mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1186 lines
49 KiB
1186 lines
49 KiB
/* |
|
* Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#ifndef SWSCALE_SWSCALE_INTERNAL_H |
|
#define SWSCALE_SWSCALE_INTERNAL_H |
|
|
|
#include <stdatomic.h> |
|
|
|
#include "config.h" |
|
#include "swscale.h" |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/frame.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/log.h" |
|
#include "libavutil/mem_internal.h" |
|
#include "libavutil/pixfmt.h" |
|
#include "libavutil/pixdesc.h" |
|
#include "libavutil/slicethread.h" |
|
#if HAVE_ALTIVEC |
|
#include "libavutil/ppc/util_altivec.h" |
|
#endif |
|
#include "libavutil/half2float.h" |
|
|
|
#define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long |
|
|
|
#define YUVRGB_TABLE_HEADROOM 512 |
|
#define YUVRGB_TABLE_LUMA_HEADROOM 512 |
|
|
|
#define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE |
|
|
|
#if HAVE_BIGENDIAN |
|
#define ALT32_CORR (-1) |
|
#else |
|
#define ALT32_CORR 1 |
|
#endif |
|
|
|
#if ARCH_X86_64 |
|
# define APCK_PTR2 8 |
|
# define APCK_COEF 16 |
|
# define APCK_SIZE 24 |
|
#else |
|
# define APCK_PTR2 4 |
|
# define APCK_COEF 8 |
|
# define APCK_SIZE 16 |
|
#endif |
|
|
|
#define RETCODE_USE_CASCADE -12345 |
|
|
|
typedef struct SwsInternal SwsInternal; |
|
|
|
static inline SwsInternal *sws_internal(const SwsContext *sws) |
|
{ |
|
return (SwsInternal *) sws; |
|
} |
|
|
|
typedef enum SwsDither { |
|
SWS_DITHER_NONE = 0, |
|
SWS_DITHER_AUTO, |
|
SWS_DITHER_BAYER, |
|
SWS_DITHER_ED, |
|
SWS_DITHER_A_DITHER, |
|
SWS_DITHER_X_DITHER, |
|
SWS_DITHER_NB, |
|
} SwsDither; |
|
|
|
typedef enum SwsAlphaBlend { |
|
SWS_ALPHA_BLEND_NONE = 0, |
|
SWS_ALPHA_BLEND_UNIFORM, |
|
SWS_ALPHA_BLEND_CHECKERBOARD, |
|
SWS_ALPHA_BLEND_NB, |
|
} SwsAlphaBlend; |
|
|
|
typedef struct Range { |
|
unsigned int start; |
|
unsigned int len; |
|
} Range; |
|
|
|
typedef struct RangeList { |
|
Range *ranges; |
|
unsigned int nb_ranges; |
|
int ranges_allocated; |
|
} RangeList; |
|
|
|
int ff_range_add(RangeList *r, unsigned int start, unsigned int len); |
|
|
|
typedef int (*SwsFunc)(SwsInternal *c, const uint8_t *const src[], |
|
const int srcStride[], int srcSliceY, int srcSliceH, |
|
uint8_t *const dst[], const int dstStride[]); |
|
|
|
/** |
|
* Write one line of horizontally scaled data to planar output |
|
* without any additional vertical scaling (or point-scaling). |
|
* |
|
* @param src scaled source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param dest pointer to the output plane. For >8-bit |
|
* output, this is in uint16_t |
|
* @param dstW width of destination in pixels |
|
* @param dither ordered dither array of type int16_t and size 8 |
|
* @param offset Dither offset |
|
*/ |
|
typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, |
|
const uint8_t *dither, int offset); |
|
|
|
/** |
|
* Write one line of horizontally scaled data to planar output |
|
* with multi-point vertical scaling between input pixels. |
|
* |
|
* @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096] |
|
* @param src scaled luma (Y) or alpha (A) source data, 15 bits for |
|
* 8-10-bit output, 19 bits for 16-bit output (in int32_t) |
|
* @param filterSize number of vertical input lines to scale |
|
* @param dest pointer to output plane. For >8-bit |
|
* output, this is in uint16_t |
|
* @param dstW width of destination pixels |
|
* @param offset Dither offset |
|
*/ |
|
typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize, |
|
const int16_t **src, uint8_t *dest, int dstW, |
|
const uint8_t *dither, int offset); |
|
|
|
/** |
|
* Write one line of horizontally scaled chroma to interleaved output |
|
* with multi-point vertical scaling between input pixels. |
|
* |
|
* @param dstFormat destination pixel format |
|
* @param chrDither ordered dither array of type uint8_t and size 8 |
|
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] |
|
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit |
|
* output, 19 bits for 16-bit output (in int32_t) |
|
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit |
|
* output, 19 bits for 16-bit output (in int32_t) |
|
* @param chrFilterSize number of vertical chroma input lines to scale |
|
* @param dest pointer to the output plane. For >8-bit |
|
* output, this is in uint16_t |
|
* @param dstW width of chroma planes |
|
*/ |
|
typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, |
|
const uint8_t *chrDither, |
|
const int16_t *chrFilter, |
|
int chrFilterSize, |
|
const int16_t **chrUSrc, |
|
const int16_t **chrVSrc, |
|
uint8_t *dest, int dstW); |
|
|
|
/** |
|
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB |
|
* output without any additional vertical scaling (or point-scaling). Note |
|
* that this function may do chroma scaling, see the "uvalpha" argument. |
|
* |
|
* @param c SWS scaling context |
|
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param dest pointer to the output plane. For 16-bit output, this is |
|
* uint16_t |
