mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1013 lines
31 KiB
1013 lines
31 KiB
/* |
|
* IMC compatible decoder |
|
* Copyright (c) 2002-2004 Maxim Poliakovski |
|
* Copyright (c) 2006 Benjamin Larsson |
|
* Copyright (c) 2006 Konstantin Shishkov |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* IMC - Intel Music Coder |
|
* A mdct based codec using a 256 points large transform |
|
* divided into 32 bands with some mix of scale factors. |
|
* Only mono is supported. |
|
* |
|
*/ |
|
|
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/float_dsp.h" |
|
#include "libavutil/internal.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
#include "fft.h" |
|
#include "internal.h" |
|
#include "sinewin.h" |
|
|
|
#include "imcdata.h" |
|
|
|
#define IMC_BLOCK_SIZE 64 |
|
#define IMC_FRAME_ID 0x21 |
|
#define BANDS 32 |
|
#define COEFFS 256 |
|
|
|
typedef struct IMCChannel { |
|
float old_floor[BANDS]; |
|
float flcoeffs1[BANDS]; |
|
float flcoeffs2[BANDS]; |
|
float flcoeffs3[BANDS]; |
|
float flcoeffs4[BANDS]; |
|
float flcoeffs5[BANDS]; |
|
float flcoeffs6[BANDS]; |
|
float CWdecoded[COEFFS]; |
|
|
|
int bandWidthT[BANDS]; ///< codewords per band |
|
int bitsBandT[BANDS]; ///< how many bits per codeword in band |
|
int CWlengthT[COEFFS]; ///< how many bits in each codeword |
|
int levlCoeffBuf[BANDS]; |
|
int bandFlagsBuf[BANDS]; ///< flags for each band |
|
int sumLenArr[BANDS]; ///< bits for all coeffs in band |
|
int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not |
|
int skipFlagBits[BANDS]; ///< bits used to code skip flags |
|
int skipFlagCount[BANDS]; ///< skipped coeffients per band |
|
int skipFlags[COEFFS]; ///< skip coefficient decoding or not |
|
int codewords[COEFFS]; ///< raw codewords read from bitstream |
|
|
|
float last_fft_im[COEFFS]; |
|
|
|
int decoder_reset; |
|
} IMCChannel; |
|
|
|
typedef struct { |
|
AVFrame frame; |
|
|
|
IMCChannel chctx[2]; |
|
|
|
/** MDCT tables */ |
|
//@{ |
|
float mdct_sine_window[COEFFS]; |
|
float post_cos[COEFFS]; |
|
float post_sin[COEFFS]; |
|
float pre_coef1[COEFFS]; |
|
float pre_coef2[COEFFS]; |
|
//@} |
|
|
|
float sqrt_tab[30]; |
|
GetBitContext gb; |
|
|
|
DSPContext dsp; |
|
AVFloatDSPContext fdsp; |
|
FFTContext fft; |
|
DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2]; |
|
float *out_samples; |
|
|
|
int8_t cyclTab[32], cyclTab2[32]; |
|
float weights1[31], weights2[31]; |
|
} IMCContext; |
|
|
|
static VLC huffman_vlc[4][4]; |
|
|
|
#define VLC_TABLES_SIZE 9512 |
|
|
|
static const int vlc_offsets[17] = { |
|
0, 640, 1156, 1732, 2308, 2852, 3396, 3924, |
|
4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE |
|
}; |
|
|
|
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]; |
|
|
|
static inline double freq2bark(double freq) |
|
{ |
|
return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076); |
|
} |
|
|
|
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate) |
|
{ |
|
double freqmin[32], freqmid[32], freqmax[32]; |
|
double scale = sampling_rate / (256.0 * 2.0 * 2.0); |
|
double nyquist_freq = sampling_rate * 0.5; |
|
double freq, bark, prev_bark = 0, tf, tb; |
|
int i, j; |
|
|
|
for (i = 0; i < 32; i++) { |
|
freq = (band_tab[i] + band_tab[i + 1] - 1) * scale; |
|
bark = freq2bark(freq); |
|
|
|
if (i > 0) { |
|
tb = bark - prev_bark; |
|
q->weights1[i - 1] = pow(10.0, -1.0 * tb); |
|
q->weights2[i - 1] = pow(10.0, -2.7 * tb); |
|
} |
|
prev_bark = bark; |
|
|
|
freqmid[i] = freq; |
|
|
|
tf = freq; |
|
while (tf < nyquist_freq) { |
|
tf += 0.5; |
|
tb = freq2bark(tf); |
|
if (tb > bark + 0.5) |
|
break; |
|
} |
|
freqmax[i] = tf; |
|
|
|
tf = freq; |
|
while (tf > 0.0) { |
|
tf -= 0.5; |
|
tb = freq2bark(tf); |
|
