mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3482 lines
127 KiB
3482 lines
127 KiB
/* |
|
* AAC decoder |
|
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) |
|
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) |
|
* Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com> |
|
* |
|
* AAC LATM decoder |
|
* Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz> |
|
* Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net> |
|
* |
|
* AAC decoder fixed-point implementation |
|
* Copyright (c) 2013 |
|
* MIPS Technologies, Inc., California. |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC decoder |
|
* @author Oded Shimon ( ods15 ods15 dyndns org ) |
|
* @author Maxim Gavrilov ( maxim.gavrilov gmail com ) |
|
* |
|
* AAC decoder fixed-point implementation |
|
* @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com ) |
|
* @author Nedeljko Babic ( nedeljko.babic imgtec com ) |
|
*/ |
|
|
|
/* |
|
* supported tools |
|
* |
|
* Support? Name |
|
* N (code in SoC repo) gain control |
|
* Y block switching |
|
* Y window shapes - standard |
|
* N window shapes - Low Delay |
|
* Y filterbank - standard |
|
* N (code in SoC repo) filterbank - Scalable Sample Rate |
|
* Y Temporal Noise Shaping |
|
* Y Long Term Prediction |
|
* Y intensity stereo |
|
* Y channel coupling |
|
* Y frequency domain prediction |
|
* Y Perceptual Noise Substitution |
|
* Y Mid/Side stereo |
|
* N Scalable Inverse AAC Quantization |
|
* N Frequency Selective Switch |
|
* N upsampling filter |
|
* Y quantization & coding - AAC |
|
* N quantization & coding - TwinVQ |
|
* N quantization & coding - BSAC |
|
* N AAC Error Resilience tools |
|
* N Error Resilience payload syntax |
|
* N Error Protection tool |
|
* N CELP |
|
* N Silence Compression |
|
* N HVXC |
|
* N HVXC 4kbits/s VR |
|
* N Structured Audio tools |
|
* N Structured Audio Sample Bank Format |
|
* N MIDI |
|
* N Harmonic and Individual Lines plus Noise |
|
* N Text-To-Speech Interface |
|
* Y Spectral Band Replication |
|
* Y (not in this code) Layer-1 |
|
* Y (not in this code) Layer-2 |
|
* Y (not in this code) Layer-3 |
|
* N SinuSoidal Coding (Transient, Sinusoid, Noise) |
|
* Y Parametric Stereo |
|
* N Direct Stream Transfer |
|
* Y (not in fixed point code) Enhanced AAC Low Delay (ER AAC ELD) |
|
* |
|
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. |
|
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and |
|
Parametric Stereo. |
|
*/ |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/thread.h" |
|
#include "decode.h" |
|
#include "internal.h" |
|
|
|
static VLC vlc_scalefactors; |
|
static VLC vlc_spectral[11]; |
|
|
|
static int output_configure(AACContext *ac, |
|
uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, |
|
enum OCStatus oc_type, int get_new_frame); |
|
|
|
#define overread_err "Input buffer exhausted before END element found\n" |
|
|
|
static int count_channels(uint8_t (*layout)[3], int tags) |
|
{ |
|
int i, sum = 0; |
|
for (i = 0; i < tags; i++) { |
|
int syn_ele = layout[i][0]; |
|
int pos = layout[i][2]; |
|
sum += (1 + (syn_ele == TYPE_CPE)) * |
|
(pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); |
|
} |
|
return sum; |
|
} |
|
|
|
/** |
|
* Check for the channel element in the current channel position configuration. |
|
* If it exists, make sure the appropriate element is allocated and map the |
|
* channel order to match the internal FFmpeg channel layout. |
|
* |
|
* @param che_pos current channel position configuration |
|
* @param type channel element type |
|
* @param id channel element id |
|
* @param channels count of the number of channels in the configuration |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static av_cold int che_configure(AACContext *ac, |
|
enum ChannelPosition che_pos, |
|
int type, int id, int *channels) |
|
{ |
|
if (*channels >= MAX_CHANNELS) |
|
return AVERROR_INVALIDDATA; |
|
if (che_pos) { |
|
if (!ac->che[type][id]) { |
|
int ret; |
|
if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) |
|
return AVERROR(ENOMEM); |
|
ret = AAC_RENAME(ff_aac_sbr_ctx_init)(ac, &ac->che[type][id]->sbr, type); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
if (type != TYPE_CCE) { |
|
if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; |
|
if (type == TYPE_CPE || |
|
(type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { |
|
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; |
|
} |
|
} |
|
} else { |
|
if (ac->che[type][id]) |
|
AAC_RENAME(ff_aac_sbr_ctx_close)(&ac->che[type][id]->sbr); |
|
av_freep(&ac->che[type][id]); |
|
} |
|
return 0; |
|
} |
|
|
|
static int frame_configure_elements(AVCodecContext *avctx) |
|
{ |
|
AACContext *ac = avctx->priv_data; |
|
int type, id, ch, ret; |
|
|
|
/* set channel pointers to internal buffers by default */ |
|
for (type = 0; type < 4; type++) { |
|
for (id = 0; id < MAX_ELEM_ID; id++) { |
|
ChannelElement *che = ac->che[type][id]; |
|
if (che) { |
|
che->ch[0].ret = che->ch[0].ret_buf; |
|
che->ch[1].ret = che->ch[1].ret_buf; |
|
} |
|
} |
|
} |
|
|
|
/* get output buffer */ |
|
av_frame_unref(ac->frame); |
|
if (!avctx->ch_layout.nb_channels) |
|
return 1; |
|
|
|
ac->frame->nb_samples = 2048; |
|
if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) |
|
return ret; |
|
|
|
/* map output channel pointers to AVFrame data */ |
|
for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) { |
|
if (ac->output_element[ch]) |
|
ac->output_element[ch]->ret = (INTFLOAT *)ac->frame->extended_data[ch]; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
struct elem_to_channel { |
|
uint64_t av_position; |
|
uint8_t syn_ele; |
|
uint8_t elem_id; |
|
uint8_t aac_position; |
|
}; |
|
|
|
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], |
|
uint8_t (*layout_map)[3], int offset, uint64_t left, |
|
uint64_t right, int pos, uint64_t *layout) |
|
{ |
|
if (layout_map[offset][0] == TYPE_CPE) { |
|
e2c_vec[offset] = (struct elem_to_channel) { |
|
.av_position = left | right, |
|
.syn_ele = TYPE_CPE, |
|
.elem_id = layout_map[offset][1], |
|
.aac_position = pos |
|
}; |
|
if (e2c_vec[offset].av_position != UINT64_MAX) |
|
*layout |= e2c_vec[offset].av_position; |
|
|
|
return 1; |
|
} else { |
|
e2c_vec[offset] = (struct elem_to_channel) { |
|
.av_position = left, |
|
.syn_ele = TYPE_SCE, |
|
.elem_id = layout_map[offset][1], |
|
.aac_position = pos |
|
}; |
|
e2c_vec[offset + 1] = (struct elem_to_channel) { |
|
.av_position = right, |
|
.syn_ele = TYPE_SCE, |
|
.elem_id = layout_map[offset + 1][1], |
|
.aac_position = pos |
|
}; |
|
if (left != UINT64_MAX) |
|
*layout |= left; |
|
|
|
if (right != UINT64_MAX) |
|
*layout |= right; |
|
|
|
return 2; |
|
} |
|
} |
|
|
|