|
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels |
|
* to write into dest[] |
|
* @param uvalpha chroma scaling coefficient for the second line of chroma |
|
* pixels, either 2048 or 0. If 0, one chroma input is used |
|
* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag |
|
* is set, it generates 1 output pixel). If 2048, two chroma |
|
* input pixels should be averaged for 2 output pixels (this |
|
* only happens if SWS_FLAG_FULL_CHR_INT is not set) |
|
* @param y vertical line number for this output. This does not need |
|
* to be used to calculate the offset in the destination, |
|
* but can be used to generate comfort noise using dithering |
|
* for some output formats. |
|
*/ |
|
typedef void (*yuv2packed1_fn)(SwsInternal *c, const int16_t *lumSrc, |
|
const int16_t *chrUSrc[2], |
|
const int16_t *chrVSrc[2], |
|
const int16_t *alpSrc, uint8_t *dest, |
|
int dstW, int uvalpha, int y); |
|
/** |
|
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB |
|
* output by doing bilinear scaling between two input lines. |
|
* |
|
* @param c SWS scaling context |
|
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param dest pointer to the output plane. For 16-bit output, this is |
|
* uint16_t |
|
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels |
|
* to write into dest[] |
|
* @param yalpha luma/alpha scaling coefficients for the second input line. |
|
* The first line's coefficients can be calculated by using |
|
* 4096 - yalpha |
|
* @param uvalpha chroma scaling coefficient for the second input line. The |
|
* first line's coefficients can be calculated by using |
|
* 4096 - uvalpha |
|
* @param y vertical line number for this output. This does not need |
|
* to be used to calculate the offset in the destination, |
|
* but can be used to generate comfort noise using dithering |
|
* for some output formats. |
|
*/ |
|
typedef void (*yuv2packed2_fn)(SwsInternal *c, const int16_t *lumSrc[2], |
|
const int16_t *chrUSrc[2], |
|
const int16_t *chrVSrc[2], |
|
const int16_t *alpSrc[2], |
|
uint8_t *dest, |
|
int dstW, int yalpha, int uvalpha, int y); |
|
/** |
|
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB |
|
* output by doing multi-point vertical scaling between input pixels. |
|
* |
|
* @param c SWS scaling context |
|
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] |
|
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param lumFilterSize number of vertical luma/alpha input lines to scale |
|
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] |
|
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrFilterSize number of vertical chroma input lines to scale |
|
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param dest pointer to the output plane. For 16-bit output, this is |
|
* uint16_t |
|
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels |
|
* to write into dest[] |
|
* @param y vertical line number for this output. This does not need |
|
* to be used to calculate the offset in the destination, |
|
* but can be used to generate comfort noise using dithering |
|
* or some output formats. |
|
*/ |
|
typedef void (*yuv2packedX_fn)(SwsInternal *c, const int16_t *lumFilter, |
|
const int16_t **lumSrc, int lumFilterSize, |
|
const int16_t *chrFilter, |
|
const int16_t **chrUSrc, |
|
const int16_t **chrVSrc, int chrFilterSize, |
|
const int16_t **alpSrc, uint8_t *dest, |
|
int dstW, int y); |
|
|
|
/** |
|
* Write one line of horizontally scaled Y/U/V/A to YUV/RGB |
|
* output by doing multi-point vertical scaling between input pixels. |
|
* |
|
* @param c SWS scaling context |
|
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] |
|
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param lumFilterSize number of vertical luma/alpha input lines to scale |
|
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] |
|
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param chrFilterSize number of vertical chroma input lines to scale |
|
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, |
|
* 19 bits for 16-bit output (in int32_t) |
|
* @param dest pointer to the output planes. For 16-bit output, this is |
|
* uint16_t |
|
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels |
|
* to write into dest[] |
|
* @param y vertical line number for this output. This does not need |
|
* to be used to calculate the offset in the destination, |
|
* but can be used to generate comfort noise using dithering |
|
* or some output formats. |
|
*/ |
|
typedef void (*yuv2anyX_fn)(SwsInternal *c, const int16_t *lumFilter, |
|
const int16_t **lumSrc, int lumFilterSize, |
|
const int16_t *chrFilter, |
|
const int16_t **chrUSrc, |
|
const int16_t **chrVSrc, int chrFilterSize, |
|
const int16_t **alpSrc, uint8_t **dest, |
|
int dstW, int y); |
|
|
|
/** |
|
* Unscaled conversion of luma/alpha plane to YV12 for horizontal scaler. |
|
*/ |
|
typedef void (*planar1_YV12_fn)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, |
|
const uint8_t *src3, int width, uint32_t *pal, |