if (tb <= bark - 0.5) |
|
break; |
|
} |
|
freqmin[i] = tf; |
|
} |
|
|
|
for (i = 0; i < 32; i++) { |
|
freq = freqmax[i]; |
|
for (j = 31; j > 0 && freq <= freqmid[j]; j--); |
|
q->cyclTab[i] = j + 1; |
|
|
|
freq = freqmin[i]; |
|
for (j = 0; j < 32 && freq >= freqmid[j]; j++); |
|
q->cyclTab2[i] = j - 1; |
|
} |
|
} |
|
|
|
static av_cold int imc_decode_init(AVCodecContext *avctx) |
|
{ |
|
int i, j, ret; |
|
IMCContext *q = avctx->priv_data; |
|
double r1, r2; |
|
|
|
if (avctx->codec_id == AV_CODEC_ID_IMC) |
|
avctx->channels = 1; |
|
|
|
if (avctx->channels > 2) { |
|
av_log_ask_for_sample(avctx, "Number of channels is not supported\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
for (j = 0; j < avctx->channels; j++) { |
|
q->chctx[j].decoder_reset = 1; |
|
|
|
for (i = 0; i < BANDS; i++) |
|
q->chctx[j].old_floor[i] = 1.0; |
|
|
|
for (i = 0; i < COEFFS / 2; i++) |
|
q->chctx[j].last_fft_im[i] = 0; |
|
} |
|
|
|
/* Build mdct window, a simple sine window normalized with sqrt(2) */ |
|
ff_sine_window_init(q->mdct_sine_window, COEFFS); |
|
for (i = 0; i < COEFFS; i++) |
|
q->mdct_sine_window[i] *= sqrt(2.0); |
|
for (i = 0; i < COEFFS / 2; i++) { |
|
q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI); |
|
q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI); |
|
|
|
r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI); |
|
r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI); |
|
|
|
if (i & 0x1) { |
|
q->pre_coef1[i] = (r1 + r2) * sqrt(2.0); |
|
q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0); |
|
} else { |
|
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0); |
|
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0); |
|
} |
|
} |
|
|
|
/* Generate a square root table */ |
|
|
|
for (i = 0; i < 30; i++) |
|
q->sqrt_tab[i] = sqrt(i); |
|
|
|
/* initialize the VLC tables */ |
|
for (i = 0; i < 4 ; i++) { |
|
for (j = 0; j < 4; j++) { |
|
huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]]; |
|
huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j]; |
|
init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i], |
|
imc_huffman_lens[i][j], 1, 1, |
|
imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC); |
|
} |
|
} |
|
|
|
if (avctx->codec_id == AV_CODEC_ID_IAC) { |
|
iac_generate_tabs(q, avctx->sample_rate); |
|
} else { |
|
memcpy(q->cyclTab, cyclTab, sizeof(cyclTab)); |
|
memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2)); |
|
memcpy(q->weights1, imc_weights1, sizeof(imc_weights1)); |
|
memcpy(q->weights2, imc_weights2, sizeof(imc_weights2)); |
|
} |
|
|
|
if ((ret = ff_fft_init(&q->fft, 7, 1))) { |
|
av_log(avctx, AV_LOG_INFO, "FFT init failed\n"); |
|
return ret; |
|
} |
|
ff_dsputil_init(&q->dsp, avctx); |
|
avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT); |
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO |
|
: AV_CH_LAYOUT_STEREO; |
|
|
|
avcodec_get_frame_defaults(&q->frame); |
|
avctx->coded_frame = &q->frame; |
|
|
|
return 0; |
|
} |
|
|
|
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1, |
|
float *flcoeffs2, int *bandWidthT, |
|
float *flcoeffs3, float *flcoeffs5) |
|
{ |
|
float workT1[BANDS]; |
|
float workT2[BANDS]; |
|
float workT3[BANDS]; |
|
float snr_limit = 1.e-30; |
|
float accum = 0.0; |
|
int i, cnt2; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
flcoeffs5[i] = workT2[i] = 0.0; |
|
if (bandWidthT[i]) { |
|
workT1[i] = flcoeffs1[i] * flcoeffs1[i]; |
|
flcoeffs3[i] = 2.0 * flcoeffs2[i]; |
|
} else { |
|
workT1[i] = 0.0; |
|
flcoeffs3[i] = -30000.0; |
|
} |
|
workT3[i] = bandWidthT[i] * workT1[i] * 0.01; |
|
if (workT3[i] <= snr_limit) |
|
workT3[i] = 0.0; |
|
} |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++) |
