mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
464 lines
16 KiB
464 lines
16 KiB
/* |
|
* AC-3 encoder float/fixed template |
|
* Copyright (c) 2000 Fabrice Bellard |
|
* Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com> |
|
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AC-3 encoder float/fixed template |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
|
|
/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */ |
|
|
|
static void scale_coefficients(AC3EncodeContext *s); |
|
|
|
static void apply_window(DSPContext *dsp, SampleType *output, |
|
const SampleType *input, const SampleType *window, |
|
unsigned int len); |
|
|
|
static int normalize_samples(AC3EncodeContext *s); |
|
|
|
static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len); |
|
|
|
|
|
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
|
|
FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE * |
|
sizeof(*s->windowed_samples), alloc_fail); |
|
FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples), |
|
alloc_fail); |
|
for (ch = 0; ch < s->channels; ch++) { |
|
FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch], |
|
(AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples), |
|
alloc_fail); |
|
} |
|
|
|
return 0; |
|
alloc_fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
|
|
/** |
|
* Deinterleave input samples. |
|
* Channels are reordered from Libav's default order to AC-3 order. |
|
*/ |
|
static void deinterleave_input_samples(AC3EncodeContext *s, |
|
const SampleType *samples) |
|
{ |
|
int ch, i; |
|
|
|
/* deinterleave and remap input samples */ |
|
for (ch = 0; ch < s->channels; ch++) { |
|
const SampleType *sptr; |
|
int sinc; |
|
|
|
/* copy last 256 samples of previous frame to the start of the current frame */ |
|
memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks], |
|
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
|
|
|
/* deinterleave */ |
|
sinc = s->channels; |
|
sptr = samples + s->channel_map[ch]; |
|
for (i = AC3_BLOCK_SIZE; i < AC3_BLOCK_SIZE * (s->num_blocks + 1); i++) { |
|
s->planar_samples[ch][i] = *sptr; |
|
sptr += sinc; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply the MDCT to input samples to generate frequency coefficients. |
|
* This applies the KBD window and normalizes the input to reduce precision |
|
* loss due to fixed-point calculations. |
|
*/ |
|
static void apply_mdct(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE]; |
|
|
|
apply_window(&s->dsp, s->windowed_samples, input_samples, |
|
s->mdct_window, AC3_WINDOW_SIZE); |
|
|
|
if (s->fixed_point) |
|
block->coeff_shift[ch+1] = normalize_samples(s); |
|
|
|
s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1], |
|
s->windowed_samples); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Calculate a single coupling coordinate. |
|
*/ |
|
static inline float calc_cpl_coord(float energy_ch, float energy_cpl) |
|
{ |
|
float coord = 0.125; |
|
if (energy_cpl > 0) |
|
coord *= sqrtf(energy_ch / energy_cpl); |
|
return FFMIN(coord, COEF_MAX); |
|
} |
|
|
|
|
|
/** |
|
* Calculate coupling channel and coupling coordinates. |
|
* TODO: Currently this is only used for the floating-point encoder. I was |
|
* able to make it work for the fixed-point encoder, but quality was |
|
* generally lower in most cases than not using coupling. If a more |
|
* adaptive coupling strategy were to be implemented it might be useful |
|
* at that time to use coupling for the fixed-point encoder as well. |
|
*/ |
|
static void apply_channel_coupling(AC3EncodeContext *s) |
|
{ |
|
#if CONFIG_AC3ENC_FLOAT |
|
LOCAL_ALIGNED_16(float, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]); |
|
LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]); |
|
int blk, ch, bnd, i, j; |
|
CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}}; |
|
int cpl_start, num_cpl_coefs; |
|
|
|
memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords)); |
|
memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*fixed_cpl_coords)); |
|
|
|
/* align start to 16-byte boundary. align length to multiple of 32. |
|
note: coupling start bin % 4 will always be 1 */ |
|
cpl_start = s->start_freq[CPL_CH] - 1; |
|
num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32); |
