mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
934 lines
36 KiB
934 lines
36 KiB
/* |
|
* AAC encoder psychoacoustic model |
|
* Copyright (C) 2008 Konstantin Shishkov |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC encoder psychoacoustic model |
|
*/ |
|
|
|
#include "libavutil/attributes.h" |
|
#include "avcodec.h" |
|
#include "aactab.h" |
|
#include "psymodel.h" |
|
|
|
/*********************************** |
|
* TODOs: |
|
* try other bitrate controlling mechanism (maybe use ratecontrol.c?) |
|
* control quality for quality-based output |
|
**********************************/ |
|
|
|
/** |
|
* constants for 3GPP AAC psychoacoustic model |
|
* @{ |
|
*/ |
|
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) |
|
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) |
|
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ |
|
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f |
|
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ |
|
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f |
|
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ |
|
#define PSY_3GPP_EN_SPREAD_HI_S 1.5f |
|
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ |
|
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f |
|
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ |
|
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f |
|
|
|
#define PSY_3GPP_RPEMIN 0.01f |
|
#define PSY_3GPP_RPELEV 2.0f |
|
|
|
#define PSY_3GPP_C1 3.0f /* log2(8) */ |
|
#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ |
|
#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ |
|
|
|
#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ |
|
#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ |
|
|
|
#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f |
|
#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f |
|
#define PSY_3GPP_SAVE_ADD_L -0.84285712f |
|
#define PSY_3GPP_SAVE_ADD_S -0.75f |
|
#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f |
|
#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f |
|
#define PSY_3GPP_SPEND_ADD_L -0.35f |
|
#define PSY_3GPP_SPEND_ADD_S -0.26111111f |
|
#define PSY_3GPP_CLIP_LO_L 0.2f |
|
#define PSY_3GPP_CLIP_LO_S 0.2f |
|
#define PSY_3GPP_CLIP_HI_L 0.95f |
|
#define PSY_3GPP_CLIP_HI_S 0.75f |
|
|
|
#define PSY_3GPP_AH_THR_LONG 0.5f |
|
#define PSY_3GPP_AH_THR_SHORT 0.63f |
|
|
|
enum { |
|
PSY_3GPP_AH_NONE, |
|
PSY_3GPP_AH_INACTIVE, |
|
PSY_3GPP_AH_ACTIVE |
|
}; |
|
|
|
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) |
|
|
|
/* LAME psy model constants */ |
|
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order |
|
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size |
|
#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size |
|
#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence |
|
#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* information for single band used by 3GPP TS26.403-inspired psychoacoustic model |
|
*/ |
|
typedef struct AacPsyBand{ |
|
float energy; ///< band energy |
|
float thr; ///< energy threshold |
|
float thr_quiet; ///< threshold in quiet |
|
float nz_lines; ///< number of non-zero spectral lines |
|
float active_lines; ///< number of active spectral lines |
|
float pe; ///< perceptual entropy |
|
float pe_const; ///< constant part of the PE calculation |
|
float norm_fac; ///< normalization factor for linearization |
|
int avoid_holes; ///< hole avoidance flag |
|
}AacPsyBand; |
|
|
|
/** |
|
* single/pair channel context for psychoacoustic model |
|
*/ |
|
typedef struct AacPsyChannel{ |
|
AacPsyBand band[128]; ///< bands information |
|
AacPsyBand prev_band[128]; ///< bands information from the previous frame |
|
|
|
float win_energy; ///< sliding average of channel energy |
|
float iir_state[2]; ///< hi-pass IIR filter state |
|
uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) |
|
enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame |
|
/* LAME psy model specific members */ |
|
float attack_threshold; ///< attack threshold for this channel |
|
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; |
|
int prev_attack; ///< attack value for the last short block in the previous sequence |