|
flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i]; |
|
workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i]; |
|
} |
|
|
|
for (i = 1; i < BANDS; i++) { |
|
accum = (workT2[i - 1] + accum) * q->weights1[i - 1]; |
|
flcoeffs5[i] += accum; |
|
} |
|
|
|
for (i = 0; i < BANDS; i++) |
|
workT2[i] = 0.0; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--) |
|
flcoeffs5[cnt2] += workT3[i]; |
|
workT2[cnt2+1] += workT3[i]; |
|
} |
|
|
|
accum = 0.0; |
|
|
|
for (i = BANDS-2; i >= 0; i--) { |
|
accum = (workT2[i+1] + accum) * q->weights2[i]; |
|
flcoeffs5[i] += accum; |
|
// there is missing code here, but it seems to never be triggered |
|
} |
|
} |
|
|
|
|
|
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code, |
|
int *levlCoeffs) |
|
{ |
|
int i; |
|
VLC *hufftab[4]; |
|
int start = 0; |
|
const uint8_t *cb_sel; |
|
int s; |
|
|
|
s = stream_format_code >> 1; |
|
hufftab[0] = &huffman_vlc[s][0]; |
|
hufftab[1] = &huffman_vlc[s][1]; |
|
hufftab[2] = &huffman_vlc[s][2]; |
|
hufftab[3] = &huffman_vlc[s][3]; |
|
cb_sel = imc_cb_select[s]; |
|
|
|
if (stream_format_code & 4) |
|
start = 1; |
|
if (start) |
|
levlCoeffs[0] = get_bits(&q->gb, 7); |
|
for (i = start; i < BANDS; i++) { |
|
levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, |
|
hufftab[cb_sel[i]]->bits, 2); |
|
if (levlCoeffs[i] == 17) |
|
levlCoeffs[i] += get_bits(&q->gb, 4); |
|
} |
|
} |
|
|
|
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf, |
|
float *flcoeffs1, float *flcoeffs2) |
|
{ |
|
int i, level; |
|
float tmp, tmp2; |
|
// maybe some frequency division thingy |
|
|
|
flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125 |
|
flcoeffs2[0] = log2f(flcoeffs1[0]); |
|
tmp = flcoeffs1[0]; |
|
tmp2 = flcoeffs2[0]; |
|
|
|
for (i = 1; i < BANDS; i++) { |
|
level = levlCoeffBuf[i]; |
|
if (level == 16) { |
|
flcoeffs1[i] = 1.0; |
|
flcoeffs2[i] = 0.0; |
|
} else { |
|
if (level < 17) |
|
level -= 7; |
|
else if (level <= 24) |
|
level -= 32; |
|
else |
|
level -= 16; |
|
|
|
tmp *= imc_exp_tab[15 + level]; |
|
tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25 |
|
flcoeffs1[i] = tmp; |
|
flcoeffs2[i] = tmp2; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf, |
|
float *old_floor, float *flcoeffs1, |
|
float *flcoeffs2) |
|
{ |
|
int i; |
|
/* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors |
|
* and flcoeffs2 old scale factors |
|
* might be incomplete due to a missing table that is in the binary code |
|
*/ |
|
for (i = 0; i < BANDS; i++) { |
|
flcoeffs1[i] = 0; |
|
if (levlCoeffBuf[i] < 16) { |
|
flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i]; |
|
flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25 |
|
} else { |
|
flcoeffs1[i] = old_floor[i]; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Perform bit allocation depending on bits available |
|
*/ |
|
static int bit_allocation(IMCContext *q, IMCChannel *chctx, |
|
int stream_format_code, int freebits, int flag) |
|
{ |
|
int i, j; |
|
const float limit = -1.e20; |
|
float highest = 0.0; |
|
int indx; |
|
int t1 = 0; |
|
int t2 = 1; |
|
float summa = 0.0; |
|
int iacc = 0; |
|
int summer = 0; |
|
int rres, cwlen; |
|
float lowest = 1.e10; |
|
int low_indx = 0; |
|
float workT[32]; |
|
int flg; |
|
int found_indx = 0; |
|
|
|
for (i = 0; i < BANDS; i++) |
|
highest = FFMAX(highest, chctx->flcoeffs1[i]); |
|
|
|
for (i = 0; i < BANDS - 1; i++) |
|
chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]); |
|
chctx->flcoeffs4[BANDS - 1] = limit; |
|
|
|
highest = highest * 0.25; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
indx = -1; |
|
if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i]) |
|
indx = 0; |
|
|
|