|
cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs; |
|
|
|
/* calculate coupling channel from fbw channels */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start]; |
|
if (!block->cpl_in_use) |
|
continue; |
|
memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef)); |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
CoefType *ch_coef = &block->mdct_coef[ch][cpl_start]; |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
for (i = 0; i < num_cpl_coefs; i++) |
|
cpl_coef[i] += ch_coef[i]; |
|
} |
|
|
|
/* coefficients must be clipped in order to be encoded */ |
|
clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs); |
|
|
|
/* scale coupling coefficients from float to 24-bit fixed-point */ |
|
s->ac3dsp.float_to_fixed24(&block->fixed_coef[CPL_CH][cpl_start], |
|
cpl_coef, num_cpl_coefs); |
|
} |
|
|
|
/* calculate energy in each band in coupling channel and each fbw channel */ |
|
/* TODO: possibly use SIMD to speed up energy calculation */ |
|
bnd = 0; |
|
i = s->start_freq[CPL_CH]; |
|
while (i < s->cpl_end_freq) { |
|
int band_size = s->cpl_band_sizes[bnd]; |
|
for (ch = CPL_CH; ch <= s->fbw_channels; ch++) { |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch])) |
|
continue; |
|
for (j = 0; j < band_size; j++) { |
|
CoefType v = block->mdct_coef[ch][i+j]; |
|
MAC_COEF(energy[blk][ch][bnd], v, v); |
|
} |
|
} |
|
} |
|
i += band_size; |
|
bnd++; |
|
} |
|
|
|
/* calculate coupling coordinates for all blocks for all channels */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (!block->cpl_in_use) |
|
continue; |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd], |
|
energy[blk][CPL_CH][bnd]); |
|
} |
|
} |
|
} |
|
|
|
/* determine which blocks to send new coupling coordinates for */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL; |
|
|
|
memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords)); |
|
|
|
if (block->cpl_in_use) { |
|
/* send new coordinates if this is the first block, if previous |
|
* block did not use coupling but this block does, the channels |
|
* using coupling has changed from the previous block, or the |
|
* coordinate difference from the last block for any channel is |
|
* greater than a threshold value. */ |
|
if (blk == 0 || !block0->cpl_in_use) { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) |
|
block->new_cpl_coords[ch] = 1; |
|
} else { |
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
if (!block0->channel_in_cpl[ch]) { |
|
block->new_cpl_coords[ch] = 1; |
|
} else { |
|
CoefSumType coord_diff = 0; |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
coord_diff += fabs(cpl_coords[blk-1][ch][bnd] - |
|
cpl_coords[blk ][ch][bnd]); |
|
} |
|
coord_diff /= s->num_cpl_bands; |
|
if (coord_diff > 0.03) |
|
block->new_cpl_coords[ch] = 1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* calculate final coupling coordinates, taking into account reusing of |
|
coordinates in successive blocks */ |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
blk = 0; |
|
while (blk < s->num_blocks) { |
|
int av_uninit(blk1); |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
if (!block->cpl_in_use) { |
|
blk++; |
|
continue; |
|
} |
|
|
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
CoefSumType energy_ch, energy_cpl; |
|
if (!block->channel_in_cpl[ch]) |
|
continue; |
|
energy_cpl = energy[blk][CPL_CH][bnd]; |
|
energy_ch = energy[blk][ch][bnd]; |
|
blk1 = blk+1; |
|
while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) { |
|
if (s->blocks[blk1].cpl_in_use) { |
|
energy_cpl += energy[blk1][CPL_CH][bnd]; |
|
energy_ch += energy[blk1][ch][bnd]; |
|
} |
|
blk1++; |
|
} |
|
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl); |
|
} |
|
blk = blk1; |
|
} |
|
} |
|
|
|
/* calculate exponents/mantissas for coupling coordinates */ |
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (!block->cpl_in_use) |
|
continue; |
|
|
|
s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1], |
|
cpl_coords[blk][1], |
|
s->fbw_channels * 16); |
|
s->ac3dsp.extract_exponents(block->cpl_coord_exp[1], |
|
fixed_cpl_coords[blk][1], |
|
s->fbw_channels * 16); |
|
|
|
for (ch = 1; ch <= s->fbw_channels; ch++) { |
|
int bnd, min_exp, max_exp, master_exp; |
|
|
|