|
}AacPsyChannel; |
|
|
|
/** |
|
* psychoacoustic model frame type-dependent coefficients |
|
*/ |
|
typedef struct AacPsyCoeffs{ |
|
float ath; ///< absolute threshold of hearing per bands |
|
float barks; ///< Bark value for each spectral band in long frame |
|
float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame |
|
float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame |
|
float min_snr; ///< minimal SNR |
|
}AacPsyCoeffs; |
|
|
|
/** |
|
* 3GPP TS26.403-inspired psychoacoustic model specific data |
|
*/ |
|
typedef struct AacPsyContext{ |
|
int chan_bitrate; ///< bitrate per channel |
|
int frame_bits; ///< average bits per frame |
|
int fill_level; ///< bit reservoir fill level |
|
struct { |
|
float min; ///< minimum allowed PE for bit factor calculation |
|
float max; ///< maximum allowed PE for bit factor calculation |
|
float previous; ///< allowed PE of the previous frame |
|
float correction; ///< PE correction factor |
|
} pe; |
|
AacPsyCoeffs psy_coef[2][64]; |
|
AacPsyChannel *ch; |
|
}AacPsyContext; |
|
|
|
/** |
|
* LAME psy model preset struct |
|
*/ |
|
typedef struct { |
|
int quality; ///< Quality to map the rest of the vaules to. |
|
/* This is overloaded to be both kbps per channel in ABR mode, and |
|
* requested quality in constant quality mode. |
|
*/ |
|
float st_lrm; ///< short threshold for L, R, and M channels |
|
} PsyLamePreset; |
|
|
|
/** |
|
* LAME psy model preset table for ABR |
|
*/ |
|
static const PsyLamePreset psy_abr_map[] = { |
|
/* TODO: Tuning. These were taken from LAME. */ |
|
/* kbps/ch st_lrm */ |
|
{ 8, 6.60}, |
|
{ 16, 6.60}, |
|
{ 24, 6.60}, |
|
{ 32, 6.60}, |
|
{ 40, 6.60}, |
|
{ 48, 6.60}, |
|
{ 56, 6.60}, |
|
{ 64, 6.40}, |
|
{ 80, 6.00}, |
|
{ 96, 5.60}, |
|
{112, 5.20}, |
|
{128, 5.20}, |
|
{160, 5.20} |
|
}; |
|
|
|
/** |
|
* LAME psy model preset table for constant quality |
|
*/ |
|
static const PsyLamePreset psy_vbr_map[] = { |
|
/* vbr_q st_lrm */ |
|
{ 0, 4.20}, |
|
{ 1, 4.20}, |
|
{ 2, 4.20}, |
|
{ 3, 4.20}, |
|
{ 4, 4.20}, |
|
{ 5, 4.20}, |
|
{ 6, 4.20}, |
|
{ 7, 4.20}, |
|
{ 8, 4.20}, |
|
{ 9, 4.20}, |
|
{10, 4.20} |
|
}; |
|
|
|
/** |
|
* LAME psy model FIR coefficient table |
|
*/ |
|
static const float psy_fir_coeffs[] = { |
|
-8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, |
|
-3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, |
|
-5.52212e-17 * 2, -0.313819 * 2 |
|
}; |
|
|
|
/** |
|
* Calculate the ABR attack threshold from the above LAME psymodel table. |
|
*/ |
|
static float lame_calc_attack_threshold(int bitrate) |
|
{ |
|
/* Assume max bitrate to start with */ |
|
int lower_range = 12, upper_range = 12; |
|
int lower_range_kbps = psy_abr_map[12].quality; |
|
int upper_range_kbps = psy_abr_map[12].quality; |
|
int i; |
|
|
|
/* Determine which bitrates the value specified falls between. |
|
* If the loop ends without breaking our above assumption of 320kbps was correct. |
|
*/ |
|
for (i = 1; i < 13; i++) { |
|
if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
|
upper_range = i; |
|
upper_range_kbps = psy_abr_map[i ].quality; |
|
lower_range = i - 1; |
|
lower_range_kbps = psy_abr_map[i - 1].quality; |
|
break; /* Upper range found */ |
|
} |
|
} |
|
|
|
/* Determine which range the value specified is closer to */ |
|
if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
|
return psy_abr_map[lower_range].st_lrm; |
|
return psy_abr_map[upper_range].st_lrm; |
|
} |
|
|
|
/** |
|
* LAME psy model specific initialization |
|
*/ |
|
static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) |
|
{ |
|
int i, j; |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
AacPsyChannel *pch = &ctx->ch[i]; |
|
|
|
if (avctx->flags & CODEC_FLAG_QSCALE) |
|
pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; |
|
else |
|
pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); |
|
|
|
for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
|
pch->prev_energy_subshort[j] = 10.0f; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate Bark value for given line. |
|
*/ |
|
static av_cold float calc_bark(float f) |
|
{ |
|