if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i]) |
|
indx = 1; |
|
|
|
if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i]) |
|
indx = 2; |
|
|
|
if (indx == -1) |
|
return AVERROR_INVALIDDATA; |
|
|
|
chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag]; |
|
} |
|
|
|
if (stream_format_code & 0x2) { |
|
chctx->flcoeffs4[0] = limit; |
|
chctx->flcoeffs4[1] = limit; |
|
chctx->flcoeffs4[2] = limit; |
|
chctx->flcoeffs4[3] = limit; |
|
} |
|
|
|
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) { |
|
iacc += chctx->bandWidthT[i]; |
|
summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i]; |
|
} |
|
chctx->bandWidthT[BANDS - 1] = 0; |
|
summa = (summa * 0.5 - freebits) / iacc; |
|
|
|
|
|
for (i = 0; i < BANDS / 2; i++) { |
|
rres = summer - freebits; |
|
if ((rres >= -8) && (rres <= 8)) |
|
break; |
|
|
|
summer = 0; |
|
iacc = 0; |
|
|
|
for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) { |
|
cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6); |
|
|
|
chctx->bitsBandT[j] = cwlen; |
|
summer += chctx->bandWidthT[j] * cwlen; |
|
|
|
if (cwlen > 0) |
|
iacc += chctx->bandWidthT[j]; |
|
} |
|
|
|
flg = t2; |
|
t2 = 1; |
|
if (freebits < summer) |
|
t2 = -1; |
|
if (i == 0) |
|
flg = t2; |
|
if (flg != t2) |
|
t1++; |
|
|
|
summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa; |
|
} |
|
|
|
for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) { |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) |
|
chctx->CWlengthT[j] = chctx->bitsBandT[i]; |
|
} |
|
|
|
if (freebits > summer) { |
|
for (i = 0; i < BANDS; i++) { |
|
workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20 |
|
: (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415); |
|
} |
|
|
|
highest = 0.0; |
|
|
|
do { |
|
if (highest <= -1.e20) |
|
break; |
|
|
|
found_indx = 0; |
|
highest = -1.e20; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
if (workT[i] > highest) { |
|
highest = workT[i]; |
|
found_indx = i; |
|
} |
|
} |
|
|
|
if (highest > -1.e20) { |
|
workT[found_indx] -= 2.0; |
|
if (++chctx->bitsBandT[found_indx] == 6) |
|
workT[found_indx] = -1.e20; |
|
|
|
for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) { |
|
chctx->CWlengthT[j]++; |
|
summer++; |
|
} |
|
} |
|
} while (freebits > summer); |
|
} |
|
if (freebits < summer) { |
|
for (i = 0; i < BANDS; i++) { |
|
workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585) |
|
: 1.e20; |
|
} |
|
if (stream_format_code & 0x2) { |
|
workT[0] = 1.e20; |
|
workT[1] = 1.e20; |
|
workT[2] = 1.e20; |
|
workT[3] = 1.e20; |
|
} |
|
while (freebits < summer) { |
|
lowest = 1.e10; |
|
low_indx = 0; |
|
for (i = 0; i < BANDS; i++) { |
|
if (workT[i] < lowest) { |
|
lowest = workT[i]; |
|
low_indx = i; |
|
} |
|
} |
|
// if (lowest >= 1.e10) |
|
// break; |
|
workT[low_indx] = lowest + 2.0; |
|
|
|
if (!--chctx->bitsBandT[low_indx]) |
|
workT[low_indx] = 1.e20; |
|
|
|
for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) { |
|
if (chctx->CWlengthT[j] > 0) { |
|
chctx->CWlengthT[j]--; |
|
summer--; |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx) |
|
{ |
|
int i, j; |
|
|
|
memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits)); |
|
memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount)); |
|
for (i = 0; i < BANDS; i++) { |
|
if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i]) |
|
continue; |
|
|
|
if (!chctx->skipFlagRaw[i]) { |
|
chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i]; |
|
|
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { |
|
chctx->skipFlags[j] = get_bits1(&q->gb); |
|
if (chctx->skipFlags[j]) |
|
chctx->skipFlagCount[i]++; |
|
} |
|
} else { |
|
for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) { |
|
