You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1347 lines
45 KiB

/*
* Bink video decoder
* Copyright (c) 2009 Konstantin Shishkov
* Copyright (C) 2011 Peter Ross <pross@xvid.org>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "dsputil.h"
#include "binkdata.h"
#include "binkdsp.h"
#include "internal.h"
#include "mathops.h"
#define BITSTREAM_READER_LE
#include "get_bits.h"
#define BINK_FLAG_ALPHA 0x00100000
#define BINK_FLAG_GRAY 0x00020000
static VLC bink_trees[16];
/**
* IDs for different data types used in old version of Bink video codec
*/
enum OldSources {
BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
BINKB_SRC_COLORS, ///< pixel values used for different block types
BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
BINKB_SRC_X_OFF, ///< X components of motion value
BINKB_SRC_Y_OFF, ///< Y components of motion value
BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
BINKB_NB_SRC
};
static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
4, 8, 8, 5, 5, 11, 11, 4, 4, 7
};
static const int binkb_bundle_signed[BINKB_NB_SRC] = {
0, 0, 0, 1, 1, 0, 1, 0, 0, 0
};
static int32_t binkb_intra_quant[16][64];
static int32_t binkb_inter_quant[16][64];
/**
* IDs for different data types used in Bink video codec
*/
enum Sources {
BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
BINK_SRC_COLORS, ///< pixel values used for different block types
BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
BINK_SRC_X_OFF, ///< X components of motion value
BINK_SRC_Y_OFF, ///< Y components of motion value
BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
BINK_SRC_RUN, ///< run lengths for special fill block
BINK_NB_SRC
};
/**
* data needed to decode 4-bit Huffman-coded value
*/
typedef struct Tree {
int vlc_num; ///< tree number (in bink_trees[])
uint8_t syms[16]; ///< leaf value to symbol mapping
} Tree;
#define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
bink_trees[(tree).vlc_num].bits, 1)]
/**
* data structure used for decoding single Bink data type
*/
typedef struct Bundle {
int len; ///< length of number of entries to decode (in bits)
Tree tree; ///< Huffman tree-related data
uint8_t *data; ///< buffer for decoded symbols
uint8_t *data_end; ///< buffer end
uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
} Bundle;
/*
* Decoder context
*/
typedef struct BinkContext {
AVCodecContext *avctx;
DSPContext dsp;
BinkDSPContext bdsp;
AVFrame *pic, *last;
int version; ///< internal Bink file version
int has_alpha;
int swap_planes;
Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
int col_lastval; ///< value of last decoded high nibble in "colours" data type
} BinkContext;
/**
* Bink video block types
*/
enum BlockTypes {
SKIP_BLOCK = 0, ///< skipped block
SCALED_BLOCK, ///< block has size 16x16
MOTION_BLOCK, ///< block is copied from previous frame with some offset
RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
RESIDUE_BLOCK, ///< motion block with some difference added
INTRA_BLOCK, ///< intra DCT block
FILL_BLOCK, ///< block is filled with single colour
INTER_BLOCK, ///< motion block with DCT applied to the difference
PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
RAW_BLOCK, ///< uncoded 8x8 block
};
/**
* Initialize length length in all bundles.
*
* @param c decoder context
* @param width plane width
* @param bw plane width in 8x8 blocks
*/
static void init_lengths(BinkContext *c, int width, int bw)
{
width = FFALIGN(width, 8);
c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
c->bundle[BINK_SRC_INTRA_DC].len =
c->bundle[BINK_SRC_INTER_DC].len =
c->bundle[BINK_SRC_X_OFF].len =
c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
}
/**
* Allocate memory for bundles.
*
* @param c decoder context
*/
static av_cold void init_bundles(BinkContext *c)
{
int bw, bh, blocks;
int i;
bw = (c->avctx->width + 7) >> 3;
bh = (c->avctx->height + 7) >> 3;
blocks = bw * bh;
for (i = 0; i < BINKB_NB_SRC; i++) {
c->bundle[i].data = av_malloc(blocks * 64);
c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
}
}
/**
* Free memory used by bundles.