static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, |
|
int current) |
|
{ |
|
int num_pos_channels = 0; |
|
int first_cpe = 0; |
|
int sce_parity = 0; |
|
int i; |
|
for (i = current; i < tags; i++) { |
|
if (layout_map[i][2] != pos) |
|
break; |
|
if (layout_map[i][0] == TYPE_CPE) { |
|
if (sce_parity) { |
|
if (pos == AAC_CHANNEL_FRONT && !first_cpe) { |
|
sce_parity = 0; |
|
} else { |
|
return -1; |
|
} |
|
} |
|
num_pos_channels += 2; |
|
first_cpe = 1; |
|
} else { |
|
num_pos_channels++; |
|
sce_parity ^= (pos != AAC_CHANNEL_LFE); |
|
} |
|
} |
|
if (sce_parity && |
|
(pos == AAC_CHANNEL_FRONT && first_cpe)) |
|
return -1; |
|
|
|
return num_pos_channels; |
|
} |
|
|
|
static int assign_channels(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t (*layout_map)[3], |
|
uint64_t *layout, int tags, int layer, int pos, int *current) |
|
{ |
|
int i = *current, j = 0; |
|
int nb_channels = count_paired_channels(layout_map, tags, pos, i); |
|
|
|
if (nb_channels < 0 || nb_channels > 5) |
|
return 0; |
|
|
|
if (pos == AAC_CHANNEL_LFE) { |
|
while (nb_channels) { |
|
if (aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE) |
|
return -1; |
|
e2c_vec[i] = (struct elem_to_channel) { |
|
.av_position = 1ULL << aac_channel_map[layer][pos - 1][j], |
|
.syn_ele = layout_map[i][0], |
|
.elem_id = layout_map[i][1], |
|
.aac_position = pos |
|
}; |
|
*layout |= e2c_vec[i].av_position; |
|
i++; |
|
j++; |
|
nb_channels--; |
|
} |
|
*current = i; |
|
|
|
return 0; |
|
} |
|
|
|
while (nb_channels & 1) { |
|
if (aac_channel_map[layer][pos - 1][0] == AV_CHAN_NONE) |
|
return -1; |
|
if (aac_channel_map[layer][pos - 1][0] == AV_CHAN_UNUSED) |
|
break; |
|
e2c_vec[i] = (struct elem_to_channel) { |
|
.av_position = 1ULL << aac_channel_map[layer][pos - 1][0], |
|
.syn_ele = layout_map[i][0], |
|
.elem_id = layout_map[i][1], |
|
.aac_position = pos |
|
}; |
|
*layout |= e2c_vec[i].av_position; |
|
i++; |
|
nb_channels--; |
|
} |
|
|
|
j = (pos != AAC_CHANNEL_SIDE) && nb_channels <= 3 ? 3 : 1; |
|
while (nb_channels >= 2) { |
|
if (aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE || |
|
aac_channel_map[layer][pos - 1][j+1] == AV_CHAN_NONE) |
|
return -1; |
|
i += assign_pair(e2c_vec, layout_map, i, |
|
1ULL << aac_channel_map[layer][pos - 1][j], |
|
1ULL << aac_channel_map[layer][pos - 1][j+1], |
|
pos, layout); |
|
j += 2; |
|
nb_channels -= 2; |
|
} |
|
while (nb_channels & 1) { |
|
if (aac_channel_map[layer][pos - 1][5] == AV_CHAN_NONE) |
|
return -1; |
|
e2c_vec[i] = (struct elem_to_channel) { |
|
.av_position = 1ULL << aac_channel_map[layer][pos - 1][5], |
|
.syn_ele = layout_map[i][0], |
|
.elem_id = layout_map[i][1], |
|
.aac_position = pos |
|
}; |
|
*layout |= e2c_vec[i].av_position; |
|
i++; |
|
nb_channels--; |
|
} |
|
if (nb_channels) |
|
return -1; |
|
|
|
*current = i; |
|
|
|
return 0; |
|
} |
|
|
|
static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) |
|
{ |
|
int i, n, total_non_cc_elements; |
|
struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } }; |
|
uint64_t layout = 0; |
|
|
|
if (FF_ARRAY_ELEMS(e2c_vec) < tags) |
|
return 0; |
|
|
|
for (n = 0, i = 0; n < 3 && i < tags; n++) { |
|
int ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_FRONT, &i); |
|
if (ret < 0) |
|
return 0; |
|
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_SIDE, &i); |
|
if (ret < 0) |
|
return 0; |
|
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_BACK, &i); |
|
if (ret < 0) |
|
return 0; |
|
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_LFE, &i); |
|
if (ret < 0) |
|
return 0; |
|
} |
|
|
|
total_non_cc_elements = n = i; |
|
|
|
if (layout == AV_CH_LAYOUT_22POINT2) { |
|
// For 22.2 reorder the result as needed |
|
FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[0]); // FL & FR first (final), FC third |
|
FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[1]); // FC second (final), FLc & FRc third |
|
FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[2]); // LFE1 third (final), FLc & FRc seventh |
|
FFSWAP(struct elem_to_channel, e2c_vec[4], e2c_vec[3]); // BL & BR fourth (final), SiL & SiR fifth |
|
FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[4]); // FLc & FRc fifth (final), SiL & SiR seventh |
|
FFSWAP(struct elem_to_channel, e2c_vec[7], e2c_vec[6]); // LFE2 seventh (final), SiL & SiR eight (final) |
|
FFSWAP(struct elem_to_channel, e2c_vec[9], e2c_vec[8]); // TpFL & TpFR ninth (final), TFC tenth (final) |
|
FFSWAP(struct elem_to_channel, e2c_vec[11], e2c_vec[10]); // TC eleventh (final), TpSiL & TpSiR twelth |
|
FFSWAP(struct elem_to_channel, e2c_vec[12], e2c_vec[11]); // TpBL & TpBR twelth (final), TpSiL & TpSiR thirteenth (final) |
|
} else { |
|
// For everything else, utilize the AV channel position define as a |
|
// stable sort. |
|
do { |
|
int next_n = 0; |
|
for (i = 1; i < n; i++) |
|
if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) { |
|
FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]); |
|
next_n = i; |
|
} |
|
n = next_n; |
|
} while (n > 0); |
|
|
|
} |
|
|
|
for (i = 0; i < total_non_cc_elements; i++) { |
|
layout_map[i][0] = e2c_vec[i].syn_ele; |
|
layout_map[i][1] = e2c_vec[i].elem_id; |
|
layout_map[i][2] = e2c_vec[i].aac_position; |
|
} |
|
|
|
return layout; |
|
} |
|
|
|
/** |
|
* Save current output configuration if and only if it has been locked. |
|
*/ |
|
static int push_output_configuration(AACContext *ac) { |
|
int pushed = 0; |
|
|
|
if (ac->oc[1].status == OC_LOCKED || ac->oc[0].status == OC_NONE) { |
|
ac->oc[0] = ac->oc[1]; |
|
pushed = 1; |
|
} |
|
ac->oc[1].status = OC_NONE; |
|
return pushed; |
|
} |
|
|
|
/** |
|
* Restore the previous output configuration if and only if the current |
|
* configuration is unlocked. |
|
*/ |
|
static void pop_output_configuration(AACContext *ac) { |
|
if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { |
|
ac->oc[1] = ac->oc[0]; |
|
ac->avctx->ch_layout = ac->oc[1].ch_layout; |
|
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
|
ac->oc[1].status, 0); |
|
} |
|
} |
|
|
|
/** |
|
* Configure output channel order based on the current program |
|
* configuration element. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int output_configure(AACContext *ac, |
|
uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags, |
|
enum OCStatus oc_type, int get_new_frame) |
|
{ |
|
AVCodecContext *avctx = ac->avctx; |
|
int i, channels = 0, ret; |
|
uint64_t layout = 0; |
|
uint8_t id_map[TYPE_END][MAX_ELEM_ID] = {{ 0 }}; |
|
uint8_t type_counts[TYPE_END] = { 0 }; |
|
|
|
if (ac->oc[1].layout_map != layout_map) { |
|
memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); |
|
ac->oc[1].layout_map_tags = tags; |
|
} |
|
for (i = 0; i < tags; i++) { |
|