if (!get_bits1(&q->gb)) { // 0 |
|
chctx->skipFlagBits[i]++; |
|
chctx->skipFlags[j] = 1; |
|
chctx->skipFlags[j + 1] = 1; |
|
chctx->skipFlagCount[i] += 2; |
|
} else { |
|
if (get_bits1(&q->gb)) { // 11 |
|
chctx->skipFlagBits[i] += 2; |
|
chctx->skipFlags[j] = 0; |
|
chctx->skipFlags[j + 1] = 1; |
|
chctx->skipFlagCount[i]++; |
|
} else { |
|
chctx->skipFlagBits[i] += 3; |
|
chctx->skipFlags[j + 1] = 0; |
|
if (!get_bits1(&q->gb)) { // 100 |
|
chctx->skipFlags[j] = 1; |
|
chctx->skipFlagCount[i]++; |
|
} else { // 101 |
|
chctx->skipFlags[j] = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (j < band_tab[i + 1]) { |
|
chctx->skipFlagBits[i]++; |
|
if ((chctx->skipFlags[j] = get_bits1(&q->gb))) |
|
chctx->skipFlagCount[i]++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Increase highest' band coefficient sizes as some bits won't be used |
|
*/ |
|
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx, |
|
int summer) |
|
{ |
|
float workT[32]; |
|
int corrected = 0; |
|
int i, j; |
|
float highest = 0; |
|
int found_indx = 0; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20 |
|
: (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415); |
|
} |
|
|
|
while (corrected < summer) { |
|
if (highest <= -1.e20) |
|
break; |
|
|
|
highest = -1.e20; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
if (workT[i] > highest) { |
|
highest = workT[i]; |
|
found_indx = i; |
|
} |
|
} |
|
|
|
if (highest > -1.e20) { |
|
workT[found_indx] -= 2.0; |
|
if (++(chctx->bitsBandT[found_indx]) == 6) |
|
workT[found_indx] = -1.e20; |
|
|
|
for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) { |
|
if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) { |
|
chctx->CWlengthT[j]++; |
|
corrected++; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels) |
|
{ |
|
int i; |
|
float re, im; |
|
float *dst1 = q->out_samples; |
|
float *dst2 = q->out_samples + (COEFFS - 1); |
|
|
|
/* prerotation */ |
|
for (i = 0; i < COEFFS / 2; i++) { |
|
q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) - |
|
(q->pre_coef2[i] * chctx->CWdecoded[i * 2]); |
|
q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) - |
|
(q->pre_coef1[i] * chctx->CWdecoded[i * 2]); |
|
} |
|
|
|
/* FFT */ |
|
q->fft.fft_permute(&q->fft, q->samples); |
|
q->fft.fft_calc(&q->fft, q->samples); |
|
|
|
/* postrotation, window and reorder */ |
|
for (i = 0; i < COEFFS / 2; i++) { |
|
re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]); |
|
im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]); |
|
*dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i]) |
|
+ (q->mdct_sine_window[i * 2] * re); |
|
*dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i]) |
|
- (q->mdct_sine_window[COEFFS - 1 - i * 2] * re); |
|
dst1 += 2; |
|
dst2 -= 2; |
|
chctx->last_fft_im[i] = im; |
|
} |
|
} |
|
|
|
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx, |
|
int stream_format_code) |
|
{ |
|
int i, j; |
|
int middle_value, cw_len, max_size; |
|
const float *quantizer; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { |
|
chctx->CWdecoded[j] = 0; |
|
cw_len = chctx->CWlengthT[j]; |
|
|
|
if (cw_len <= 0 || chctx->skipFlags[j]) |
|
continue; |
|
|
|
max_size = 1 << cw_len; |
|
middle_value = max_size >> 1; |
|
|
|
if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (cw_len >= 4) { |
|
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1]; |
|
if (chctx->codewords[j] >= middle_value) |
|
chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i]; |
|
else |
|
chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i]; |
|
}else{ |
|
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)]; |
|
if (chctx->codewords[j] >= middle_value) |
|
chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i]; |
|
else |
|
chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i]; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx) |
|
{ |
|
int i, j, cw_len, cw; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
if (!chctx->sumLenArr[i]) |
|
continue; |
|
if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) { |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { |
|
cw_len = chctx->CWlengthT[j]; |
|
cw = 0; |
|
|
|
if (get_bits_count(&q->gb) + cw_len > 512) { |
|
av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) |
|
cw = get_bits(&q->gb, cw_len); |
|
|
|
chctx->codewords[j] = cw; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch) |
|
{ |
|
int stream_format_code; |
|
int imc_hdr, i, j, ret; |
|
int flag; |
|
int bits, summer; |
|
int counter, bitscount; |
|
IMCChannel *chctx = q->chctx + ch; |
|
|
|
|
|
/* Check the frame header */ |
|
imc_hdr = get_bits(&q->gb, 9); |
|
if (imc_hdr & 0x18) { |
|
av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n"); |
|
av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
stream_format_code = get_bits(&q->gb, 3); |
|
|
|
if (stream_format_code & 1) { |
|
av_log_ask_for_sample(avctx, "Stream format %X is not supported\n", |
|
stream_format_code); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (stream_format_code & 0x04) |
|
chctx->decoder_reset = 1; |
|
|
|
if (chctx->decoder_reset) { |
|
for (i = 0; i < BANDS; i++) |
|
chctx->old_floor[i] = 1.0; |
|
for (i = 0; i < COEFFS; i++) |
|
chctx->CWdecoded[i] = 0; |
|
chctx->decoder_reset = 0; |
|
} |
|
|
|
flag = get_bits1(&q->gb); |
|
imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf); |
|
|
|
if (stream_format_code & 0x4) |
|
imc_decode_level_coefficients(q, chctx->levlCoeffBuf, |
|
chctx->flcoeffs1, chctx->flcoeffs2); |
|
else |
|
imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor, |
|
chctx->flcoeffs1, chctx->flcoeffs2); |
|
|
|
memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float)); |
|
|
|
counter = 0; |
|
for (i = 0; i < BANDS; i++) { |
|
if (chctx->levlCoeffBuf[i] == 16) { |
|
chctx->bandWidthT[i] = 0; |
|
counter++; |
|
} else |
|
chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i]; |
|
} |
|
memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int)); |
|
for (i = 0; i < BANDS - 1; i++) { |
|
if (chctx->bandWidthT[i]) |
|
chctx->bandFlagsBuf[i] = get_bits1(&q->gb); |
|
} |
|
|
|
imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5); |
|
|
|
bitscount = 0; |
|
/* first 4 bands will be assigned 5 bits per coefficient */ |
|
if (stream_format_code & 0x2) { |
|
bitscount += 15; |
|
|
|
chctx->bitsBandT[0] = 5; |
|
chctx->CWlengthT[0] = 5; |
|
chctx->CWlengthT[1] = 5; |
|
chctx->CWlengthT[2] = 5; |
|
for (i = 1; i < 4; i++) { |
|
bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5; |
|
chctx->bitsBandT[i] = bits; |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { |
|
chctx->CWlengthT[j] = bits; |
|
bitscount += bits; |
|
} |
|
} |
|
} |
|
if (avctx->codec_id == AV_CODEC_ID_IAC) { |
|
bitscount += !!chctx->bandWidthT[BANDS - 1]; |
|
if (!(stream_format_code & 0x2)) |
|
bitscount += 16; |
|
} |
|
|
|
if ((ret = bit_allocation(q, chctx, stream_format_code, |
|
512 - bitscount - get_bits_count(&q->gb), |
|
flag)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n"); |
|
chctx->decoder_reset = 1; |
|
return ret; |
|
} |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
chctx->sumLenArr[i] = 0; |
|
chctx->skipFlagRaw[i] = 0; |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) |
|
chctx->sumLenArr[i] += chctx->CWlengthT[j]; |
|
if (chctx->bandFlagsBuf[i]) |
|
if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0)) |
|
chctx->skipFlagRaw[i] = 1; |