*
* @param c decoder context
*/
static av_cold void free_bundles(BinkContext *c)
{
int i;
for (i = 0; i < BINKB_NB_SRC; i++)
av_freep(&c->bundle[i].data);
}
/**
* Merge two consequent lists of equal size depending on bits read.
*
* @param gb context for reading bits
* @param dst buffer where merged list will be written to
* @param src pointer to the head of the first list (the second lists starts at src+size)
* @param size input lists size
*/
static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
{
uint8_t *src2 = src + size;
int size2 = size;
do {
if (!get_bits1(gb)) {
*dst++ = *src++;
size--;
} else {
*dst++ = *src2++;
size2--;
}
} while (size && size2);
while (size--)
*dst++ = *src++;
while (size2--)
*dst++ = *src2++;
}
/**
* Read information about Huffman tree used to decode data.
*
* @param gb context for reading bits
* @param tree pointer for storing tree data
*/
static void read_tree(GetBitContext *gb, Tree *tree)
{
uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
int i, t, len;
tree->vlc_num = get_bits(gb, 4);
if (!tree->vlc_num) {
for (i = 0; i < 16; i++)
tree->syms[i] = i;
return;
}
if (get_bits1(gb)) {
len = get_bits(gb, 3);
for (i = 0; i <= len; i++) {
tree->syms[i] = get_bits(gb, 4);
tmp1[tree->syms[i]] = 1;
}
for (i = 0; i < 16 && len < 16 - 1; i++)
if (!tmp1[i])
tree->syms[++len] = i;
} else {
len = get_bits(gb, 2);
for (i = 0; i < 16; i++)
in[i] = i;
for (i = 0; i <= len; i++) {
int size = 1 << i;
for (t = 0; t < 16; t += size << 1)
merge(gb, out + t, in + t, size);
FFSWAP(uint8_t*, in, out);
}
memcpy(tree->syms, in, 16);
}
}
/**
* Prepare bundle for decoding data.
*
* @param gb context for reading bits
* @param c decoder context
* @param bundle_num number of the bundle to initialize
*/
static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
{
int i;
if (bundle_num == BINK_SRC_COLORS) {
for (i = 0; i < 16; i++)
read_tree(gb, &c->col_high[i]);
c->col_lastval = 0;
}
if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
read_tree(gb, &c->bundle[bundle_num].tree);
c->bundle[bundle_num].cur_dec =
c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
}
/**
* common check before starting decoding bundle data
*
* @param gb context for reading bits
* @param b bundle
* @param t variable where number of elements to decode will be stored
*/
#define CHECK_READ_VAL(gb, b, t) \
if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
return 0; \
t = get_bits(gb, b->len); \
if (!t) { \
b->cur_dec = NULL; \
return 0; \
} \
static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
{
int t, v;
const uint8_t *dec_end;
CHECK_READ_VAL(gb, b, t);
dec_end = b->cur_dec + t;
if (dec_end > b->data_end) {
av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
v = get_bits(gb, 4);
memset(b->cur_dec, v, t);
b->cur_dec += t;
} else {
while (b->cur_dec < dec_end)
*b->cur_dec++ = GET_HUFF(gb, b->tree);
}
return 0;
}
static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
{
int t, sign, v;
const uint8_t *dec_end;
CHECK_READ_VAL(gb, b, t);
dec_end = b->cur_dec + t;
if (dec_end > b->data_end) {