return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); |
|
} |
|
|
|
#define ATH_ADD 4 |
|
/** |
|
* Calculate ATH value for given frequency. |
|
* Borrowed from Lame. |
|
*/ |
|
static av_cold float ath(float f, float add) |
|
{ |
|
f /= 1000.0f; |
|
return 3.64 * pow(f, -0.8) |
|
- 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) |
|
+ 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) |
|
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f; |
|
} |
|
|
|
static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
|
AacPsyContext *pctx; |
|
float bark; |
|
int i, j, g, start; |
|
float prev, minscale, minath, minsnr, pe_min; |
|
const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels; |
|
const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : ctx->avctx->sample_rate / 2; |
|
const float num_bark = calc_bark((float)bandwidth); |
|
|
|
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); |
|
pctx = (AacPsyContext*) ctx->model_priv_data; |
|
|
|
pctx->chan_bitrate = chan_bitrate; |
|
pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate; |
|
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
ctx->bitres.size = 6144 - pctx->frame_bits; |
|
ctx->bitres.size -= ctx->bitres.size % 8; |
|
pctx->fill_level = ctx->bitres.size; |
|
minath = ath(3410, ATH_ADD); |
|
for (j = 0; j < 2; j++) { |
|
AacPsyCoeffs *coeffs = pctx->psy_coef[j]; |
|
const uint8_t *band_sizes = ctx->bands[j]; |
|
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
|
float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f); |
|
/* reference encoder uses 2.4% here instead of 60% like the spec says */ |
|
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; |
|
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
|
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ |
|
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
|
|
|
i = 0; |
|
prev = 0.0; |
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
i += band_sizes[g]; |
|
bark = calc_bark((i-1) * line_to_frequency); |
|
coeffs[g].barks = (bark + prev) / 2.0; |
|
prev = bark; |
|
} |
|
for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
|
AacPsyCoeffs *coeff = &coeffs[g]; |
|
float bark_width = coeffs[g+1].barks - coeffs->barks; |
|
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW); |
|
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI); |
|
coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low); |
|
coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi); |
|
pe_min = bark_pe * bark_width; |
|
minsnr = pow(2.0f, pe_min / band_sizes[g]) - 1.5f; |
|
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); |
|
} |
|
start = 0; |
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
minscale = ath(start * line_to_frequency, ATH_ADD); |
|
for (i = 1; i < band_sizes[g]; i++) |
|
minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
|
coeffs[g].ath = minscale - minath; |
|
start += band_sizes[g]; |
|
} |
|
} |
|
|
|
pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels); |
|
|
|
lame_window_init(pctx, ctx->avctx); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* IIR filter used in block switching decision |
|
*/ |
|
static float iir_filter(int in, float state[2]) |
|
{ |
|
float ret; |
|
|
|
ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; |
|
state[0] = in; |
|
state[1] = ret; |
|
return ret; |
|
} |
|
|
|
/** |
|
* window grouping information stored as bits (0 - new group, 1 - group continues) |
|
*/ |
|
static const uint8_t window_grouping[9] = { |
|
0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 |
|
}; |
|
|
|
/** |
|
* Tell encoder which window types to use. |
|
* @see 3GPP TS26.403 5.4.1 "Blockswitching" |
|
*/ |
|
static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, |
|
const int16_t *audio, |
|
const int16_t *la, |
|
int channel, int prev_type) |
|
{ |
|
int i, j; |
|
int br = ctx->avctx->bit_rate / ctx->avctx->channels; |
|
int attack_ratio = br <= 16000 ? 18 : 10; |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
uint8_t grouping = 0; |
|
int next_type = pch->next_window_seq; |
|
FFPsyWindowInfo wi = { { 0 } }; |
|
|
|
if (la) { |
|
float s[8], v; |
|
int switch_to_eight = 0; |