|
} |
|
|
|
imc_get_skip_coeff(q, chctx); |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
chctx->flcoeffs6[i] = chctx->flcoeffs1[i]; |
|
/* band has flag set and at least one coded coefficient */ |
|
if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) { |
|
chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] / |
|
q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])]; |
|
} |
|
} |
|
|
|
/* calculate bits left, bits needed and adjust bit allocation */ |
|
bits = summer = 0; |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
if (chctx->bandFlagsBuf[i]) { |
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) { |
|
if (chctx->skipFlags[j]) { |
|
summer += chctx->CWlengthT[j]; |
|
chctx->CWlengthT[j] = 0; |
|
} |
|
} |
|
bits += chctx->skipFlagBits[i]; |
|
summer -= chctx->skipFlagBits[i]; |
|
} |
|
} |
|
imc_adjust_bit_allocation(q, chctx, summer); |
|
|
|
for (i = 0; i < BANDS; i++) { |
|
chctx->sumLenArr[i] = 0; |
|
|
|
for (j = band_tab[i]; j < band_tab[i + 1]; j++) |
|
if (!chctx->skipFlags[j]) |
|
chctx->sumLenArr[i] += chctx->CWlengthT[j]; |
|
} |
|
|
|
memset(chctx->codewords, 0, sizeof(chctx->codewords)); |
|
|
|
if (imc_get_coeffs(q, chctx) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n"); |
|
chctx->decoder_reset = 1; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n"); |
|
chctx->decoder_reset = 1; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags)); |
|
|
|
imc_imdct256(q, chctx, avctx->channels); |
|
|
|
return 0; |
|
} |
|
|
|
static int imc_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int ret, i; |
|
|
|
IMCContext *q = avctx->priv_data; |
|
|
|
LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]); |
|
|
|
if (buf_size < IMC_BLOCK_SIZE * avctx->channels) { |
|
av_log(avctx, AV_LOG_ERROR, "frame too small!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* get output buffer */ |
|
q->frame.nb_samples = COEFFS; |
|
if ((ret = ff_get_buffer(avctx, &q->frame)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return ret; |
|
} |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
q->out_samples = (float *)q->frame.extended_data[i]; |
|
|
|
q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2); |
|
|
|
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8); |
|
|
|
buf += IMC_BLOCK_SIZE; |
|
|
|
if ((ret = imc_decode_block(avctx, q, i)) < 0) |
|
return ret; |
|
} |
|
|
|
if (avctx->channels == 2) { |
|
q->fdsp.butterflies_float((float *)q->frame.extended_data[0], |
|
(float *)q->frame.extended_data[1], COEFFS); |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
*(AVFrame *)data = q->frame; |
|
|
|
return IMC_BLOCK_SIZE * avctx->channels; |
|
} |
|
|
|
|
|
static av_cold int imc_decode_close(AVCodecContext * avctx) |
|
{ |
|
IMCContext *q = avctx->priv_data; |
|
|
|
ff_fft_end(&q->fft); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
AVCodec ff_imc_decoder = { |
|
.name = "imc", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_IMC, |
|
.priv_data_size = sizeof(IMCContext), |
|
.init = imc_decode_init, |
|
.close = imc_decode_close, |
|
.decode = imc_decode_frame, |
|
.capabilities = CODEC_CAP_DR1, |
|
.long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"), |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_NONE }, |
|
}; |
|
|
|
AVCodec ff_iac_decoder = { |
|
.name = "iac", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_IAC, |
|
.priv_data_size = sizeof(IMCContext), |
|
.init = imc_decode_init, |
|
.close = imc_decode_close, |
|
.decode = imc_decode_frame, |
|
.capabilities = CODEC_CAP_DR1, |
|
.long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"), |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_NONE }, |
|
};
|
|
|