av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
v = get_bits(gb, 4);
if (v) {
sign = -get_bits1(gb);
v = (v ^ sign) - sign;
}
memset(b->cur_dec, v, t);
b->cur_dec += t;
} else {
while (b->cur_dec < dec_end) {
v = GET_HUFF(gb, b->tree);
if (v) {
sign = -get_bits1(gb);
v = (v ^ sign) - sign;
}
*b->cur_dec++ = v;
}
}
return 0;
}
static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
{
int t, v;
int last = 0;
const uint8_t *dec_end;
CHECK_READ_VAL(gb, b, t);
dec_end = b->cur_dec + t;
if (dec_end > b->data_end) {
av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
v = get_bits(gb, 4);
memset(b->cur_dec, v, t);
b->cur_dec += t;
} else {
while (b->cur_dec < dec_end) {
v = GET_HUFF(gb, b->tree);
if (v < 12) {
last = v;
*b->cur_dec++ = v;
} else {
int run = bink_rlelens[v - 12];
if (dec_end - b->cur_dec < run)
return AVERROR_INVALIDDATA;
memset(b->cur_dec, last, run);
b->cur_dec += run;
}
}
}
return 0;
}
static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
{
int t, v;
const uint8_t *dec_end;
CHECK_READ_VAL(gb, b, t);
dec_end = b->cur_dec + t;
if (dec_end > b->data_end) {
av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
return AVERROR_INVALIDDATA;
}
while (b->cur_dec < dec_end) {
v = GET_HUFF(gb, b->tree);
v |= GET_HUFF(gb, b->tree) << 4;
*b->cur_dec++ = v;
}
return 0;
}
static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
{
int t, sign, v;
const uint8_t *dec_end;
CHECK_READ_VAL(gb, b, t);
dec_end = b->cur_dec + t;
if (dec_end > b->data_end) {
av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
v = GET_HUFF(gb, b->tree);
v = (c->col_lastval << 4) | v;
if (c->version < 'i') {
sign = ((int8_t) v) >> 7;
v = ((v & 0x7F) ^ sign) - sign;
v += 0x80;
}
memset(b->cur_dec, v, t);
b->cur_dec += t;
} else {
while (b->cur_dec < dec_end) {
c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
v = GET_HUFF(gb, b->tree);
v = (c->col_lastval << 4) | v;
if (c->version < 'i') {
sign = ((int8_t) v) >> 7;
v = ((v & 0x7F) ^ sign) - sign;
v += 0x80;
}
*b->cur_dec++ = v;
}
}
return 0;
}
/** number of bits used to store first DC value in bundle */
#define DC_START_BITS 11
static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
int start_bits, int has_sign)
{
int i, j, len, len2, bsize, sign, v, v2;
int16_t *dst = (int16_t*)b->cur_dec;
int16_t *dst_end = (int16_t*)b->data_end;
CHECK_READ_VAL(gb, b, len);
v = get_bits(gb, start_bits - has_sign);
if (v && has_sign) {
sign = -get_bits1(gb);
v = (v ^ sign) - sign;
}
if (dst_end - dst < 1)
return AVERROR_INVALIDDATA;
*dst++ = v;
len--;
for (i = 0; i < len; i += 8) {
len2 = FFMIN(len - i, 8);
if (dst_end - dst < len2)
return AVERROR_INVALIDDATA;
bsize = get_bits(gb, 4);
if (bsize) {
for (j = 0; j < len2; j++) {
v2 = get_bits(gb, bsize);
if (v2) {
sign = -get_bits1(gb);
v2 = (v2 ^ sign) - sign;
}
v += v2;
*dst++ = v;
if (v < -32768 || v > 32767) {
av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
return AVERROR_INVALIDDATA;
}
}
} else {
for (j = 0; j < len2; j++)
*dst++ = v;
}
}
b->cur_dec = (uint8_t*)dst;
return 0;
}
/**
* Retrieve next value from bundle.