|
void *opaque); |
|
|
|
/** |
|
* Unscaled conversion of chroma plane to YV12 for horizontal scaler. |
|
*/ |
|
typedef void (*planar2_YV12_fn)(uint8_t *dst, uint8_t *dst2, const uint8_t *src, |
|
const uint8_t *src2, const uint8_t *src3, |
|
int width, uint32_t *pal, void *opaque); |
|
|
|
/** |
|
* Unscaled conversion of arbitrary planar data (e.g. RGBA) to YV12, through |
|
* conversion using the given color matrix. |
|
*/ |
|
typedef void (*planarX_YV12_fn)(uint8_t *dst, const uint8_t *src[4], int width, |
|
int32_t *rgb2yuv, void *opaque); |
|
|
|
typedef void (*planarX2_YV12_fn)(uint8_t *dst, uint8_t *dst2, |
|
const uint8_t *src[4], int width, |
|
int32_t *rgb2yuv, void *opaque); |
|
|
|
struct SwsSlice; |
|
struct SwsFilterDescriptor; |
|
|
|
/* This struct should be aligned on at least a 32-byte boundary. */ |
|
struct SwsInternal { |
|
/** |
|
* info on struct for av_log |
|
*/ |
|
const AVClass *av_class; |
|
|
|
SwsContext *parent; |
|
|
|
AVSliceThread *slicethread; |
|
SwsContext **slice_ctx; |
|
int *slice_err; |
|
int nb_slice_ctx; |
|
|
|
// values passed to current sws_receive_slice() call |
|
int dst_slice_start; |
|
int dst_slice_height; |
|
|
|
/** |
|
* Note that src, dst, srcStride, dstStride will be copied in the |
|
* sws_scale() wrapper so they can be freely modified here. |
|
*/ |
|
SwsFunc convert_unscaled; |
|
int srcW; ///< Width of source luma/alpha planes. |
|
int srcH; ///< Height of source luma/alpha planes. |
|
int dstW; ///< Width of destination luma/alpha planes. |
|
int dstH; ///< Height of destination luma/alpha planes. |
|
int chrSrcW; ///< Width of source chroma planes. |
|
int chrSrcH; ///< Height of source chroma planes. |
|
int chrDstW; ///< Width of destination chroma planes. |
|
int chrDstH; ///< Height of destination chroma planes. |
|
int lumXInc, chrXInc; |
|
int lumYInc, chrYInc; |
|
enum AVPixelFormat dstFormat; ///< Destination pixel format. |
|
enum AVPixelFormat srcFormat; ///< Source pixel format. |
|
int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format. |
|
int srcFormatBpp; ///< Number of bits per pixel of the source pixel format. |
|
int dstBpc, srcBpc; |
|
int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image. |
|
int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image. |
|
int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image. |
|
int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image. |
|
int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user. |
|
int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top). |
|
int nb_threads; ///< Number of threads used for scaling |
|
double param[2]; ///< Input parameters for scaling algorithms that need them. |
|
|
|
AVFrame *frame_src; |
|
AVFrame *frame_dst; |
|
|
|
RangeList src_ranges; |
|
|
|
/* The cascaded_* fields allow spliting a scaler task into multiple |
|
* sequential steps, this is for example used to limit the maximum |
|
* downscaling factor that needs to be supported in one scaler. |
|
*/ |
|
SwsContext *cascaded_context[3]; |
|
int cascaded_tmpStride[2][4]; |
|
uint8_t *cascaded_tmp[2][4]; |
|
int cascaded_mainindex; |
|
|
|
double gamma_value; |
|
int gamma_flag; |
|
int is_internal_gamma; |
|
uint16_t *gamma; |
|
uint16_t *inv_gamma; |
|
|
|
int numDesc; |
|
int descIndex[2]; |
|
int numSlice; |
|
struct SwsSlice *slice; |
|
struct SwsFilterDescriptor *desc; |
|
|
|
uint32_t pal_yuv[256]; |
|
uint32_t pal_rgb[256]; |
|
|
|
float uint2float_lut[256]; |
|
|
|
/** |
|
* @name Scaled horizontal lines ring buffer. |
|
* The horizontal scaler keeps just enough scaled lines in a ring buffer |
|
* so they may be passed to the vertical scaler. The pointers to the |
|
* allocated buffers for each line are duplicated in sequence in the ring |
|
* buffer to simplify indexing and avoid wrapping around between lines |
|
* inside the vertical scaler code. The wrapping is done before the |
|
* vertical scaler is called. |
|
*/ |
|
//@{ |
|
int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer. |
|
int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer. |
|
//@} |
|
|
|
uint8_t *formatConvBuffer; |
|
int needAlpha; |
|
|
|
/** |
|
* @name Horizontal and vertical filters. |
|
* To better understand the following fields, here is a pseudo-code of |
|
* their usage in filtering a horizontal line: |
|
* @code |
|
* for (i = 0; i < width; i++) { |
|
* dst[i] = 0; |
|
* for (j = 0; j < filterSize; j++) |
|
* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ]; |
|
* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point. |
|
* } |
|
* @endcode |
|
*/ |
|
//@{ |
|
int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes. |
|
int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes. |
|
int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes. |
|
int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes. |
|
int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes. |
|
int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes. |
|