int type = layout_map[i][0]; |
|
int id = layout_map[i][1]; |
|
id_map[type][id] = type_counts[type]++; |
|
if (id_map[type][id] >= MAX_ELEM_ID) { |
|
avpriv_request_sample(ac->avctx, "Too large remapped id"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
// Try to sniff a reasonable channel order, otherwise output the |
|
// channels in the order the PCE declared them. |
|
#if FF_API_OLD_CHANNEL_LAYOUT |
|
FF_DISABLE_DEPRECATION_WARNINGS |
|
if (avctx->request_channel_layout == AV_CH_LAYOUT_NATIVE) |
|
ac->output_channel_order = CHANNEL_ORDER_CODED; |
|
FF_ENABLE_DEPRECATION_WARNINGS |
|
#endif |
|
|
|
if (ac->output_channel_order == CHANNEL_ORDER_DEFAULT) |
|
layout = sniff_channel_order(layout_map, tags); |
|
for (i = 0; i < tags; i++) { |
|
int type = layout_map[i][0]; |
|
int id = layout_map[i][1]; |
|
int iid = id_map[type][id]; |
|
int position = layout_map[i][2]; |
|
// Allocate or free elements depending on if they are in the |
|
// current program configuration. |
|
ret = che_configure(ac, position, type, iid, &channels); |
|
if (ret < 0) |
|
return ret; |
|
ac->tag_che_map[type][id] = ac->che[type][iid]; |
|
} |
|
if (ac->oc[1].m4ac.ps == 1 && channels == 2) { |
|
if (layout == AV_CH_FRONT_CENTER) { |
|
layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; |
|
} else { |
|
layout = 0; |
|
} |
|
} |
|
|
|
av_channel_layout_uninit(&ac->oc[1].ch_layout); |
|
if (layout) |
|
av_channel_layout_from_mask(&ac->oc[1].ch_layout, layout); |
|
else { |
|
ac->oc[1].ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; |
|
ac->oc[1].ch_layout.nb_channels = channels; |
|
} |
|
|
|
av_channel_layout_copy(&avctx->ch_layout, &ac->oc[1].ch_layout); |
|
ac->oc[1].status = oc_type; |
|
|
|
if (get_new_frame) { |
|
if ((ret = frame_configure_elements(ac->avctx)) < 0) |
|
return ret; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void flush(AVCodecContext *avctx) |
|
{ |
|
AACContext *ac= avctx->priv_data; |
|
int type, i, j; |
|
|
|
for (type = 3; type >= 0; type--) { |
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
ChannelElement *che = ac->che[type][i]; |
|
if (che) { |
|
for (j = 0; j <= 1; j++) { |
|
memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Set up channel positions based on a default channel configuration |
|
* as specified in table 1.17. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int set_default_channel_config(AACContext *ac, AVCodecContext *avctx, |
|
uint8_t (*layout_map)[3], |
|
int *tags, |
|
int channel_config) |
|
{ |
|
if (channel_config < 1 || (channel_config > 7 && channel_config < 11) || |
|
channel_config > 14) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"invalid default channel configuration (%d)\n", |
|
channel_config); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
*tags = tags_per_config[channel_config]; |
|
memcpy(layout_map, aac_channel_layout_map[channel_config - 1], |
|
*tags * sizeof(*layout_map)); |
|
|
|
/* |
|
* AAC specification has 7.1(wide) as a default layout for 8-channel streams. |
|
* However, at least Nero AAC encoder encodes 7.1 streams using the default |
|
* channel config 7, mapping the side channels of the original audio stream |
|
* to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD |
|
* decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding |
|
* the incorrect streams as if they were correct (and as the encoder intended). |
|
* |
|
* As actual intended 7.1(wide) streams are very rare, default to assuming a |
|
* 7.1 layout was intended. |
|
*/ |
|
if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { |
|
layout_map[2][2] = AAC_CHANNEL_BACK; |
|
|
|
if (!ac || !ac->warned_71_wide++) { |
|
av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout" |
|
" instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode" |
|
" according to the specification instead.\n", FF_COMPLIANCE_STRICT); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static ChannelElement *get_che(AACContext *ac, int type, int elem_id) |
|
{ |
|
/* For PCE based channel configurations map the channels solely based |
|
* on tags. */ |
|
if (!ac->oc[1].m4ac.chan_config) { |
|
return ac->tag_che_map[type][elem_id]; |
|
} |
|
// Allow single CPE stereo files to be signalled with mono configuration. |
|
if (!ac->tags_mapped && type == TYPE_CPE && |
|
ac->oc[1].m4ac.chan_config == 1) { |
|
uint8_t layout_map[MAX_ELEM_ID*4][3]; |
|
int layout_map_tags; |
|
push_output_configuration(ac); |
|
|
|
av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); |
|
|
|
if (set_default_channel_config(ac, ac->avctx, layout_map, |
|
&layout_map_tags, 2) < 0) |
|
return NULL; |
|
if (output_configure(ac, layout_map, layout_map_tags, |
|
OC_TRIAL_FRAME, 1) < 0) |
|
return NULL; |
|
|
|
ac->oc[1].m4ac.chan_config = 2; |
|
ac->oc[1].m4ac.ps = 0; |
|
} |
|
// And vice-versa |
|
if (!ac->tags_mapped && type == TYPE_SCE && |
|
ac->oc[1].m4ac.chan_config == 2) { |
|
uint8_t layout_map[MAX_ELEM_ID * 4][3]; |
|
int layout_map_tags; |
|
push_output_configuration(ac); |
|
|
|
av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); |
|
|
|
layout_map_tags = 2; |
|
layout_map[0][0] = layout_map[1][0] = TYPE_SCE; |
|
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; |
|
layout_map[0][1] = 0; |
|
layout_map[1][1] = 1; |
|
if (output_configure(ac, layout_map, layout_map_tags, |
|
OC_TRIAL_FRAME, 1) < 0) |
|
return NULL; |
|
|
|
if (ac->oc[1].m4ac.sbr) |
|
ac->oc[1].m4ac.ps = -1; |
|
} |
|
/* For indexed channel configurations map the channels solely based |
|
* on position. */ |
|
switch (ac->oc[1].m4ac.chan_config) { |
|
case 14: |
|
if (ac->tags_mapped > 2 && ((type == TYPE_CPE && elem_id < 3) || |
|
(type == TYPE_LFE && elem_id < 1))) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; |
|
} |
|
case 13: |
|
if (ac->tags_mapped > 3 && ((type == TYPE_CPE && elem_id < 8) || |
|
(type == TYPE_SCE && elem_id < 6) || |
|
(type == TYPE_LFE && elem_id < 2))) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; |
|
} |
|
case 12: |
|
case 7: |
|
if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
|
} |
|
case 11: |
|
if (ac->tags_mapped == 3 && type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
|
} |
|
case 6: |
|
/* Some streams incorrectly code 5.1 audio as |
|
* SCE[0] CPE[0] CPE[1] SCE[1] |
|
* instead of |
|
* SCE[0] CPE[0] CPE[1] LFE[0]. |
|
* If we seem to have encountered such a stream, transfer |
|
* the LFE[0] element to the SCE[1]'s mapping */ |
|
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
|
if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) { |
|
av_log(ac->avctx, AV_LOG_WARNING, |
|
"This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n", |
|
type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
|