*
* @param c decoder context
* @param bundle bundle number
*/
static inline int get_value(BinkContext *c, int bundle)
{
int ret;
if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
return *c->bundle[bundle].cur_ptr++;
if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
return (int8_t)*c->bundle[bundle].cur_ptr++;
ret = *(int16_t*)c->bundle[bundle].cur_ptr;
c->bundle[bundle].cur_ptr += 2;
return ret;
}
static void binkb_init_bundle(BinkContext *c, int bundle_num)
{
c->bundle[bundle_num].cur_dec =
c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
c->bundle[bundle_num].len = 13;
}
static void binkb_init_bundles(BinkContext *c)
{
int i;
for (i = 0; i < BINKB_NB_SRC; i++)
binkb_init_bundle(c, i);
}
static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
{
const int bits = binkb_bundle_sizes[bundle_num];
const int mask = 1 << (bits - 1);
const int issigned = binkb_bundle_signed[bundle_num];
Bundle *b = &c->bundle[bundle_num];
int i, len;
CHECK_READ_VAL(gb, b, len);
if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
return AVERROR_INVALIDDATA;
if (bits <= 8) {
if (!issigned) {
for (i = 0; i < len; i++)
*b->cur_dec++ = get_bits(gb, bits);
} else {
for (i = 0; i < len; i++)
*b->cur_dec++ = get_bits(gb, bits) - mask;
}
} else {
int16_t *dst = (int16_t*)b->cur_dec;
if (!issigned) {
for (i = 0; i < len; i++)
*dst++ = get_bits(gb, bits);
} else {
for (i = 0; i < len; i++)
*dst++ = get_bits(gb, bits) - mask;
}
b->cur_dec = (uint8_t*)dst;
}
return 0;
}
static inline int binkb_get_value(BinkContext *c, int bundle_num)
{
int16_t ret;
const int bits = binkb_bundle_sizes[bundle_num];
if (bits <= 8) {
int val = *c->bundle[bundle_num].cur_ptr++;
return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
}
ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
c->bundle[bundle_num].cur_ptr += 2;
return ret;
}
/**
* Read 8x8 block of DCT coefficients.
*
* @param gb context for reading bits
* @param block place for storing coefficients
* @param scan scan order table
* @param quant_matrices quantization matrices
* @return 0 for success, negative value in other cases
*/
static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
const int32_t quant_matrices[16][64], int q)
{
int coef_list[128];
int mode_list[128];
int i, t, bits, ccoef, mode, sign;
int list_start = 64, list_end = 64, list_pos;
int coef_count = 0;
int coef_idx[64];
int quant_idx;
const int32_t *quant;
coef_list[list_end] = 4; mode_list[list_end++] = 0;
coef_list[list_end] = 24; mode_list[list_end++] = 0;
coef_list[list_end] = 44; mode_list[list_end++] = 0;
coef_list[list_end] = 1; mode_list[list_end++] = 3;
coef_list[list_end] = 2; mode_list[list_end++] = 3;
coef_list[list_end] = 3; mode_list[list_end++] = 3;
for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
list_pos = list_start;
while (list_pos < list_end) {
if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
list_pos++;
continue;
}
ccoef = coef_list[list_pos];
mode = mode_list[list_pos];
switch (mode) {
case 0:
coef_list[list_pos] = ccoef + 4;
mode_list[list_pos] = 1;
case 2:
if (mode == 2) {
coef_list[list_pos] = 0;
mode_list[list_pos++] = 0;
}
for (i = 0; i < 4; i++, ccoef++) {
if (get_bits1(gb)) {
coef_list[--list_start] = ccoef;
mode_list[ list_start] = 3;
} else {
if (!bits) {
t = 1 - (get_bits1(gb) << 1);
} else {
t = get_bits(gb, bits) | 1 << bits;
sign = -get_bits1(gb);
t = (t ^ sign) - sign;
}
block[scan[ccoef]] = t;
coef_idx[coef_count++] = ccoef;
}
}
break;
case 1:
mode_list[list_pos] = 2;
for (i = 0; i < 3; i++) {
ccoef += 4;
coef_list[list_end] = ccoef;
mode_list[list_end++] = 2;
}
break;
case 3:
if (!bits) {
t = 1 - (get_bits1(gb) << 1);
} else {
t = get_bits(gb, bits) | 1 << bits;
sign = -get_bits1(gb);
t = (t ^ sign) - sign;
}
block[scan[ccoef]] = t;
coef_idx[coef_count++] = ccoef;
coef_list[list_pos] = 0;
mode_list[list_pos++] = 0;
break;
}
}
}
if (q == -1) {
quant_idx = get_bits(gb, 4);
} else {
quant_idx = q;
}
quant = quant_matrices[quant_idx];
block[0] = (block[0] * quant[0]) >> 11;
for (i = 0; i < coef_count; i++) {
int idx = coef_idx[i];
block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
}
return 0;
}
/**
* Read 8x8 block with residue after motion compensation.