int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes. |
|
int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes. |
|
int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels. |
|
int hChrFilterSize; ///< Horizontal filter size for chroma pixels. |
|
int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels. |
|
int vChrFilterSize; ///< Vertical filter size for chroma pixels. |
|
//@} |
|
|
|
int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes. |
|
int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes. |
|
uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes. |
|
uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes. |
|
|
|
int canMMXEXTBeUsed; |
|
int warned_unuseable_bilinear; |
|
|
|
int dstY; ///< Last destination vertical line output from last slice. |
|
int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc... |
|
void *yuvTable; // pointer to the yuv->rgb table start so it can be freed() |
|
// alignment ensures the offset can be added in a single |
|
// instruction on e.g. ARM |
|
DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM]; |
|
uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM]; |
|
uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM]; |
|
uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM]; |
|
DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points |
|
#define RY_IDX 0 |
|
#define GY_IDX 1 |
|
#define BY_IDX 2 |
|
#define RU_IDX 3 |
|
#define GU_IDX 4 |
|
#define BU_IDX 5 |
|
#define RV_IDX 6 |
|
#define GV_IDX 7 |
|
#define BV_IDX 8 |
|
#define RGB2YUV_SHIFT 15 |
|
|
|
int *dither_error[4]; |
|
|
|
//Colorspace stuff |
|
int contrast, brightness, saturation; // for sws_getColorspaceDetails |
|
int srcColorspaceTable[4]; |
|
int dstColorspaceTable[4]; |
|
int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image). |
|
int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image). |
|
int src0Alpha; |
|
int dst0Alpha; |
|
int srcXYZ; |
|
int dstXYZ; |
|
int src_h_chr_pos; |
|
int dst_h_chr_pos; |
|
int src_v_chr_pos; |
|
int dst_v_chr_pos; |
|
int yuv2rgb_y_offset; |
|
int yuv2rgb_y_coeff; |
|
int yuv2rgb_v2r_coeff; |
|
int yuv2rgb_v2g_coeff; |
|
int yuv2rgb_u2g_coeff; |
|
int yuv2rgb_u2b_coeff; |
|
|
|
#define RED_DITHER "0*8" |
|
#define GREEN_DITHER "1*8" |
|
#define BLUE_DITHER "2*8" |
|
#define Y_COEFF "3*8" |
|
#define VR_COEFF "4*8" |
|
#define UB_COEFF "5*8" |
|
#define VG_COEFF "6*8" |
|
#define UG_COEFF "7*8" |
|
#define Y_OFFSET "8*8" |
|
#define U_OFFSET "9*8" |
|
#define V_OFFSET "10*8" |
|
#define LUM_MMX_FILTER_OFFSET "11*8" |
|
#define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE) |
|
#define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2" |
|
#define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8" |
|
#define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16" |
|
#define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24" |
|
#define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32" |
|
#define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40" |
|
#define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48" |
|
#define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48" |
|
#define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56" |
|
#define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64" |
|
#define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80" |
|
#define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake |
|
|
|
DECLARE_ALIGNED(8, uint64_t, redDither); |
|
DECLARE_ALIGNED(8, uint64_t, greenDither); |
|
DECLARE_ALIGNED(8, uint64_t, blueDither); |
|
|
|
DECLARE_ALIGNED(8, uint64_t, yCoeff); |
|
DECLARE_ALIGNED(8, uint64_t, vrCoeff); |
|
DECLARE_ALIGNED(8, uint64_t, ubCoeff); |
|
DECLARE_ALIGNED(8, uint64_t, vgCoeff); |
|
DECLARE_ALIGNED(8, uint64_t, ugCoeff); |
|
DECLARE_ALIGNED(8, uint64_t, yOffset); |
|
DECLARE_ALIGNED(8, uint64_t, uOffset); |
|
DECLARE_ALIGNED(8, uint64_t, vOffset); |
|
int32_t lumMmxFilter[4 * MAX_FILTER_SIZE]; |
|
int32_t chrMmxFilter[4 * MAX_FILTER_SIZE]; |
|
int dstW_mmx; |
|
DECLARE_ALIGNED(8, uint64_t, esp); |
|
DECLARE_ALIGNED(8, uint64_t, vRounder); |
|
DECLARE_ALIGNED(8, uint64_t, u_temp); |
|
DECLARE_ALIGNED(8, uint64_t, v_temp); |
|
DECLARE_ALIGNED(8, uint64_t, y_temp); |
|
int32_t alpMmxFilter[4 * MAX_FILTER_SIZE]; |
|
// alignment of these values is not necessary, but merely here |
|
// to maintain the same offset across x8632 and x86-64. Once we |
|
// use proper offset macros in the asm, they can be removed. |
|
DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes |
|
DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes |
|
DECLARE_ALIGNED(8, uint16_t, dither16)[8]; |
|
DECLARE_ALIGNED(8, uint32_t, dither32)[8]; |
|
|
|
const uint8_t *chrDither8, *lumDither8; |
|
|
|
#if HAVE_ALTIVEC |
|
vector signed short CY; |
|
vector signed short CRV; |
|
vector signed short CBU; |
|
vector signed short CGU; |
|
vector signed short CGV; |
|
vector signed short OY; |
|
vector unsigned short CSHIFT; |