ac->warned_remapping_once++; |
|
} |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
|
} |
|
case 5: |
|
if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
|
} |
|
case 4: |
|
/* Some streams incorrectly code 4.0 audio as |
|
* SCE[0] CPE[0] LFE[0] |
|
* instead of |
|
* SCE[0] CPE[0] SCE[1]. |
|
* If we seem to have encountered such a stream, transfer |
|
* the SCE[1] element to the LFE[0]'s mapping */ |
|
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
|
if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) { |
|
av_log(ac->avctx, AV_LOG_WARNING, |
|
"This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n", |
|
type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
|
ac->warned_remapping_once++; |
|
} |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1]; |
|
} |
|
if (ac->tags_mapped == 2 && |
|
ac->oc[1].m4ac.chan_config == 4 && |
|
type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
|
} |
|
case 3: |
|
case 2: |
|
if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && |
|
type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
|
} else if (ac->tags_mapped == 1 && ac->oc[1].m4ac.chan_config == 2 && |
|
type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
|
} |
|
case 1: |
|
if (!ac->tags_mapped && type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
|
} |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
/** |
|
* Decode an array of 4 bit element IDs, optionally interleaved with a |
|
* stereo/mono switching bit. |
|
* |
|
* @param type speaker type/position for these channels |
|
*/ |
|
static void decode_channel_map(uint8_t layout_map[][3], |
|
enum ChannelPosition type, |
|
GetBitContext *gb, int n) |
|
{ |
|
while (n--) { |
|
enum RawDataBlockType syn_ele; |
|
switch (type) { |
|
case AAC_CHANNEL_FRONT: |
|
case AAC_CHANNEL_BACK: |
|
case AAC_CHANNEL_SIDE: |
|
syn_ele = get_bits1(gb); |
|
break; |
|
case AAC_CHANNEL_CC: |
|
skip_bits1(gb); |
|
syn_ele = TYPE_CCE; |
|
break; |
|
case AAC_CHANNEL_LFE: |
|
syn_ele = TYPE_LFE; |
|
break; |
|
default: |
|
// AAC_CHANNEL_OFF has no channel map |
|
av_assert0(0); |
|
} |
|
layout_map[0][0] = syn_ele; |
|
layout_map[0][1] = get_bits(gb, 4); |
|
layout_map[0][2] = type; |
|
layout_map++; |
|
} |
|
} |
|
|
|
static inline void relative_align_get_bits(GetBitContext *gb, |
|
int reference_position) { |
|
int n = (reference_position - get_bits_count(gb) & 7); |
|
if (n) |
|
skip_bits(gb, n); |
|
} |
|
|
|
/** |
|
* Decode program configuration element; reference: table 4.2. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, |
|
uint8_t (*layout_map)[3], |
|
GetBitContext *gb, int byte_align_ref) |
|
{ |
|
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc; |
|
int sampling_index; |
|
int comment_len; |
|
int tags; |
|
|
|
skip_bits(gb, 2); // object_type |
|
|
|
sampling_index = get_bits(gb, 4); |
|
if (m4ac->sampling_index != sampling_index) |
|
av_log(avctx, AV_LOG_WARNING, |
|
"Sample rate index in program config element does not " |
|
"match the sample rate index configured by the container.\n"); |
|
|
|
num_front = get_bits(gb, 4); |
|
num_side = get_bits(gb, 4); |
|
num_back = get_bits(gb, 4); |
|
num_lfe = get_bits(gb, 2); |
|
num_assoc_data = get_bits(gb, 3); |
|
num_cc = get_bits(gb, 4); |
|
|
|
if (get_bits1(gb)) |
|
skip_bits(gb, 4); // mono_mixdown_tag |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 4); // stereo_mixdown_tag |
|
|
|
if (get_bits1(gb)) |
|
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
|
|
|
if (get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) { |
|
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
|
return -1; |
|
} |
|
decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); |
|
tags = num_front; |
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); |
|
tags += num_side; |
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); |
|
tags += num_back; |
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); |
|
tags += num_lfe; |
|
|
|
skip_bits_long(gb, 4 * num_assoc_data); |
|
|
|
decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); |
|
tags += num_cc; |
|
|
|
relative_align_get_bits(gb, byte_align_ref); |
|
|
|
/* comment field, first byte is length */ |
|
comment_len = get_bits(gb, 8) * 8; |
|
if (get_bits_left(gb) < comment_len) { |
|
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
skip_bits_long(gb, comment_len); |
|
return tags; |
|
} |
|
|
|
/** |
|
* Decode GA "General Audio" specific configuration; reference: table 4.1. |
|
* |
|
* @param ac pointer to AACContext, may be null |
|
* @param avctx pointer to AVCCodecContext, used for logging |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, |
|
GetBitContext *gb, |
|
int get_bit_alignment, |
|
MPEG4AudioConfig *m4ac, |
|
int channel_config) |
|
{ |
|
int extension_flag, ret, ep_config, res_flags; |
|
uint8_t layout_map[MAX_ELEM_ID*4][3]; |
|
int tags = 0; |
|
|
|
m4ac->frame_length_short = get_bits1(gb); |
|
if (m4ac->frame_length_short && m4ac->sbr == 1) { |
|
avpriv_report_missing_feature(avctx, "SBR with 960 frame length"); |
|
if (ac) ac->warned_960_sbr = 1; |
|
m4ac->sbr = 0; |
|
m4ac->ps = 0; |
|
} |
|
|
|
if (get_bits1(gb)) // dependsOnCoreCoder |
|
skip_bits(gb, 14); // coreCoderDelay |
|
extension_flag = get_bits1(gb); |
|
|
|
if (m4ac->object_type == AOT_AAC_SCALABLE || |
|
m4ac->object_type == AOT_ER_AAC_SCALABLE) |
|
skip_bits(gb, 3); // layerNr |
|
|
|
if (channel_config == 0) { |
|
skip_bits(gb, 4); // element_instance_tag |
|
tags = decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment); |
|
if (tags < 0) |
|
return tags; |
|
} else { |
|
if ((ret = set_default_channel_config(ac, avctx, layout_map, |
|
&tags, channel_config))) |
|
return ret; |
|
} |
|
|
|
if (count_channels(layout_map, tags) > 1) { |
|
m4ac->ps = 0; |
|
} else if (m4ac->sbr == 1 && m4ac->ps == -1) |
|
m4ac->ps = 1; |
|
|
|
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
|
return ret; |
|
|
|
if (extension_flag) { |
|
switch (m4ac->object_type) { |
|
case AOT_ER_BSAC: |
|
skip_bits(gb, 5); // numOfSubFrame |
|
skip_bits(gb, 11); // layer_length |
|
break; |
|
case AOT_ER_AAC_LC: |
|
case AOT_ER_AAC_LTP: |
|
case AOT_ER_AAC_SCALABLE: |
|
case AOT_ER_AAC_LD: |
|
res_flags = get_bits(gb, 3); |
|
if (res_flags) { |
|
avpriv_report_missing_feature(avctx, |
|
"AAC data resilience (flags %x)", |
|
res_flags); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
break; |
|
} |
|
skip_bits1(gb); // extensionFlag3 (TBD in version 3) |
|
} |
|
switch (m4ac->object_type) { |
|
case AOT_ER_AAC_LC: |
|
case AOT_ER_AAC_LTP: |
|
case AOT_ER_AAC_SCALABLE: |
|
case AOT_ER_AAC_LD: |
|
ep_config = get_bits(gb, 2); |
|
if (ep_config) { |
|
avpriv_report_missing_feature(avctx, |