*
* @param gb context for reading bits
* @param block place to store read data
* @param masks_count number of masks to decode
* @return 0 on success, negative value in other cases
*/
static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
{
int coef_list[128];
int mode_list[128];
int i, sign, mask, ccoef, mode;
int list_start = 64, list_end = 64, list_pos;
int nz_coeff[64];
int nz_coeff_count = 0;
coef_list[list_end] = 4; mode_list[list_end++] = 0;
coef_list[list_end] = 24; mode_list[list_end++] = 0;
coef_list[list_end] = 44; mode_list[list_end++] = 0;
coef_list[list_end] = 0; mode_list[list_end++] = 2;
for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
for (i = 0; i < nz_coeff_count; i++) {
if (!get_bits1(gb))
continue;
if (block[nz_coeff[i]] < 0)
block[nz_coeff[i]] -= mask;
else
block[nz_coeff[i]] += mask;
masks_count--;
if (masks_count < 0)
return 0;
}
list_pos = list_start;
while (list_pos < list_end) {
if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
list_pos++;
continue;
}
ccoef = coef_list[list_pos];
mode = mode_list[list_pos];
switch (mode) {
case 0:
coef_list[list_pos] = ccoef + 4;
mode_list[list_pos] = 1;
case 2:
if (mode == 2) {
coef_list[list_pos] = 0;
mode_list[list_pos++] = 0;
}
for (i = 0; i < 4; i++, ccoef++) {
if (get_bits1(gb)) {
coef_list[--list_start] = ccoef;
mode_list[ list_start] = 3;
} else {
nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
sign = -get_bits1(gb);
block[bink_scan[ccoef]] = (mask ^ sign) - sign;
masks_count--;
if (masks_count < 0)
return 0;
}
}
break;
case 1:
mode_list[list_pos] = 2;
for (i = 0; i < 3; i++) {
ccoef += 4;
coef_list[list_end] = ccoef;
mode_list[list_end++] = 2;
}
break;
case 3:
nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
sign = -get_bits1(gb);
block[bink_scan[ccoef]] = (mask ^ sign) - sign;
coef_list[list_pos] = 0;
mode_list[list_pos++] = 0;
masks_count--;
if (masks_count < 0)
return 0;
break;
}
}
}
return 0;
}
/**
* Copy 8x8 block from source to destination, where src and dst may be overlapped
*/
static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
{
uint8_t tmp[64];
int i;
for (i = 0; i < 8; i++)
memcpy(tmp + i*8, src + i*stride, 8);
for (i = 0; i < 8; i++)
memcpy(dst + i*stride, tmp + i*8, 8);
}
static int binkb_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
int is_key, int is_chroma)
{
int blk, ret;
int i, j, bx, by;
uint8_t *dst, *ref, *ref_start, *ref_end;
int v, col[2];
const uint8_t *scan;
int xoff, yoff;
LOCAL_ALIGNED_16(int16_t, block, [64]);
LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
int coordmap[64];
int ybias = is_key ? -15 : 0;
int qp;
const int stride = c->pic->linesize[plane_idx];
int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
binkb_init_bundles(c);
ref_start = c->pic->data[plane_idx];
ref_end = c->pic->data[plane_idx] + (bh * c->pic->linesize[plane_idx] + bw) * 8;
for (i = 0; i < 64; i++)
coordmap[i] = (i & 7) + (i >> 3) * stride;
for (by = 0; by < bh; by++) {
for (i = 0; i < BINKB_NB_SRC; i++) {
if ((ret = binkb_read_bundle(c, gb, i)) < 0)
return ret;
}
dst = c->pic->data[plane_idx] + 8*by*stride;
for (bx = 0; bx < bw; bx++, dst += 8) {
blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
switch (blk) {
case 0:
break;
case 1:
scan = bink_patterns[get_bits(gb, 4)];
i = 0;
do {
int mode, run;
mode = get_bits1(gb);
run = get_bits(gb, binkb_runbits[i]) + 1;
i += run;
if (i > 64) {
av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
return AVERROR_INVALIDDATA;
}
if (mode) {
v = binkb_get_value(c, BINKB_SRC_COLORS);
for (j = 0; j < run; j++)
dst[coordmap[*scan++]] = v;
} else {
for (j = 0; j < run; j++)
dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
}
} while (i < 63);
if (i == 63)
dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
break;
case 2:
memset(dctblock, 0, sizeof(*dctblock) * 64);
dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