|
float sum = 0.0, sum2 = 0.0; |
|
int attack_n = 0; |
|
int stay_short = 0; |
|
for (i = 0; i < 8; i++) { |
|
for (j = 0; j < 128; j++) { |
|
v = iir_filter(la[i*128+j], pch->iir_state); |
|
sum += v*v; |
|
} |
|
s[i] = sum; |
|
sum2 += sum; |
|
} |
|
for (i = 0; i < 8; i++) { |
|
if (s[i] > pch->win_energy * attack_ratio) { |
|
attack_n = i + 1; |
|
switch_to_eight = 1; |
|
break; |
|
} |
|
} |
|
pch->win_energy = pch->win_energy*7/8 + sum2/64; |
|
|
|
wi.window_type[1] = prev_type; |
|
switch (prev_type) { |
|
case ONLY_LONG_SEQUENCE: |
|
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
break; |
|
case LONG_START_SEQUENCE: |
|
wi.window_type[0] = EIGHT_SHORT_SEQUENCE; |
|
grouping = pch->next_grouping; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
break; |
|
case LONG_STOP_SEQUENCE: |
|
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
break; |
|
case EIGHT_SHORT_SEQUENCE: |
|
stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; |
|
wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
break; |
|
} |
|
|
|
pch->next_grouping = window_grouping[attack_n]; |
|
pch->next_window_seq = next_type; |
|
} else { |
|
for (i = 0; i < 3; i++) |
|
wi.window_type[i] = prev_type; |
|
grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; |
|
} |
|
|
|
wi.window_shape = 1; |
|
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
|
wi.num_windows = 1; |
|
wi.grouping[0] = 1; |
|
} else { |
|
int lastgrp = 0; |
|
wi.num_windows = 8; |
|
for (i = 0; i < 8; i++) { |
|
if (!((grouping >> i) & 1)) |
|
lastgrp = i; |
|
wi.grouping[lastgrp]++; |
|
} |
|
} |
|
|
|
return wi; |
|
} |
|
|
|
/* 5.6.1.2 "Calculation of Bit Demand" */ |
|
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, |
|
int short_window) |
|
{ |
|
const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
|
const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
|
const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
|
const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
|
const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; |
|
const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
|
float clipped_pe, bit_save, bit_spend, bit_factor, fill_level; |
|
|
|
ctx->fill_level += ctx->frame_bits - bits; |
|
ctx->fill_level = av_clip(ctx->fill_level, 0, size); |
|
fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); |
|
clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); |
|
bit_save = (fill_level + bitsave_add) * bitsave_slope; |
|
assert(bit_save <= 0.3f && bit_save >= -0.05000001f); |
|
bit_spend = (fill_level + bitspend_add) * bitspend_slope; |
|
assert(bit_spend <= 0.5f && bit_spend >= -0.1f); |
|
/* The bit factor graph in the spec is obviously incorrect. |
|
* bit_spend + ((bit_spend - bit_spend))... |
|
* The reference encoder subtracts everything from 1, but also seems incorrect. |
|
* 1 - bit_save + ((bit_spend + bit_save))... |
|
* Hopefully below is correct. |
|
*/ |
|
bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); |
|
/* NOTE: The reference encoder attempts to center pe max/min around the current pe. */ |
|
ctx->pe.max = FFMAX(pe, ctx->pe.max); |
|
ctx->pe.min = FFMIN(pe, ctx->pe.min); |
|
|
|
return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits); |
|
} |
|
|
|
static float calc_pe_3gpp(AacPsyBand *band) |
|
{ |
|
float pe, a; |
|
|
|
band->pe = 0.0f; |
|
band->pe_const = 0.0f; |
|
band->active_lines = 0.0f; |
|
if (band->energy > band->thr) { |
|
a = log2f(band->energy); |
|
pe = a - log2f(band->thr); |
|
band->active_lines = band->nz_lines; |
|
if (pe < PSY_3GPP_C1) { |
|
pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
a = a * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
band->active_lines *= PSY_3GPP_C3; |
|
} |
|
band->pe = pe * band->nz_lines; |
|
band->pe_const = a * band->nz_lines; |
|
} |
|
|
|
return band->pe; |
|
} |
|
|
|
static float calc_reduction_3gpp(float a, float desired_pe, float pe, |
|
float active_lines) |
|
{ |
|
float thr_avg, reduction; |
|
|
|
thr_avg = powf(2.0f, (a - pe) / (4.0f * active_lines)); |
|
reduction = powf(2.0f, (a - desired_pe) / (4.0f * active_lines)) - thr_avg; |
|
|
|