|
"epConfig %d", ep_config); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int decode_eld_specific_config(AACContext *ac, AVCodecContext *avctx, |
|
GetBitContext *gb, |
|
MPEG4AudioConfig *m4ac, |
|
int channel_config) |
|
{ |
|
int ret, ep_config, res_flags; |
|
uint8_t layout_map[MAX_ELEM_ID*4][3]; |
|
int tags = 0; |
|
const int ELDEXT_TERM = 0; |
|
|
|
m4ac->ps = 0; |
|
m4ac->sbr = 0; |
|
m4ac->frame_length_short = get_bits1(gb); |
|
|
|
res_flags = get_bits(gb, 3); |
|
if (res_flags) { |
|
avpriv_report_missing_feature(avctx, |
|
"AAC data resilience (flags %x)", |
|
res_flags); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (get_bits1(gb)) { // ldSbrPresentFlag |
|
avpriv_report_missing_feature(avctx, |
|
"Low Delay SBR"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
while (get_bits(gb, 4) != ELDEXT_TERM) { |
|
int len = get_bits(gb, 4); |
|
if (len == 15) |
|
len += get_bits(gb, 8); |
|
if (len == 15 + 255) |
|
len += get_bits(gb, 16); |
|
if (get_bits_left(gb) < len * 8 + 4) { |
|
av_log(avctx, AV_LOG_ERROR, overread_err); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
skip_bits_long(gb, 8 * len); |
|
} |
|
|
|
if ((ret = set_default_channel_config(ac, avctx, layout_map, |
|
&tags, channel_config))) |
|
return ret; |
|
|
|
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
|
return ret; |
|
|
|
ep_config = get_bits(gb, 2); |
|
if (ep_config) { |
|
avpriv_report_missing_feature(avctx, |
|
"epConfig %d", ep_config); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode audio specific configuration; reference: table 1.13. |
|
* |
|
* @param ac pointer to AACContext, may be null |
|
* @param avctx pointer to AVCCodecContext, used for logging |
|
* @param m4ac pointer to MPEG4AudioConfig, used for parsing |
|
* @param gb buffer holding an audio specific config |
|
* @param get_bit_alignment relative alignment for byte align operations |
|
* @param sync_extension look for an appended sync extension |
|
* |
|
* @return Returns error status or number of consumed bits. <0 - error |
|
*/ |
|
static int decode_audio_specific_config_gb(AACContext *ac, |
|
AVCodecContext *avctx, |
|
MPEG4AudioConfig *m4ac, |
|
GetBitContext *gb, |
|
int get_bit_alignment, |
|
int sync_extension) |
|
{ |
|
int i, ret; |
|
GetBitContext gbc = *gb; |
|
MPEG4AudioConfig m4ac_bak = *m4ac; |
|
|
|
if ((i = ff_mpeg4audio_get_config_gb(m4ac, &gbc, sync_extension, avctx)) < 0) { |
|
*m4ac = m4ac_bak; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (m4ac->sampling_index > 12) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"invalid sampling rate index %d\n", |
|
m4ac->sampling_index); |
|
*m4ac = m4ac_bak; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (m4ac->object_type == AOT_ER_AAC_LD && |
|
(m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"invalid low delay sampling rate index %d\n", |
|
m4ac->sampling_index); |
|
*m4ac = m4ac_bak; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
skip_bits_long(gb, i); |
|
|
|
switch (m4ac->object_type) { |
|
case AOT_AAC_MAIN: |
|
case AOT_AAC_LC: |
|
case AOT_AAC_SSR: |
|
case AOT_AAC_LTP: |
|
case AOT_ER_AAC_LC: |
|
case AOT_ER_AAC_LD: |
|
if ((ret = decode_ga_specific_config(ac, avctx, gb, get_bit_alignment, |
|
m4ac, m4ac->chan_config)) < 0) |
|
return ret; |
|
break; |
|
case AOT_ER_AAC_ELD: |
|
if ((ret = decode_eld_specific_config(ac, avctx, gb, |
|
m4ac, m4ac->chan_config)) < 0) |
|
return ret; |
|
break; |
|
default: |
|
avpriv_report_missing_feature(avctx, |
|
"Audio object type %s%d", |
|
m4ac->sbr == 1 ? "SBR+" : "", |
|
m4ac->object_type); |
|
return AVERROR(ENOSYS); |
|
} |
|
|
|
ff_dlog(avctx, |
|
"AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", |
|
m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, |
|
m4ac->sample_rate, m4ac->sbr, |
|
m4ac->ps); |
|
|
|
return get_bits_count(gb); |
|
} |
|
|
|
static int decode_audio_specific_config(AACContext *ac, |
|
AVCodecContext *avctx, |
|
MPEG4AudioConfig *m4ac, |
|
const uint8_t *data, int64_t bit_size, |
|
int sync_extension) |
|
{ |
|
int i, ret; |
|
GetBitContext gb; |
|
|
|
if (bit_size < 0 || bit_size > INT_MAX) { |
|
av_log(avctx, AV_LOG_ERROR, "Audio specific config size is invalid\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ff_dlog(avctx, "audio specific config size %d\n", (int)bit_size >> 3); |
|
for (i = 0; i < bit_size >> 3; i++) |
|
ff_dlog(avctx, "%02x ", data[i]); |
|
ff_dlog(avctx, "\n"); |
|
|
|
if ((ret = init_get_bits(&gb, data, bit_size)) < 0) |
|
return ret; |
|
|
|
return decode_audio_specific_config_gb(ac, avctx, m4ac, &gb, 0, |
|
sync_extension); |
|
} |
|
|
|
/** |
|
* linear congruential pseudorandom number generator |
|
* |
|
* @param previous_val pointer to the current state of the generator |
|
* |
|
* @return Returns a 32-bit pseudorandom integer |
|
*/ |
|
static av_always_inline int lcg_random(unsigned previous_val) |
|
{ |
|
union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; |
|
return v.s; |
|
} |
|
|
|
static void reset_all_predictors(PredictorState *ps) |
|
{ |
|
int i; |
|
for (i = 0; i < MAX_PREDICTORS; i++) |
|
reset_predict_state(&ps[i]); |
|
} |
|
|
|
static int sample_rate_idx (int rate) |
|
{ |
|
if (92017 <= rate) return 0; |
|
else if (75132 <= rate) return 1; |
|
else if (55426 <= rate) return 2; |
|
else if (46009 <= rate) return 3; |
|
else if (37566 <= rate) return 4; |
|
else if (27713 <= rate) return 5; |
|
else if (23004 <= rate) return 6; |
|
else if (18783 <= rate) return 7; |
|
else if (13856 <= rate) return 8; |
|
else if (11502 <= rate) return 9; |
|
else if (9391 <= rate) return 10; |
|
else return 11; |
|
} |
|
|
|
static void reset_predictor_group(PredictorState *ps, int group_num) |
|
{ |
|
int i; |
|
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) |
|
reset_predict_state(&ps[i]); |
|
} |
|
|
|
static void aacdec_init(AACContext *ac); |
|
|
|
static av_cold void aac_static_table_init(void) |
|
{ |
|
static VLCElem vlc_buf[304 + 270 + 550 + 300 + 328 + |
|
294 + 306 + 268 + 510 + 366 + 462]; |
|
for (unsigned i = 0, offset = 0; i < 11; i++) { |
|
vlc_spectral[i].table = &vlc_buf[offset]; |
|
vlc_spectral[i].table_allocated = FF_ARRAY_ELEMS(vlc_buf) - offset; |
|
ff_init_vlc_sparse(&vlc_spectral[i], 8, ff_aac_spectral_sizes[i], |
|
ff_aac_spectral_bits[i], sizeof(ff_aac_spectral_bits[i][0]), |
|
sizeof(ff_aac_spectral_bits[i][0]), |
|
ff_aac_spectral_codes[i], sizeof(ff_aac_spectral_codes[i][0]), |
|
sizeof(ff_aac_spectral_codes[i][0]), |
|
ff_aac_codebook_vector_idx[i], sizeof(ff_aac_codebook_vector_idx[i][0]), |
|
sizeof(ff_aac_codebook_vector_idx[i][0]), |
|
INIT_VLC_STATIC_OVERLONG); |
|
offset += vlc_spectral[i].table_size; |
|
} |
|
|
|
AAC_RENAME(ff_aac_sbr_init)(); |