read_dct_coeffs(gb, dctblock, bink_scan, binkb_intra_quant, qp);
c->bdsp.idct_put(dst, stride, dctblock);
break;
case 3:
xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
ref = dst + xoff + yoff * stride;
if (ref < ref_start || ref + 8*stride > ref_end) {
av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
} else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
} else {
put_pixels8x8_overlapped(dst, ref, stride);
}
c->dsp.clear_block(block);
v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
read_residue(gb, block, v);
c->dsp.add_pixels8(dst, block, stride);
break;
case 4:
xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
ref = dst + xoff + yoff * stride;
if (ref < ref_start || ref + 8 * stride > ref_end) {
av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
} else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
} else {
put_pixels8x8_overlapped(dst, ref, stride);
}
memset(dctblock, 0, sizeof(*dctblock) * 64);
dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
read_dct_coeffs(gb, dctblock, bink_scan, binkb_inter_quant, qp);
c->bdsp.idct_add(dst, stride, dctblock);
break;
case 5:
v = binkb_get_value(c, BINKB_SRC_COLORS);
c->dsp.fill_block_tab[1](dst, v, stride, 8);
break;
case 6:
for (i = 0; i < 2; i++)
col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
for (i = 0; i < 8; i++) {
v = binkb_get_value(c, BINKB_SRC_PATTERN);
for (j = 0; j < 8; j++, v >>= 1)
dst[i*stride + j] = col[v & 1];
}
break;
case 7:
xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
ref = dst + xoff + yoff * stride;
if (ref < ref_start || ref + 8 * stride > ref_end) {
av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
} else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
} else {
put_pixels8x8_overlapped(dst, ref, stride);
}
break;
case 8:
for (i = 0; i < 8; i++)
memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
break;
default:
av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
return AVERROR_INVALIDDATA;
}
}
}
if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
return 0;
}
static int bink_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
int is_chroma)
{
int blk, ret;
int i, j, bx, by;
uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
int v, col[2];
const uint8_t *scan;
int xoff, yoff;
LOCAL_ALIGNED_16(int16_t, block, [64]);
LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
int coordmap[64];
const int stride = c->pic->linesize[plane_idx];
int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
int width = c->avctx->width >> is_chroma;
init_lengths(c, FFMAX(width, 8), bw);
for (i = 0; i < BINK_NB_SRC; i++)
read_bundle(gb, c, i);
ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
: c->pic->data[plane_idx];
ref_end = ref_start
+ (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
for (i = 0; i < 64; i++)
coordmap[i] = (i & 7) + (i >> 3) * stride;
for (by = 0; by < bh; by++) {
if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
return ret;
if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
return ret;
if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
return ret;
if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
return ret;
if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
return ret;
if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
return ret;
if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
return ret;
if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
return ret;
if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
return ret;
if (by == bh)
break;
dst = c->pic->data[plane_idx] + 8*by*stride;
prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
: c->pic->data[plane_idx]) + 8*by*stride;
for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
blk = get_value(c, BINK_SRC_BLOCK_TYPES);
// 16x16 block type on odd line means part of the already decoded block, so skip it
if ((by & 1) && blk == SCALED_BLOCK) {
bx++;
dst += 8;