return FFMAX(reduction, 0.0f); |
|
} |
|
|
|
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, |
|
float reduction) |
|
{ |
|
float thr = band->thr; |
|
|
|
if (band->energy > thr) { |
|
thr = powf(thr, 0.25f) + reduction; |
|
thr = powf(thr, 4.0f); |
|
|
|
/* This deviates from the 3GPP spec to match the reference encoder. |
|
* It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands |
|
* that have hole avoidance on (active or inactive). It always reduces the |
|
* threshold of bands with hole avoidance off. |
|
*/ |
|
if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
|
thr = FFMAX(band->thr, band->energy * min_snr); |
|
band->avoid_holes = PSY_3GPP_AH_ACTIVE; |
|
} |
|
} |
|
|
|
return thr; |
|
} |
|
|
|
/** |
|
* Calculate band thresholds as suggested in 3GPP TS26.403 |
|
*/ |
|
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, |
|
const float *coefs, const FFPsyWindowInfo *wi) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
int start = 0; |
|
int i, w, g; |
|
float desired_bits, desired_pe, delta_pe, reduction, spread_en[128] = {0}; |
|
float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; |
|
float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
|
const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
|
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
|
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; |
|
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
|
|
|
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
float form_factor = 0.0f; |
|
band->energy = 0.0f; |
|
for (i = 0; i < band_sizes[g]; i++) { |
|
band->energy += coefs[start+i] * coefs[start+i]; |
|
form_factor += sqrtf(fabs(coefs[start+i])); |
|
} |
|
band->thr = band->energy * 0.001258925f; |
|
band->nz_lines = form_factor / powf(band->energy / band_sizes[g], 0.25f); |
|
|
|
start += band_sizes[g]; |
|
} |
|
} |
|
//modify thresholds and energies - spread, threshold in quiet, pre-echo control |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
AacPsyBand *bands = &pch->band[w]; |
|
|
|
/* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ |
|
spread_en[0] = bands[0].energy; |
|
for (g = 1; g < num_bands; g++) { |
|
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
|
spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
|
} |
|
for (g = num_bands - 2; g >= 0; g--) { |
|
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
|
spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
|
} |
|
//5.4.2.4 "Threshold in quiet" |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &bands[g]; |
|
|
|
band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
|
//5.4.2.5 "Pre-echo control" |
|
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) |
|
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
|
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); |
|
|
|
/* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ |
|
pe += calc_pe_3gpp(band); |
|
a += band->pe_const; |
|
active_lines += band->active_lines; |
|
|
|
/* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ |
|
if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
|
band->avoid_holes = PSY_3GPP_AH_NONE; |
|
else |
|
band->avoid_holes = PSY_3GPP_AH_INACTIVE; |
|
} |
|
} |
|
|
|
/* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ |
|
ctx->ch[channel].entropy = pe; |
|
desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); |
|
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
/* NOTE: PE correction is kept simple. During initial testing it had very |
|
* little effect on the final bitrate. Probably a good idea to come |
|
* back and do more testing later. |
|
*/ |
|
if (ctx->bitres.bits > 0) |
|
desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), |
|
0.85f, 1.15f); |
|
pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
|
|
if (desired_pe < pe) { |
|
/* 5.6.1.3.4 "First Estimation of the reduction value" */ |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); |
|
pe = 0.0f; |
|
a = 0.0f; |
|
active_lines = 0.0f; |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
/* recalculate PE */ |
|
pe += calc_pe_3gpp(band); |
|
a += band->pe_const; |
|
active_lines += band->active_lines; |