|
|
|
ff_aac_tableinit(); |
|
|
|
INIT_VLC_STATIC(&vlc_scalefactors, 7, |
|
FF_ARRAY_ELEMS(ff_aac_scalefactor_code), |
|
ff_aac_scalefactor_bits, |
|
sizeof(ff_aac_scalefactor_bits[0]), |
|
sizeof(ff_aac_scalefactor_bits[0]), |
|
ff_aac_scalefactor_code, |
|
sizeof(ff_aac_scalefactor_code[0]), |
|
sizeof(ff_aac_scalefactor_code[0]), |
|
352); |
|
|
|
// window initialization |
|
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_long_960), 4.0, 960); |
|
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_short_120), 6.0, 120); |
|
|
|
#if !USE_FIXED |
|
AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_960), 960); |
|
AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_120), 120); |
|
AAC_RENAME(ff_init_ff_sine_windows)(9); |
|
ff_aac_float_common_init(); |
|
#else |
|
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME2(aac_kbd_long_1024), 4.0, 1024); |
|
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME2(aac_kbd_short_128), 6.0, 128); |
|
init_sine_windows_fixed(); |
|
#endif |
|
|
|
AAC_RENAME(ff_cbrt_tableinit)(); |
|
} |
|
|
|
static AVOnce aac_table_init = AV_ONCE_INIT; |
|
|
|
static av_cold int aac_decode_init(AVCodecContext *avctx) |
|
{ |
|
float scale; |
|
AACContext *ac = avctx->priv_data; |
|
int ret; |
|
|
|
if (avctx->sample_rate > 96000) |
|
return AVERROR_INVALIDDATA; |
|
|
|
ret = ff_thread_once(&aac_table_init, &aac_static_table_init); |
|
if (ret != 0) |
|
return AVERROR_UNKNOWN; |
|
|
|
ac->avctx = avctx; |
|
ac->oc[1].m4ac.sample_rate = avctx->sample_rate; |
|
|
|
aacdec_init(ac); |
|
#if USE_FIXED |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
|
#else |
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
#endif /* USE_FIXED */ |
|
|
|
if (avctx->extradata_size > 0) { |
|
if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, |
|
avctx->extradata, |
|
avctx->extradata_size * 8LL, |
|
1)) < 0) |
|
return ret; |
|
} else { |
|
int sr, i; |
|
uint8_t layout_map[MAX_ELEM_ID*4][3]; |
|
int layout_map_tags; |
|
|
|
sr = sample_rate_idx(avctx->sample_rate); |
|
ac->oc[1].m4ac.sampling_index = sr; |
|
ac->oc[1].m4ac.channels = avctx->ch_layout.nb_channels; |
|
ac->oc[1].m4ac.sbr = -1; |
|
ac->oc[1].m4ac.ps = -1; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) |
|
if (ff_mpeg4audio_channels[i] == avctx->ch_layout.nb_channels) |
|
break; |
|
if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { |
|
i = 0; |
|
} |
|
ac->oc[1].m4ac.chan_config = i; |
|
|
|
if (ac->oc[1].m4ac.chan_config) { |
|
int ret = set_default_channel_config(ac, avctx, layout_map, |
|
&layout_map_tags, ac->oc[1].m4ac.chan_config); |
|
if (!ret) |
|
output_configure(ac, layout_map, layout_map_tags, |
|
OC_GLOBAL_HDR, 0); |
|
else if (avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
if (avctx->ch_layout.nb_channels > MAX_CHANNELS) { |
|
av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
#if USE_FIXED |
|
ac->fdsp = avpriv_alloc_fixed_dsp(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
|
#else |
|
ac->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
|
#endif /* USE_FIXED */ |
|
if (!ac->fdsp) { |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
ac->random_state = 0x1f2e3d4c; |
|
|
|
#define MDCT_INIT(s, fn, len, sval) \ |
|
scale = sval; \ |
|
ret = av_tx_init(&s, &fn, TX_TYPE, 1, len, &scale, 0); \ |
|
if (ret < 0) \ |
|
return ret; |
|
|
|
MDCT_INIT(ac->mdct120, ac->mdct120_fn, 120, TX_SCALE(1.0/120)) |
|
MDCT_INIT(ac->mdct128, ac->mdct128_fn, 128, TX_SCALE(1.0/128)) |
|
MDCT_INIT(ac->mdct480, ac->mdct480_fn, 480, TX_SCALE(1.0/480)) |
|
MDCT_INIT(ac->mdct512, ac->mdct512_fn, 512, TX_SCALE(1.0/512)) |
|
MDCT_INIT(ac->mdct960, ac->mdct960_fn, 960, TX_SCALE(1.0/960)) |
|
MDCT_INIT(ac->mdct1024, ac->mdct1024_fn, 1024, TX_SCALE(1.0/1024)) |
|
#undef MDCT_INIT |
|
|
|
/* LTP forward MDCT */ |
|
scale = USE_FIXED ? -1.0 : -32786.0*2 + 36; |
|
ret = av_tx_init(&ac->mdct_ltp, &ac->mdct_ltp_fn, TX_TYPE, 0, 1024, &scale, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Skip data_stream_element; reference: table 4.10. |
|
*/ |
|
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) |
|
{ |
|
int byte_align = get_bits1(gb); |
|
int count = get_bits(gb, 8); |
|
if (count == 255) |
|
count += get_bits(gb, 8); |
|
if (byte_align) |
|
align_get_bits(gb); |
|
|
|
if (get_bits_left(gb) < 8 * count) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
skip_bits_long(gb, 8 * count); |
|
return 0; |
|
} |
|
|
|
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, |
|
GetBitContext *gb) |
|
{ |
|
int sfb; |
|
if (get_bits1(gb)) { |
|
ics->predictor_reset_group = get_bits(gb, 5); |
|
if (ics->predictor_reset_group == 0 || |
|
ics->predictor_reset_group > 30) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Invalid Predictor Reset Group.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { |
|
ics->prediction_used[sfb] = get_bits1(gb); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Long Term Prediction data; reference: table 4.xx. |
|
*/ |
|
static void decode_ltp(LongTermPrediction *ltp, |
|
GetBitContext *gb, uint8_t max_sfb) |
|
{ |
|
int sfb; |
|
|
|
ltp->lag = get_bits(gb, 11); |
|
ltp->coef = ltp_coef[get_bits(gb, 3)]; |
|
for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) |
|
ltp->used[sfb] = get_bits1(gb); |
|
} |
|
|
|
/** |
|
* Decode Individual Channel Stream info; reference: table 4.6. |
|
*/ |
|
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, |
|
GetBitContext *gb) |
|
{ |
|
const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; |
|
const int aot = m4ac->object_type; |
|
const int sampling_index = m4ac->sampling_index; |
|
int ret_fail = AVERROR_INVALIDDATA; |
|
|
|
if (aot != AOT_ER_AAC_ELD) { |
|
if (get_bits1(gb)) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); |
|
if (ac->avctx->err_recognition & AV_EF_BITSTREAM) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
ics->window_sequence[1] = ics->window_sequence[0]; |
|
ics->window_sequence[0] = get_bits(gb, 2); |
|
if (aot == AOT_ER_AAC_LD && |
|
ics->window_sequence[0] != ONLY_LONG_SEQUENCE) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"AAC LD is only defined for ONLY_LONG_SEQUENCE but " |
|
"window sequence %d found.\n", ics->window_sequence[0]); |
|
ics->window_sequence[0] = ONLY_LONG_SEQUENCE; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
ics->use_kb_window[1] = ics->use_kb_window[0]; |
|
ics->use_kb_window[0] = get_bits1(gb); |
|
} |
|
ics->num_window_groups = 1; |
|
ics->group_len[0] = 1; |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
int i; |
|
ics->max_sfb = get_bits(gb, 4); |
|
for (i = 0; i < 7; i++) { |
|
if (get_bits1(gb)) { |
|
ics->group_len[ics->num_window_groups - 1]++; |
|
} else { |
|
ics->num_window_groups++; |
|