prev += 8;
continue;
}
switch (blk) {
case SKIP_BLOCK:
c->dsp.put_pixels_tab[1][0](dst, prev, stride, 8);
break;
case SCALED_BLOCK:
blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
switch (blk) {
case RUN_BLOCK:
scan = bink_patterns[get_bits(gb, 4)];
i = 0;
do {
int run = get_value(c, BINK_SRC_RUN) + 1;
i += run;
if (i > 64) {
av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
v = get_value(c, BINK_SRC_COLORS);
for (j = 0; j < run; j++)
ublock[*scan++] = v;
} else {
for (j = 0; j < run; j++)
ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
}
} while (i < 63);
if (i == 63)
ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
break;
case INTRA_BLOCK:
memset(dctblock, 0, sizeof(*dctblock) * 64);
dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
c->bdsp.idct_put(ublock, 8, dctblock);
break;
case FILL_BLOCK:
v = get_value(c, BINK_SRC_COLORS);
c->dsp.fill_block_tab[0](dst, v, stride, 16);
break;
case PATTERN_BLOCK:
for (i = 0; i < 2; i++)
col[i] = get_value(c, BINK_SRC_COLORS);
for (j = 0; j < 8; j++) {
v = get_value(c, BINK_SRC_PATTERN);
for (i = 0; i < 8; i++, v >>= 1)
ublock[i + j*8] = col[v & 1];
}
break;
case RAW_BLOCK:
for (j = 0; j < 8; j++)
for (i = 0; i < 8; i++)
ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
break;
default:
av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
return AVERROR_INVALIDDATA;
}
if (blk != FILL_BLOCK)
c->bdsp.scale_block(ublock, dst, stride);
bx++;
dst += 8;
prev += 8;
break;
case MOTION_BLOCK:
xoff = get_value(c, BINK_SRC_X_OFF);
yoff = get_value(c, BINK_SRC_Y_OFF);
ref = prev + xoff + yoff * stride;
if (ref < ref_start || ref > ref_end) {
av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
bx*8 + xoff, by*8 + yoff);
return AVERROR_INVALIDDATA;
}
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
break;
case RUN_BLOCK:
scan = bink_patterns[get_bits(gb, 4)];
i = 0;
do {
int run = get_value(c, BINK_SRC_RUN) + 1;
i += run;
if (i > 64) {
av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb)) {
v = get_value(c, BINK_SRC_COLORS);
for (j = 0; j < run; j++)
dst[coordmap[*scan++]] = v;
} else {
for (j = 0; j < run; j++)
dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
}
} while (i < 63);
if (i == 63)
dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
break;
case RESIDUE_BLOCK:
xoff = get_value(c, BINK_SRC_X_OFF);
yoff = get_value(c, BINK_SRC_Y_OFF);
ref = prev + xoff + yoff * stride;
if (ref < ref_start || ref > ref_end) {
av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
bx*8 + xoff, by*8 + yoff);
return AVERROR_INVALIDDATA;
}
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
c->dsp.clear_block(block);
v = get_bits(gb, 7);
read_residue(gb, block, v);
c->dsp.add_pixels8(dst, block, stride);
break;
case INTRA_BLOCK:
memset(dctblock, 0, sizeof(*dctblock) * 64);
dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
c->bdsp.idct_put(dst, stride, dctblock);
break;
case FILL_BLOCK:
v = get_value(c, BINK_SRC_COLORS);
c->dsp.fill_block_tab[1](dst, v, stride, 8);
break;
case INTER_BLOCK:
xoff = get_value(c, BINK_SRC_X_OFF);
yoff = get_value(c, BINK_SRC_Y_OFF);
ref = prev + xoff + yoff * stride;
c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
memset(dctblock, 0, sizeof(*dctblock) * 64);
dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
c->bdsp.idct_add(dst, stride, dctblock);
break;
case PATTERN_BLOCK:
for (i = 0; i < 2; i++)
col[i] = get_value(c, BINK_SRC_COLORS);
for (i = 0; i < 8; i++) {
v = get_value(c, BINK_SRC_PATTERN);
for (j = 0; j < 8; j++, v >>= 1)
dst[i*stride + j] = col[v & 1];
}
break;
case RAW_BLOCK:
for (i = 0; i < 8; i++)
memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
break;
default:
av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
return AVERROR_INVALIDDATA;
}
}
}
if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
{
BinkContext * const c = avctx->priv_data;
GetBitContext gb;