|
vector signed short *vYCoeffsBank, *vCCoeffsBank; |
|
#endif |
|
|
|
int use_mmx_vfilter; |
|
|
|
/* pre defined color-spaces gamma */ |
|
#define XYZ_GAMMA (2.6f) |
|
#define RGB_GAMMA (2.2f) |
|
int16_t *xyzgamma; |
|
int16_t *rgbgamma; |
|
int16_t *xyzgammainv; |
|
int16_t *rgbgammainv; |
|
int16_t xyz2rgb_matrix[3][4]; |
|
int16_t rgb2xyz_matrix[3][4]; |
|
|
|
/* function pointers for swscale() */ |
|
yuv2planar1_fn yuv2plane1; |
|
yuv2planarX_fn yuv2planeX; |
|
yuv2interleavedX_fn yuv2nv12cX; |
|
yuv2packed1_fn yuv2packed1; |
|
yuv2packed2_fn yuv2packed2; |
|
yuv2packedX_fn yuv2packedX; |
|
yuv2anyX_fn yuv2anyX; |
|
|
|
/// Opaque data pointer passed to all input functions. |
|
void *input_opaque; |
|
|
|
planar1_YV12_fn lumToYV12; |
|
planar1_YV12_fn alpToYV12; |
|
planar2_YV12_fn chrToYV12; |
|
|
|
/** |
|
* Functions to read planar input, such as planar RGB, and convert |
|
* internally to Y/UV/A. |
|
*/ |
|
/** @{ */ |
|
planarX_YV12_fn readLumPlanar; |
|
planarX_YV12_fn readAlpPlanar; |
|
planarX2_YV12_fn readChrPlanar; |
|
/** @} */ |
|
|
|
/** |
|
* Scale one horizontal line of input data using a bilinear filter |
|
* to produce one line of output data. Compared to SwsInternal->hScale(), |
|
* please take note of the following caveats when using these: |
|
* - Scaling is done using only 7 bits instead of 14-bit coefficients. |
|
* - You can use no more than 5 input pixels to produce 4 output |
|
* pixels. Therefore, this filter should not be used for downscaling |
|
* by more than ~20% in width (because that equals more than 5/4th |
|
* downscaling and thus more than 5 pixels input per 4 pixels output). |
|
* - In general, bilinear filters create artifacts during downscaling |
|
* (even when <20%), because one output pixel will span more than one |
|
* input pixel, and thus some pixels will need edges of both neighbor |
|
* pixels to interpolate the output pixel. Since you can use at most |
|
* two input pixels per output pixel in bilinear scaling, this is |
|
* impossible and thus downscaling by any size will create artifacts. |
|
* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR |
|
* in SwsInternal->flags. |
|
*/ |
|
/** @{ */ |
|
void (*hyscale_fast)(SwsInternal *c, |
|
int16_t *dst, int dstWidth, |
|
const uint8_t *src, int srcW, int xInc); |
|
void (*hcscale_fast)(SwsInternal *c, |
|
int16_t *dst1, int16_t *dst2, int dstWidth, |
|
const uint8_t *src1, const uint8_t *src2, |
|
int srcW, int xInc); |
|
/** @} */ |
|
|
|
/** |
|
* Scale one horizontal line of input data using a filter over the input |
|
* lines, to produce one (differently sized) line of output data. |
|
* |
|
* @param dst pointer to destination buffer for horizontally scaled |
|
* data. If the number of bits per component of one |
|
* destination pixel (SwsInternal->dstBpc) is <= 10, data |
|
* will be 15 bpc in 16 bits (int16_t) width. Else (i.e. |
|
* SwsInternal->dstBpc == 16), data will be 19bpc in |
|
* 32 bits (int32_t) width. |
|
* @param dstW width of destination image |
|
* @param src pointer to source data to be scaled. If the number of |
|
* bits per component of a source pixel (SwsInternal->srcBpc) |
|
* is 8, this is 8bpc in 8 bits (uint8_t) width. Else |
|
* (i.e. SwsInternal->dstBpc > 8), this is native depth |
|
* in 16 bits (uint16_t) width. In other words, for 9-bit |
|
* YUV input, this is 9bpc, for 10-bit YUV input, this is |
|
* 10bpc, and for 16-bit RGB or YUV, this is 16bpc. |
|
* @param filter filter coefficients to be used per output pixel for |
|
* scaling. This contains 14bpp filtering coefficients. |
|
* Guaranteed to contain dstW * filterSize entries. |
|
* @param filterPos position of the first input pixel to be used for |
|
* each output pixel during scaling. Guaranteed to |
|
* contain dstW entries. |
|
* @param filterSize the number of input coefficients to be used (and |
|
* thus the number of input pixels to be used) for |
|
* creating a single output pixel. Is aligned to 4 |
|
* (and input coefficients thus padded with zeroes) |
|
* to simplify creating SIMD code. |
|
*/ |
|
/** @{ */ |
|
void (*hyScale)(SwsInternal *c, int16_t *dst, int dstW, |
|
const uint8_t *src, const int16_t *filter, |
|
const int32_t *filterPos, int filterSize); |
|
void (*hcScale)(SwsInternal *c, int16_t *dst, int dstW, |
|
const uint8_t *src, const int16_t *filter, |
|
const int32_t *filterPos, int filterSize); |
|
/** @} */ |
|
|
|
/// Color range conversion function for luma plane if needed. |
|
void (*lumConvertRange)(int16_t *dst, int width); |
|
/// Color range conversion function for chroma planes if needed. |
|
void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width); |
|
|
|
int needs_hcscale; ///< Set if there are chroma planes to be converted. |
|
|
|
SwsDither dither; |
|
|
|
SwsAlphaBlend alphablend; |
|
|
|
// scratch buffer for converting packed rgb0 sources |
|
// filled with a copy of the input frame + fully opaque alpha, |
|
// then passed as input to further conversion |
|