ics->group_len[ics->num_window_groups - 1] = 1; |
|
} |
|
} |
|
ics->num_windows = 8; |
|
if (m4ac->frame_length_short) { |
|
ics->swb_offset = ff_swb_offset_120[sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_120[sampling_index]; |
|
} else { |
|
ics->swb_offset = ff_swb_offset_128[sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_128[sampling_index]; |
|
} |
|
ics->tns_max_bands = ff_tns_max_bands_128[sampling_index]; |
|
ics->predictor_present = 0; |
|
} else { |
|
ics->max_sfb = get_bits(gb, 6); |
|
ics->num_windows = 1; |
|
if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) { |
|
if (m4ac->frame_length_short) { |
|
ics->swb_offset = ff_swb_offset_480[sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_480[sampling_index]; |
|
ics->tns_max_bands = ff_tns_max_bands_480[sampling_index]; |
|
} else { |
|
ics->swb_offset = ff_swb_offset_512[sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_512[sampling_index]; |
|
ics->tns_max_bands = ff_tns_max_bands_512[sampling_index]; |
|
} |
|
if (!ics->num_swb || !ics->swb_offset) { |
|
ret_fail = AVERROR_BUG; |
|
goto fail; |
|
} |
|
} else { |
|
if (m4ac->frame_length_short) { |
|
ics->num_swb = ff_aac_num_swb_960[sampling_index]; |
|
ics->swb_offset = ff_swb_offset_960[sampling_index]; |
|
} else { |
|
ics->num_swb = ff_aac_num_swb_1024[sampling_index]; |
|
ics->swb_offset = ff_swb_offset_1024[sampling_index]; |
|
} |
|
ics->tns_max_bands = ff_tns_max_bands_1024[sampling_index]; |
|
} |
|
if (aot != AOT_ER_AAC_ELD) { |
|
ics->predictor_present = get_bits1(gb); |
|
ics->predictor_reset_group = 0; |
|
} |
|
if (ics->predictor_present) { |
|
if (aot == AOT_AAC_MAIN) { |
|
if (decode_prediction(ac, ics, gb)) { |
|
goto fail; |
|
} |
|
} else if (aot == AOT_AAC_LC || |
|
aot == AOT_ER_AAC_LC) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Prediction is not allowed in AAC-LC.\n"); |
|
goto fail; |
|
} else { |
|
if (aot == AOT_ER_AAC_LD) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"LTP in ER AAC LD not yet implemented.\n"); |
|
ret_fail = AVERROR_PATCHWELCOME; |
|
goto fail; |
|
} |
|
if ((ics->ltp.present = get_bits(gb, 1))) |
|
decode_ltp(&ics->ltp, gb, ics->max_sfb); |
|
} |
|
} |
|
} |
|
|
|
if (ics->max_sfb > ics->num_swb) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Number of scalefactor bands in group (%d) " |
|
"exceeds limit (%d).\n", |
|
ics->max_sfb, ics->num_swb); |
|
goto fail; |
|
} |
|
|
|
return 0; |
|
fail: |
|
ics->max_sfb = 0; |
|
return ret_fail; |
|
} |
|
|
|
/** |
|
* Decode band types (section_data payload); reference: table 4.46. |
|
* |
|
* @param band_type array of the used band type |
|
* @param band_type_run_end array of the last scalefactor band of a band type run |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_band_types(AACContext *ac, enum BandType band_type[120], |
|
int band_type_run_end[120], GetBitContext *gb, |
|
IndividualChannelStream *ics) |
|
{ |
|
int g, idx = 0; |
|
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
int k = 0; |
|
while (k < ics->max_sfb) { |
|
uint8_t sect_end = k; |
|
int sect_len_incr; |
|
int sect_band_type = get_bits(gb, 4); |
|
if (sect_band_type == 12) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
do { |
|
sect_len_incr = get_bits(gb, bits); |
|
sect_end += sect_len_incr; |
|
if (get_bits_left(gb) < 0) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (sect_end > ics->max_sfb) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Number of bands (%d) exceeds limit (%d).\n", |
|
sect_end, ics->max_sfb); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} while (sect_len_incr == (1 << bits) - 1); |
|
for (; k < sect_end; k++) { |
|
band_type [idx] = sect_band_type; |
|
band_type_run_end[idx++] = sect_end; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode scalefactors; reference: table 4.47. |
|
* |
|
* @param global_gain first scalefactor value as scalefactors are differentially coded |
|
* @param band_type array of the used band type |
|
* @param band_type_run_end array of the last scalefactor band of a band type run |
|
* @param sf array of scalefactors or intensity stereo positions |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_scalefactors(AACContext *ac, INTFLOAT sf[120], GetBitContext *gb, |
|
unsigned int global_gain, |
|
IndividualChannelStream *ics, |
|
enum BandType band_type[120], |
|
int band_type_run_end[120]) |
|
{ |
|
int g, i, idx = 0; |
|
int offset[3] = { global_gain, global_gain - NOISE_OFFSET, 0 }; |
|
int clipped_offset; |
|
int noise_flag = 1; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb;) { |
|
int run_end = band_type_run_end[idx]; |
|
if (band_type[idx] == ZERO_BT) { |
|
for (; i < run_end; i++, idx++) |
|
sf[idx] = FIXR(0.); |
|
} else if ((band_type[idx] == INTENSITY_BT) || |
|
(band_type[idx] == INTENSITY_BT2)) { |
|
for (; i < run_end; i++, idx++) { |
|
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
|
clipped_offset = av_clip(offset[2], -155, 100); |
|
if (offset[2] != clipped_offset) { |
|
avpriv_request_sample(ac->avctx, |
|
"If you heard an audible artifact, there may be a bug in the decoder. " |
|
"Clipped intensity stereo position (%d -> %d)", |
|
offset[2], clipped_offset); |
|
} |
|
#if USE_FIXED |
|
sf[idx] = 100 - clipped_offset; |
|
#else |
|
sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO]; |
|
#endif /* USE_FIXED */ |
|
} |
|
} else if (band_type[idx] == NOISE_BT) { |
|
for (; i < run_end; i++, idx++) { |
|
if (noise_flag-- > 0) |
|
offset[1] += get_bits(gb, NOISE_PRE_BITS) - NOISE_PRE; |
|
else |
|
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
|
clipped_offset = av_clip(offset[1], -100, 155); |
|
if (offset[1] != clipped_offset) { |
|
avpriv_request_sample(ac->avctx, |
|
"If you heard an audible artifact, there may be a bug in the decoder. " |
|
"Clipped noise gain (%d -> %d)", |
|
offset[1], clipped_offset); |
|
} |
|
#if USE_FIXED |
|
sf[idx] = -(100 + clipped_offset); |
|
#else |
|
sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO]; |
|
#endif /* USE_FIXED */ |
|
} |
|
} else { |
|
for (; i < run_end; i++, idx++) { |
|
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
|
if (offset[0] > 255U) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Scalefactor (%d) out of range.\n", offset[0]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
#if USE_FIXED |
|
sf[idx] = -offset[0]; |
|
#else |
|
sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO]; |
|
#endif /* USE_FIXED */ |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode pulse data; reference: table 4.7. |
|
*/ |
|
static int decode_pulses(Pulse *pulse, GetBitContext *gb, |
|
const uint16_t *swb_offset, int num_swb) |
|
{ |
|
int i, pulse_swb; |
|
