915447); |
|
z3 = MULTIPLY(-d3, FIX_1_961570560); |
|
z4 = MULTIPLY(-z4, FIX_0_390180644); |
|
|
|
z3 += z5; |
|
z4 += z5; |
|
|
|
tmp0 = z1 + z3; |
|
tmp1 += z2 + z4; |
|
tmp2 += z2 + z3; |
|
tmp3 += z1 + z4; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ |
|
z2 = d5 + d3; |
|
|
|
z5 = MULTIPLY(z2, FIX_1_175875602); |
|
tmp1 = MULTIPLY(d5, FIX_1_662939225); |
|
z4 = MULTIPLY(-d5, FIX_0_390180644); |
|
z2 = MULTIPLY(-z2, FIX_1_387039845); |
|
tmp2 = MULTIPLY(d3, FIX_1_111140466); |
|
z3 = MULTIPLY(-d3, FIX_1_961570560); |
|
|
|
tmp0 = z3 + z5; |
|
tmp1 += z2; |
|
tmp2 += z2; |
|
tmp3 = z4 + z5; |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
z4 = d5 + d1; |
|
|
|
z5 = MULTIPLY(z4, FIX_1_175875602); |
|
z1 = MULTIPLY(-d1, FIX_0_899976223); |
|
tmp3 = MULTIPLY(d1, FIX_0_601344887); |
|
tmp1 = MULTIPLY(-d5, FIX_0_509795579); |
|
z2 = MULTIPLY(-d5, FIX_2_562915447); |
|
z4 = MULTIPLY(z4, FIX_0_785694958); |
|
|
|
tmp0 = z1 + z5; |
|
tmp1 += z4; |
|
tmp2 = z2 + z5; |
|
tmp3 += z4; |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d5, FIX_1_175875602); |
|
tmp1 = MULTIPLY(d5, FIX_0_275899380); |
|
tmp2 = MULTIPLY(-d5, FIX_1_387039845); |
|
tmp3 = MULTIPLY(d5, FIX_0_785694958); |
|
} |
|
} |
|
} else { |
|
if (d3) { |
|
if (d1) { |
|
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
z5 = d1 + d3; |
|
tmp3 = MULTIPLY(d1, FIX_0_211164243); |
|
tmp2 = MULTIPLY(-d3, FIX_1_451774981); |
|
z1 = MULTIPLY(d1, FIX_1_061594337); |
|
z2 = MULTIPLY(-d3, FIX_2_172734803); |
|
z4 = MULTIPLY(z5, FIX_0_785694958); |
|
z5 = MULTIPLY(z5, FIX_1_175875602); |
|
|
|
tmp0 = z1 - z4; |
|
tmp1 = z2 + z4; |
|
tmp2 += z5; |
|
tmp3 += z5; |
|
} else { |
|
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(-d3, FIX_0_785694958); |
|
tmp1 = MULTIPLY(-d3, FIX_1_387039845); |
|
tmp2 = MULTIPLY(-d3, FIX_0_275899380); |
|
tmp3 = MULTIPLY(d3, FIX_1_175875602); |
|
} |
|
} else { |
|
if (d1) { |
|
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = MULTIPLY(d1, FIX_0_275899380); |
|
tmp1 = MULTIPLY(d1, FIX_0_785694958); |
|
tmp2 = MULTIPLY(d1, FIX_1_175875602); |
|
tmp3 = MULTIPLY(d1, FIX_1_387039845); |
|
} else { |
|
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ |
|
tmp0 = tmp1 = tmp2 = tmp3 = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
|
|
|
dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0, |
|
CONST_BITS+PASS1_BITS+3); |
|
dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0, |
|
CONST_BITS+PASS1_BITS+3); |
|
|
|
dataptr++; /* advance pointer to next column */ |
|
} |
|
}
|
|
|