|
} |
|
} |
|
|
|
/* 5.6.1.3.5 "Second Estimation of the reduction value" */ |
|
for (i = 0; i < 2; i++) { |
|
float pe_no_ah = 0.0f, desired_pe_no_ah; |
|
active_lines = a = 0.0f; |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
|
pe_no_ah += band->pe; |
|
a += band->pe_const; |
|
active_lines += band->active_lines; |
|
} |
|
} |
|
} |
|
desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
|
if (active_lines > 0.0f) |
|
reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); |
|
|
|
pe = 0.0f; |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
if (active_lines > 0.0f) |
|
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
pe += calc_pe_3gpp(band); |
|
band->norm_fac = band->active_lines / band->thr; |
|
norm_fac += band->norm_fac; |
|
} |
|
} |
|
delta_pe = desired_pe - pe; |
|
if (fabs(delta_pe) > 0.05f * desired_pe) |
|
break; |
|
} |
|
|
|
if (pe < 1.15f * desired_pe) { |
|
/* 6.6.1.3.6 "Final threshold modification by linearization" */ |
|
norm_fac = 1.0f / norm_fac; |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
if (band->active_lines > 0.5f) { |
|
float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; |
|
float thr = band->thr; |
|
|
|
thr *= powf(2.0f, delta_sfb_pe / band->active_lines); |
|
if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
|
thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
|
band->thr = thr; |
|
} |
|
} |
|
} |
|
} else { |
|
/* 5.6.1.3.7 "Further perceptual entropy reduction" */ |
|
g = num_bands; |
|
while (pe > desired_pe && g--) { |
|
for (w = 0; w < wi->num_windows*16; w+= 16) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
|
coeffs[g].min_snr = PSY_SNR_1DB; |
|
band->thr = band->energy * PSY_SNR_1DB; |
|
pe += band->active_lines * 1.5f - band->pe; |
|
} |
|
} |
|
} |
|
/* TODO: allow more holes (unused without mid/side) */ |
|
} |
|
} |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; |
|
|
|
psy_band->threshold = band->thr; |
|
psy_band->energy = band->energy; |
|
} |
|
} |
|
|
|
memcpy(pch->prev_band, pch->band, sizeof(pch->band)); |
|
} |
|
|
|
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
const float **coeffs, const FFPsyWindowInfo *wi) |
|
{ |
|
int ch; |
|
FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); |
|
|
|
for (ch = 0; ch < group->num_ch; ch++) |
|
psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); |
|
} |
|
|
|
static av_cold void psy_3gpp_end(FFPsyContext *apc) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; |
|
av_freep(&pctx->ch); |
|
av_freep(&apc->model_priv_data); |
|
} |
|
|
|
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) |
|
{ |
|
int blocktype = ONLY_LONG_SEQUENCE; |
|
if (uselongblock) { |
|
if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
|
blocktype = LONG_STOP_SEQUENCE; |
|
} else { |
|
blocktype = EIGHT_SHORT_SEQUENCE; |
|
if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
|
ctx->next_window_seq = LONG_START_SEQUENCE; |
|
if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
|
ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; |
|
} |
|
|
|
wi->window_type[0] = ctx->next_window_seq; |
|
ctx->next_window_seq = blocktype; |
|
} |
|
|
|
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, |
|
const float *la, int channel, int prev_type) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
int grouping = 0; |
|
int uselongblock = 1; |
|
int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
int i; |
|
FFPsyWindowInfo wi = { { 0 } }; |
|
|
|
if (la) { |
|
float hpfsmpl[AAC_BLOCK_SIZE_LONG]; |
|
float const *pf = hpfsmpl; |
|
float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
|
float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
|
float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); |
|
int j, att_sum = 0; |
|
|
|
/* LAME comment: apply high pass filter of fs/4 */ |
|
for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
|
float sum1, sum2; |
|
sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; |
|
sum2 = 0.0; |
|
for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
|
sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); |
|
sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); |