uint8_t *rgb0_scratch; |
|
unsigned int rgb0_scratch_allocated; |
|
|
|
// scratch buffer for converting XYZ sources |
|
// filled with the input converted to rgb48 |
|
// then passed as input to further conversion |
|
uint8_t *xyz_scratch; |
|
unsigned int xyz_scratch_allocated; |
|
|
|
unsigned int dst_slice_align; |
|
atomic_int stride_unaligned_warned; |
|
atomic_int data_unaligned_warned; |
|
|
|
Half2FloatTables *h2f_tables; |
|
}; |
|
//FIXME check init (where 0) |
|
|
|
SwsFunc ff_yuv2rgb_get_func_ptr(SwsInternal *c); |
|
int ff_yuv2rgb_c_init_tables(SwsInternal *c, const int inv_table[4], |
|
int fullRange, int brightness, |
|
int contrast, int saturation); |
|
void ff_yuv2rgb_init_tables_ppc(SwsInternal *c, const int inv_table[4], |
|
int brightness, int contrast, int saturation); |
|
|
|
void ff_updateMMXDitherTables(SwsInternal *c, int dstY); |
|
|
|
void ff_update_palette(SwsInternal *c, const uint32_t *pal); |
|
|
|
av_cold void ff_sws_init_range_convert(SwsInternal *c); |
|
av_cold void ff_sws_init_range_convert_aarch64(SwsInternal *c); |
|
av_cold void ff_sws_init_range_convert_loongarch(SwsInternal *c); |
|
av_cold void ff_sws_init_range_convert_x86(SwsInternal *c); |
|
|
|
SwsFunc ff_yuv2rgb_init_x86(SwsInternal *c); |
|
SwsFunc ff_yuv2rgb_init_ppc(SwsInternal *c); |
|
SwsFunc ff_yuv2rgb_init_loongarch(SwsInternal *c); |
|
|
|
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->comp[0].depth == 16; |
|
} |
|
|
|
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->comp[0].depth == 32; |
|
} |
|
|
|
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14; |
|
} |
|
|
|
static av_always_inline int isBE(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->flags & AV_PIX_FMT_FLAG_BE; |
|
} |
|
|
|
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2; |
|
} |
|
|
|
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt)); |
|
} |
|
|
|
/* |
|
* Identity semi-planar YUV formats. Specifically, those are YUV formats |
|
* where the second and third components (U & V) are on the same plane. |
|
*/ |
|
static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane); |
|
} |
|
|
|
static av_always_inline int isRGB(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (desc->flags & AV_PIX_FMT_FLAG_RGB); |
|
} |
|
|
|
static av_always_inline int isGray(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return !(desc->flags & AV_PIX_FMT_FLAG_PAL) && |
|
!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) && |
|
desc->nb_components <= 2 && |
|
pix_fmt != AV_PIX_FMT_MONOBLACK && |
|
pix_fmt != AV_PIX_FMT_MONOWHITE; |
|
} |
|
|
|
static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt) |
|
{ |
|
return pix_fmt == AV_PIX_FMT_RGB48BE || |
|
pix_fmt == AV_PIX_FMT_RGB48LE || |
|
pix_fmt == AV_PIX_FMT_RGB32 || |
|
pix_fmt == AV_PIX_FMT_RGB32_1 || |
|
pix_fmt == AV_PIX_FMT_RGB24 || |
|
pix_fmt == AV_PIX_FMT_RGB565BE || |
|
pix_fmt == AV_PIX_FMT_RGB565LE || |
|
pix_fmt == AV_PIX_FMT_RGB555BE || |
|
pix_fmt == AV_PIX_FMT_RGB555LE || |
|
pix_fmt == AV_PIX_FMT_RGB444BE || |
|
pix_fmt == AV_PIX_FMT_RGB444LE || |
|
pix_fmt == AV_PIX_FMT_RGB8 || |
|
pix_fmt == AV_PIX_FMT_RGB4 || |
|
pix_fmt == AV_PIX_FMT_RGB4_BYTE || |
|
pix_fmt == AV_PIX_FMT_RGBA64BE || |
|
pix_fmt == AV_PIX_FMT_RGBA64LE || |
|
pix_fmt == AV_PIX_FMT_MONOBLACK || |
|
pix_fmt == AV_PIX_FMT_MONOWHITE; |
|
} |
|
|
|
static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt) |
|
{ |
|
return pix_fmt == AV_PIX_FMT_BGR48BE || |
|
pix_fmt == AV_PIX_FMT_BGR48LE || |
|
pix_fmt == AV_PIX_FMT_BGR32 || |
|
pix_fmt == AV_PIX_FMT_BGR32_1 || |
|
pix_fmt == AV_PIX_FMT_BGR24 || |
|
pix_fmt == AV_PIX_FMT_BGR565BE || |
|
pix_fmt == AV_PIX_FMT_BGR565LE || |
|
pix_fmt == AV_PIX_FMT_BGR555BE || |
|
pix_fmt == AV_PIX_FMT_BGR555LE || |
|
pix_fmt == AV_PIX_FMT_BGR444BE || |
|
pix_fmt == AV_PIX_FMT_BGR444LE || |
|
pix_fmt == AV_PIX_FMT_BGR8 || |
|
pix_fmt == AV_PIX_FMT_BGR4 || |
|
pix_fmt == AV_PIX_FMT_BGR4_BYTE || |
|
pix_fmt == AV_PIX_FMT_BGRA64BE || |
|
pix_fmt == AV_PIX_FMT_BGRA64LE || |
|
pix_fmt == AV_PIX_FMT_MONOBLACK || |
|
pix_fmt == AV_PIX_FMT_MONOWHITE; |
|
} |
|
|
|
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER); |
|
} |
|
|
|
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->comp[1].depth == 8; |
|
} |
|
|
|
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (desc->flags & AV_PIX_FMT_FLAG_RGB) || |
|
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; |
|
} |
|
|
|
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return desc->flags & AV_PIX_FMT_FLAG_FLOAT; |
|
} |
|
|
|
static av_always_inline int isFloat16(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (desc->flags & AV_PIX_FMT_FLAG_FLOAT) && desc->comp[0].depth == 16; |
|
} |
|
|
|
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
if (pix_fmt == AV_PIX_FMT_PAL8) |
|
return 1; |
|
return desc->flags & AV_PIX_FMT_FLAG_ALPHA; |
|
} |
|
|
|
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) || |
|
pix_fmt == AV_PIX_FMT_PAL8 || |
|
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; |