if (!block->new_cpl_coords[ch]) |
|
continue; |
|
|
|
/* determine master exponent */ |
|
min_exp = max_exp = block->cpl_coord_exp[ch][0]; |
|
for (bnd = 1; bnd < s->num_cpl_bands; bnd++) { |
|
int exp = block->cpl_coord_exp[ch][bnd]; |
|
min_exp = FFMIN(exp, min_exp); |
|
max_exp = FFMAX(exp, max_exp); |
|
} |
|
master_exp = ((max_exp - 15) + 2) / 3; |
|
master_exp = FFMAX(master_exp, 0); |
|
while (min_exp < master_exp * 3) |
|
master_exp--; |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] - |
|
master_exp * 3, 0, 15); |
|
} |
|
block->cpl_master_exp[ch] = master_exp; |
|
|
|
/* quantize mantissas */ |
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
int cpl_exp = block->cpl_coord_exp[ch][bnd]; |
|
int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24; |
|
if (cpl_exp == 15) |
|
cpl_mant >>= 1; |
|
else |
|
cpl_mant -= 16; |
|
|
|
block->cpl_coord_mant[ch][bnd] = cpl_mant; |
|
} |
|
} |
|
} |
|
|
|
if (CONFIG_EAC3_ENCODER && s->eac3) |
|
ff_eac3_set_cpl_states(s); |
|
#endif /* CONFIG_AC3ENC_FLOAT */ |
|
} |
|
|
|
|
|
/** |
|
* Determine rematrixing flags for each block and band. |
|
*/ |
|
static void compute_rematrixing_strategy(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
AC3Block *block, *av_uninit(block0); |
|
|
|
if (s->channel_mode != AC3_CHMODE_STEREO) |
|
return; |
|
|
|
for (blk = 0; blk < s->num_blocks; blk++) { |
|
block = &s->blocks[blk]; |
|
block->new_rematrixing_strategy = !blk; |
|
|
|
if (!s->rematrixing_enabled) { |
|
block0 = block; |
|
continue; |
|
} |
|
|
|
block->num_rematrixing_bands = 4; |
|
if (block->cpl_in_use) { |
|
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61); |
|
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37); |
|
if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands) |
|
block->new_rematrixing_strategy = 1; |
|
} |
|
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); |
|
|
|
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { |
|
/* calculate calculate sum of squared coeffs for one band in one block */ |
|
int start = ff_ac3_rematrix_band_tab[bnd]; |
|
int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
CoefSumType sum[4] = {0,}; |
|
for (i = start; i < end; i++) { |
|
CoefType lt = block->mdct_coef[1][i]; |
|
CoefType rt = block->mdct_coef[2][i]; |
|
CoefType md = lt + rt; |
|
CoefType sd = lt - rt; |
|
MAC_COEF(sum[0], lt, lt); |
|
MAC_COEF(sum[1], rt, rt); |
|
MAC_COEF(sum[2], md, md); |
|
MAC_COEF(sum[3], sd, sd); |
|
} |
|
|
|
/* compare sums to determine if rematrixing will be used for this band */ |
|
if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1])) |
|
block->rematrixing_flags[bnd] = 1; |
|
else |
|
block->rematrixing_flags[bnd] = 0; |
|
|
|
/* determine if new rematrixing flags will be sent */ |
|
if (blk && |
|
block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) { |
|
block->new_rematrixing_strategy = 1; |
|
} |
|
} |
|
block0 = block; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Encode a single AC-3 frame. |
|
*/ |
|
int AC3_NAME(encode_frame)(AVCodecContext *avctx, unsigned char *frame, |
|
int buf_size, void *data) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
const SampleType *samples = data; |
|
int ret; |
|
|
|
if (s->options.allow_per_frame_metadata) { |
|
ret = ff_ac3_validate_metadata(s); |
|
if (ret) |
|
return ret; |
|
} |
|
|
|
if (s->bit_alloc.sr_code == 1 || s->eac3) |
|
ff_ac3_adjust_frame_size(s); |
|
|
|
deinterleave_input_samples(s, samples); |
|
|
|
apply_mdct(s); |
|
|
|
if (s->fixed_point) |
|
scale_coefficients(s); |
|
|
|
clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1], |
|
AC3_MAX_COEFS * s->num_blocks * s->channels); |
|
|
|
s->cpl_on = s->cpl_enabled; |
|
ff_ac3_compute_coupling_strategy(s); |
|
|
|
if (s->cpl_on) |
|
apply_channel_coupling(s); |
|
|
|
compute_rematrixing_strategy(s); |
|
|
|
if (!s->fixed_point) |
|
scale_coefficients(s); |
|
|
|
ff_ac3_apply_rematrixing(s); |
|
|
|
ff_ac3_process_exponents(s); |
|
|
|
ret = ff_ac3_compute_bit_allocation(s); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
|
return ret; |
|
} |
|
|
|
ff_ac3_group_exponents(s); |
|
|
|
ff_ac3_quantize_mantissas(s); |
|
|
|
ff_ac3_output_frame(s, frame); |
|
|
|
return s->frame_size; |
|
}
|
|
|