|
} |
|
/* NOTE: The LAME psymodel expects its input in the range -32768 to |
|
* 32768. Tuning this for normalized floats would be difficult. */ |
|
hpfsmpl[i] = (sum1 + sum2) * 32768.0f; |
|
} |
|
|
|
/* Calculate the energies of each sub-shortblock */ |
|
for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
|
energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; |
|
assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); |
|
attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; |
|
energy_short[0] += energy_subshort[i]; |
|
} |
|
|
|
for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
|
float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); |
|
float p = 1.0f; |
|
for (; pf < pfe; pf++) |
|
p = FFMAX(p, fabsf(*pf)); |
|
pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; |
|
/* NOTE: The indexes below are [i + 3 - 2] in the LAME source. |
|
* Obviously the 3 and 2 have some significance, or this would be just [i + 1] |
|
* (which is what we use here). What the 3 stands for is ambiguous, as it is both |
|
* number of short blocks, and the number of sub-short blocks. |
|
* It seems that LAME is comparing each sub-block to sub-block + 1 in the |
|
* previous block. |
|
*/ |
|
if (p > energy_subshort[i + 1]) |
|
p = p / energy_subshort[i + 1]; |
|
else if (energy_subshort[i + 1] > p * 10.0f) |
|
p = energy_subshort[i + 1] / (p * 10.0f); |
|
else |
|
p = 0.0; |
|
attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
} |
|
|
|
/* compare energy between sub-short blocks */ |
|
for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
|
if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
|
if (attack_intensity[i] > pch->attack_threshold) |
|
attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; |
|
|
|
/* should have energy change between short blocks, in order to avoid periodic signals */ |
|
/* Good samples to show the effect are Trumpet test songs */ |
|
/* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ |
|
/* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ |
|
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
|
float const u = energy_short[i - 1]; |
|
float const v = energy_short[i]; |
|
float const m = FFMAX(u, v); |
|
if (m < 40000) { /* (2) */ |
|
if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
|
if (i == 1 && attacks[0] < attacks[i]) |
|
attacks[0] = 0; |
|
attacks[i] = 0; |
|
} |
|
} |
|
att_sum += attacks[i]; |
|
} |
|
|
|
if (attacks[0] <= pch->prev_attack) |
|
attacks[0] = 0; |
|
|
|
att_sum += attacks[0]; |
|
/* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ |
|
if (pch->prev_attack == 3 || att_sum) { |
|
uselongblock = 0; |
|
|
|
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
|
if (attacks[i] && attacks[i-1]) |
|
attacks[i] = 0; |
|
} |
|
} else { |
|
/* We have no lookahead info, so just use same type as the previous sequence. */ |
|
uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); |
|
} |
|
|
|
lame_apply_block_type(pch, &wi, uselongblock); |
|
|
|
wi.window_type[1] = prev_type; |
|
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
|
wi.num_windows = 1; |
|
wi.grouping[0] = 1; |
|
if (wi.window_type[0] == LONG_START_SEQUENCE) |
|
wi.window_shape = 0; |
|
else |
|
wi.window_shape = 1; |
|
} else { |
|
int lastgrp = 0; |
|
|
|
wi.num_windows = 8; |
|
wi.window_shape = 0; |
|
for (i = 0; i < 8; i++) { |
|
if (!((pch->next_grouping >> i) & 1)) |
|
lastgrp = i; |
|
wi.grouping[lastgrp]++; |
|
} |
|
} |
|
|
|
/* Determine grouping, based on the location of the first attack, and save for |
|
* the next frame. |
|
* FIXME: Move this to analysis. |
|
* TODO: Tune groupings depending on attack location |
|
* TODO: Handle more than one attack in a group |
|
*/ |
|
for (i = 0; i < 9; i++) { |
|
if (attacks[i]) { |
|
grouping = i; |
|
break; |
|
} |
|
} |
|
pch->next_grouping = window_grouping[grouping]; |
|
|
|
pch->prev_attack = attacks[8]; |
|
|
|
return wi; |
|
} |
|
|
|
const FFPsyModel ff_aac_psy_model = |
|
{ |
|
.name = "3GPP TS 26.403-inspired model", |
|
.init = psy_3gpp_init, |
|
.window = psy_lame_window, |
|
.analyze = psy_3gpp_analyze, |
|
.end = psy_3gpp_end, |
|
};
|
|
|