|
} |
|
|
|
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR)); |
|
} |
|
|
|
static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB); |
|
} |
|
|
|
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == |
|
(AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)); |
|
} |
|
|
|
static av_always_inline int usePal(enum AVPixelFormat pix_fmt) |
|
{ |
|
switch (pix_fmt) { |
|
case AV_PIX_FMT_PAL8: |
|
case AV_PIX_FMT_BGR4_BYTE: |
|
case AV_PIX_FMT_BGR8: |
|
case AV_PIX_FMT_GRAY8: |
|
case AV_PIX_FMT_RGB4_BYTE: |
|
case AV_PIX_FMT_RGB8: |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
/* |
|
* Identity formats where the data is in the high bits, and the low bits are shifted away. |
|
*/ |
|
static av_always_inline int isDataInHighBits(enum AVPixelFormat pix_fmt) |
|
{ |
|
int i; |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
if (desc->flags & (AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_HWACCEL)) |
|
return 0; |
|
for (i = 0; i < desc->nb_components; i++) { |
|
if (!desc->comp[i].shift) |
|
return 0; |
|
if ((desc->comp[i].shift + desc->comp[i].depth) & 0x7) |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
/* |
|
* Identity formats where the chroma planes are swapped (CrCb order). |
|
*/ |
|
static av_always_inline int isSwappedChroma(enum AVPixelFormat pix_fmt) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); |
|
av_assert0(desc); |
|
if (!isYUV(pix_fmt)) |
|
return 0; |
|
if ((desc->flags & AV_PIX_FMT_FLAG_ALPHA) && desc->nb_components < 4) |
|
return 0; |
|
if (desc->nb_components < 3) |
|
return 0; |
|
if (!isPlanarYUV(pix_fmt) || isSemiPlanarYUV(pix_fmt)) |
|
return desc->comp[1].offset > desc->comp[2].offset; |
|
else |
|
return desc->comp[1].plane > desc->comp[2].plane; |
|
} |
|
|
|
extern const uint64_t ff_dither4[2]; |
|
extern const uint64_t ff_dither8[2]; |
|
|
|
extern const uint8_t ff_dither_2x2_4[3][8]; |
|
extern const uint8_t ff_dither_2x2_8[3][8]; |
|
extern const uint8_t ff_dither_4x4_16[5][8]; |
|
extern const uint8_t ff_dither_8x8_32[9][8]; |
|
extern const uint8_t ff_dither_8x8_73[9][8]; |
|
extern const uint8_t ff_dither_8x8_128[9][8]; |
|
extern const uint8_t ff_dither_8x8_220[9][8]; |
|
|
|
extern const int32_t ff_yuv2rgb_coeffs[11][4]; |
|
|
|
extern const AVClass ff_sws_context_class; |
|
|
|
/** |
|
* Set c->convert_unscaled to an unscaled converter if one exists for the |
|
* specific source and destination formats, bit depths, flags, etc. |
|
*/ |
|
void ff_get_unscaled_swscale(SwsInternal *c); |
|
void ff_get_unscaled_swscale_ppc(SwsInternal *c); |
|
void ff_get_unscaled_swscale_arm(SwsInternal *c); |
|
void ff_get_unscaled_swscale_aarch64(SwsInternal *c); |
|
|
|
void ff_sws_init_scale(SwsInternal *c); |
|
|
|
void ff_sws_init_input_funcs(SwsInternal *c, |
|
planar1_YV12_fn *lumToYV12, |
|
planar1_YV12_fn *alpToYV12, |
|
planar2_YV12_fn *chrToYV12, |
|
planarX_YV12_fn *readLumPlanar, |
|
planarX_YV12_fn *readAlpPlanar, |
|
planarX2_YV12_fn *readChrPlanar); |
|
void ff_sws_init_output_funcs(SwsInternal *c, |
|
yuv2planar1_fn *yuv2plane1, |
|
yuv2planarX_fn *yuv2planeX, |
|
yuv2interleavedX_fn *yuv2nv12cX, |
|
yuv2packed1_fn *yuv2packed1, |
|
yuv2packed2_fn *yuv2packed2, |
|
yuv2packedX_fn *yuv2packedX, |
|
yuv2anyX_fn *yuv2anyX); |
|
void ff_sws_init_swscale_ppc(SwsInternal *c); |
|
void ff_sws_init_swscale_vsx(SwsInternal *c); |
|
void ff_sws_init_swscale_x86(SwsInternal *c); |
|
void ff_sws_init_swscale_aarch64(SwsInternal *c); |
|
void ff_sws_init_swscale_arm(SwsInternal *c); |
|
void ff_sws_init_swscale_loongarch(SwsInternal *c); |
|
void ff_sws_init_swscale_riscv(SwsInternal *c); |
|
|
|
void ff_hyscale_fast_c(SwsInternal *c, int16_t *dst, int dstWidth, |
|
const uint8_t *src, int srcW, int xInc); |
|
void ff_hcscale_fast_c(SwsInternal *c, int16_t *dst1, int16_t *dst2, |
|
int dstWidth, const uint8_t *src1, |
|
const uint8_t *src2, int srcW, int xInc); |
|
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, |
|
int16_t *filter, int32_t *filterPos, |
|
int numSplits); |
|
void ff_hyscale_fast_mmxext(SwsInternal *c, int16_t *dst, |
|
int dstWidth, const uint8_t *src, |
|
int srcW, int xInc); |
|
void ff_hcscale_fast_mmxext(SwsInternal *c, int16_t *dst1, int16_t *dst2, |
|
int dstWidth, const uint8_t *src1, |
|
const uint8_t *src2, int srcW, int xInc); |
|
|
|
int ff_sws_alphablendaway(SwsInternal *c, const uint8_t *const src[], |
|
const int srcStride[], int srcSliceY, int srcSliceH, |
|
uint8_t *const dst[], const int dstStride[]); |
|
|
|
void ff_copyPlane(const uint8_t *src, int srcStride, |
|
int srcSliceY, int srcSliceH, int width, |
|
uint8_t *dst, int dstStride); |
|
|
|
void ff_xyz12Torgb48(const SwsInternal *c, uint8_t *dst, int dst_stride, |
|
const uint8_t *src, int src_stride, int w, int h); |
|
|
|
void ff_rgb48Toxyz12(const SwsInternal *c, uint8_t *dst, int dst_stride, |
|
const uint8_t *src, int src_stride, int w, int h); |
|
|
|
static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, |
|