int plane, plane_idx, ret;
int bits_count = pkt->size << 3;
if (c->version > 'b') {
if(c->pic->data[0])
avctx->release_buffer(avctx, c->pic);
if ((ret = ff_get_buffer(avctx, c->pic)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
} else {
if ((ret = avctx->reget_buffer(avctx, c->pic)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return ret;
}
}
init_get_bits(&gb, pkt->data, bits_count);
if (c->has_alpha) {
if (c->version >= 'i')
skip_bits_long(&gb, 32);
if ((ret = bink_decode_plane(c, &gb, 3, 0)) < 0)
return ret;
}
if (c->version >= 'i')
skip_bits_long(&gb, 32);
for (plane = 0; plane < 3; plane++) {
plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
if (c->version > 'b') {
if ((ret = bink_decode_plane(c, &gb, plane_idx, !!plane)) < 0)
return ret;
} else {
if ((ret = binkb_decode_plane(c, &gb, plane_idx, !pkt->pts, !!plane)) < 0)
return ret;
}
if (get_bits_count(&gb) >= bits_count)
break;
}
emms_c();
*got_frame = 1;
*(AVFrame*)data = *c->pic;
if (c->version > 'b')
FFSWAP(AVFrame*, c->pic, c->last);
/* always report that the buffer was completely consumed */
return pkt->size;
}
/**
* Caclulate quantization tables for version b
*/
static av_cold void binkb_calc_quant(void)
{
uint8_t inv_bink_scan[64];
double s[64];
int i, j;
for (j = 0; j < 8; j++) {
for (i = 0; i < 8; i++) {
if (j && j != 4)
if (i && i != 4)
s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
else
s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
else
if (i && i != 4)
s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
else
s[j*8 + i] = 1.0;
}
}
for (i = 0; i < 64; i++)
inv_bink_scan[bink_scan[i]] = i;
for (j = 0; j < 16; j++) {
for (i = 0; i < 64; i++) {
int k = inv_bink_scan[i];
if (s[i] == 1.0) {
binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
binkb_num[j]/binkb_den[j];
binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
binkb_num[j]/binkb_den[j];
} else {
binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
binkb_num[j]/(double)binkb_den[j];
binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
binkb_num[j]/(double)binkb_den[j];
}
}
}
}
static av_cold int decode_init(AVCodecContext *avctx)
{
BinkContext * const c = avctx->priv_data;
static VLC_TYPE table[16 * 128][2];
static int binkb_initialised = 0;
int i, ret;
int flags;
c->version = avctx->codec_tag >> 24;
if (avctx->extradata_size < 4) {
av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
return AVERROR_INVALIDDATA;
}
flags = AV_RL32(avctx->extradata);
c->has_alpha = flags & BINK_FLAG_ALPHA;
c->swap_planes = c->version >= 'h';
if (!bink_trees[15].table) {
for (i = 0; i < 16; i++) {
const int maxbits = bink_tree_lens[i][15];
bink_trees[i].table = table + i*128;
bink_trees[i].table_allocated = 1 << maxbits;
init_vlc(&bink_trees[i], maxbits, 16,
bink_tree_lens[i], 1, 1,
bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
}
}
c->avctx = avctx;
c->pic = avcodec_alloc_frame();
c->last = avcodec_alloc_frame();
if (!c->pic || !c->last) {
avcodec_free_frame(&c->pic);
avcodec_free_frame(&c->last);
return AVERROR(ENOMEM);
}
if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
return ret;
avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
ff_dsputil_init(&c->dsp, avctx);
ff_binkdsp_init(&c->bdsp);
init_bundles(c);
if (c->version == 'b') {
if (!binkb_initialised) {
binkb_calc_quant();
binkb_initialised = 1;
}
}
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
BinkContext * const c = avctx->priv_data;
if (c->pic->data[0])
avctx->release_buffer(avctx, c->pic);
if (c->last->data[0])
avctx->release_buffer(avctx, c->last);
avcodec_free_frame(&c->pic);
avcodec_free_frame(&c->last);
free_bundles(c);
return 0;
}
AVCodec ff_bink_decoder = {
.name = "binkvideo",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_BINKVIDEO,
.priv_data_size = sizeof(BinkContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("Bink video"),
.capabilities = CODEC_CAP_DR1,
};