int alpha, int bits, const int big_endian) |
|
{ |
|
uint8_t *ptr = plane + stride * y; |
|
int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1)); |
|
if (big_endian != HAVE_BIGENDIAN) |
|
v = av_bswap16(v); |
|
for (int i = 0; i < height; i++) { |
|
for (int j = 0; j < width; j++) |
|
AV_WN16(ptr + 2 * j, v); |
|
ptr += stride; |
|
} |
|
} |
|
|
|
static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, |
|
int alpha, int bits, const int big_endian, int is_float) |
|
{ |
|
uint8_t *ptr = plane + stride * y; |
|
uint32_t v; |
|
uint32_t onef32 = 0x3f800000; |
|
if (is_float) |
|
v = alpha ? onef32 : 0; |
|
else |
|
v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1)); |
|
if (big_endian != HAVE_BIGENDIAN) |
|
v = av_bswap32(v); |
|
|
|
for (int i = 0; i < height; i++) { |
|
for (int j = 0; j < width; j++) |
|
AV_WN32(ptr + 4 * j, v); |
|
ptr += stride; |
|
} |
|
} |
|
|
|
|
|
#define MAX_SLICE_PLANES 4 |
|
|
|
/// Slice plane |
|
typedef struct SwsPlane |
|
{ |
|
int available_lines; ///< max number of lines that can be hold by this plane |
|
int sliceY; ///< index of first line |
|
int sliceH; ///< number of lines |
|
uint8_t **line; ///< line buffer |
|
uint8_t **tmp; ///< Tmp line buffer used by mmx code |
|
} SwsPlane; |
|
|
|
/** |
|
* Struct which defines a slice of an image to be scaled or an output for |
|
* a scaled slice. |
|
* A slice can also be used as intermediate ring buffer for scaling steps. |
|
*/ |
|
typedef struct SwsSlice |
|
{ |
|
int width; ///< Slice line width |
|
int h_chr_sub_sample; ///< horizontal chroma subsampling factor |
|
int v_chr_sub_sample; ///< vertical chroma subsampling factor |
|
int is_ring; ///< flag to identify if this slice is a ring buffer |
|
int should_free_lines; ///< flag to identify if there are dynamic allocated lines |
|
enum AVPixelFormat fmt; ///< planes pixel format |
|
SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes |
|
} SwsSlice; |
|
|
|
/** |
|
* Struct which holds all necessary data for processing a slice. |
|
* A processing step can be a color conversion or horizontal/vertical scaling. |
|
*/ |
|
typedef struct SwsFilterDescriptor |
|
{ |
|
SwsSlice *src; ///< Source slice |
|
SwsSlice *dst; ///< Output slice |
|
|
|
int alpha; ///< Flag for processing alpha channel |
|
void *instance; ///< Filter instance data |
|
|
|
/// Function for processing input slice sliceH lines starting from line sliceY |
|
int (*process)(SwsInternal *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH); |
|
} SwsFilterDescriptor; |
|
|
|
// warp input lines in the form (src + width*i + j) to slice format (line[i][j]) |
|
// relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y] |
|
int ff_init_slice_from_src(SwsSlice * s, uint8_t *const src[4], const int stride[4], |
|
int srcW, int lumY, int lumH, int chrY, int chrH, int relative); |
|
|
|
// Initialize scaler filter descriptor chain |
|
int ff_init_filters(SwsInternal *c); |
|
|
|
// Free all filter data |
|
int ff_free_filters(SwsInternal *c); |
|
|
|
/* |
|
function for applying ring buffer logic into slice s |
|
It checks if the slice can hold more @lum lines, if yes |
|
do nothing otherwise remove @lum least used lines. |
|
It applies the same procedure for @chr lines. |
|
*/ |
|
int ff_rotate_slice(SwsSlice *s, int lum, int chr); |
|
|
|
/// initializes gamma conversion descriptor |
|
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table); |
|
|
|
/// initializes lum pixel format conversion descriptor |
|
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); |
|
|
|
/// initializes lum horizontal scaling descriptor |
|
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); |
|
|
|
/// initializes chr pixel format conversion descriptor |
|
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); |
|
|
|
/// initializes chr horizontal scaling descriptor |
|
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); |
|
|
|
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst); |
|
|
|
/// initializes vertical scaling descriptors |
|
int ff_init_vscale(SwsInternal *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst); |
|
|
|
/// setup vertical scaler functions |
|
void ff_init_vscale_pfn(SwsInternal *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, |
|
yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, |
|
yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx); |
|
|
|
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, |
|
int nb_jobs, int nb_threads); |
|
|
|
int ff_swscale(SwsInternal *c, const uint8_t *const src[], const int srcStride[], |
|
int srcSliceY, int srcSliceH, uint8_t *const dst[], |
|
const int dstStride[], int dstSliceY, int dstSliceH); |
|
|
|
|
|
//number of extra lines to process |
|
#define MAX_LINES_AHEAD 4 |
|
|
|
//shuffle filter and filterPos for hyScale and hcScale filters in avx2 |
|
int ff_shuffle_filter_coefficients(SwsInternal *c, int* filterPos, int filterSize, int16_t *filter, int dstW); |
|
#endif /* SWSCALE_SWSCALE_INTERNAL_H */
|
|
|