pulse->num_pulse = get_bits(gb, 2) + 1; |
|
pulse_swb = get_bits(gb, 6); |
|
if (pulse_swb >= num_swb) |
|
return -1; |
|
pulse->pos[0] = swb_offset[pulse_swb]; |
|
pulse->pos[0] += get_bits(gb, 5); |
|
if (pulse->pos[0] >= swb_offset[num_swb]) |
|
return -1; |
|
pulse->amp[0] = get_bits(gb, 4); |
|
for (i = 1; i < pulse->num_pulse; i++) { |
|
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; |
|
if (pulse->pos[i] >= swb_offset[num_swb]) |
|
return -1; |
|
pulse->amp[i] = get_bits(gb, 4); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Temporal Noise Shaping data; reference: table 4.48. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, |
|
GetBitContext *gb, const IndividualChannelStream *ics) |
|
{ |
|
int w, filt, i, coef_len, coef_res, coef_compress; |
|
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
|
const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
|
for (w = 0; w < ics->num_windows; w++) { |
|
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
|
coef_res = get_bits1(gb); |
|
|
|
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
|
int tmp2_idx; |
|
tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); |
|
|
|
if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"TNS filter order %d is greater than maximum %d.\n", |
|
tns->order[w][filt], tns_max_order); |
|
tns->order[w][filt] = 0; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (tns->order[w][filt]) { |
|
tns->direction[w][filt] = get_bits1(gb); |
|
coef_compress = get_bits1(gb); |
|
coef_len = coef_res + 3 - coef_compress; |
|
tmp2_idx = 2 * coef_compress + coef_res; |
|
|
|
for (i = 0; i < tns->order[w][filt]; i++) |
|
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Mid/Side data; reference: table 4.54. |
|
* |
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
|
* [1] mask is decoded from bitstream; [2] mask is all 1s; |
|
* [3] reserved for scalable AAC |
|
*/ |
|
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, |
|
int ms_present) |
|
{ |
|
int idx; |
|
int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; |
|
if (ms_present == 1) { |
|
for (idx = 0; idx < max_idx; idx++) |
|
cpe->ms_mask[idx] = get_bits1(gb); |
|
} else if (ms_present == 2) { |
|
memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0])); |
|
} |
|
} |
|
|
|
/** |
|
* Decode spectral data; reference: table 4.50. |
|
* Dequantize and scale spectral data; reference: 4.6.3.3. |
|
* |
|
* @param coef array of dequantized, scaled spectral data |
|
* @param sf array of scalefactors or intensity stereo positions |
|
* @param pulse_present set if pulses are present |
|
* @param pulse pointer to pulse data struct |
|
* @param band_type array of the used band type |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_spectrum_and_dequant(AACContext *ac, INTFLOAT coef[1024], |
|
GetBitContext *gb, const INTFLOAT sf[120], |
|
int pulse_present, const Pulse *pulse, |
|
const IndividualChannelStream *ics, |
|
enum BandType band_type[120]) |
|
{ |
|
int i, k, g, idx = 0; |
|
const int c = 1024 / ics->num_windows; |
|
const uint16_t *offsets = ics->swb_offset; |
|
INTFLOAT *coef_base = coef; |
|
|
|
for (g = 0; g < ics->num_windows; g++) |
|
memset(coef + g * 128 + offsets[ics->max_sfb], 0, |
|
sizeof(INTFLOAT) * (c - offsets[ics->max_sfb])); |
|
|
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
unsigned g_len = ics->group_len[g]; |
|
|
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
const unsigned cbt_m1 = band_type[idx] - 1; |
|
INTFLOAT *cfo = coef + offsets[i]; |
|
int off_len = offsets[i + 1] - offsets[i]; |
|
int group; |
|
|
|
if (cbt_m1 >= INTENSITY_BT2 - 1) { |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
memset(cfo, 0, off_len * sizeof(*cfo)); |
|
} |
|
} else if (cbt_m1 == NOISE_BT - 1) { |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
INTFLOAT band_energy; |
|
#if USE_FIXED |
|
for (k = 0; k < off_len; k++) { |
|
ac->random_state = lcg_random(ac->random_state); |
|
cfo[k] = ac->random_state >> 3; |
|
} |
|
|
|
band_energy = ac->fdsp->scalarproduct_fixed(cfo, cfo, off_len); |
|
band_energy = fixed_sqrt(band_energy, 31); |
|
noise_scale(cfo, sf[idx], band_energy, off_len); |
|
#else |
|
float scale; |
|
|
|
for (k = 0; k < off_len; k++) { |
|
ac->random_state = lcg_random(ac->random_state); |
|
cfo[k] = ac->random_state; |
|
} |
|
|
|
band_energy = ac->fdsp->scalarproduct_float(cfo, cfo, off_len); |
|
scale = sf[idx] / sqrtf(band_energy); |
|
ac->fdsp->vector_fmul_scalar(cfo, cfo, scale, off_len); |
|
#endif /* USE_FIXED */ |
|
} |
|
} else { |
|
#if !USE_FIXED |
|
const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; |
|
#endif /* !USE_FIXED */ |
|
const VLCElem *vlc_tab = vlc_spectral[cbt_m1].table; |
|
OPEN_READER(re, gb); |
|
|
|
switch (cbt_m1 >> 1) { |
|
case 0: |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
INTFLOAT *cf = cfo; |
|
int len = off_len; |
|
|
|
do { |
|
int code; |
|
unsigned cb_idx; |
|
|
|
UPDATE_CACHE(re, gb); |
|
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
|
cb_idx = code; |
|
#if USE_FIXED |
|
cf = DEC_SQUAD(cf, cb_idx); |
|
#else |
|
cf = VMUL4(cf, vq, cb_idx, sf + idx); |
|
#endif /* USE_FIXED */ |
|
} while (len -= 4); |
|
} |
|
break; |
|
|
|
case 1: |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
INTFLOAT *cf = cfo; |
|
int len = off_len; |
|
|
|
do { |
|
int code; |
|
unsigned nnz; |
|
unsigned cb_idx; |
|
uint32_t bits; |
|
|
|
UPDATE_CACHE(re, gb); |
|
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
|
cb_idx = code; |
|
nnz = cb_idx >> 8 & 15; |
|
bits = nnz ? GET_CACHE(re, gb) : 0; |
|
LAST_SKIP_BITS(re, gb, nnz); |
|
#if USE_FIXED |
|
cf = DEC_UQUAD(cf, cb_idx, bits); |
|
#else |
|
cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); |
|
#endif /* USE_FIXED */ |
|
} while (len -= 4); |
|
} |
|
break; |
|
|
|
case 2: |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
INTFLOAT *cf = cfo; |
|
int len = off_len; |
|
|
|
do { |
|
int code; |
|
unsigned cb_idx; |
|
|
|
UPDATE_CACHE(re, gb); |
|
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
|
cb_idx = code; |
|
#if USE_FIXED |
|
cf = DEC_SPAIR(cf, cb_idx); |
|
#else |
|
cf = VMUL2(cf, vq, cb_idx, sf + idx); |
|
#endif /* USE_FIXED */ |
|
} while (len -= 2); |
|
} |
|
break; |
|
|
|
case 3: |
|
case 4: |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
INTFLOAT *cf = cfo; |
|
int len = off_len; |
|
|
|
do { |
|
int code; |
|
unsigned nnz; |
|
unsigned cb_idx; |
|
unsigned sign; |
|
|
|
UPDATE_CACHE(re, gb); |
|
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
|
cb_idx = code; |
|
nnz = cb_idx >> 8 & 15; |
|
sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0; |
|
LAST_SKIP_BITS(re, gb, nnz); |
|
#if USE_FIXED |
|
cf = DEC_UPAIR(cf, cb_idx, sign); |
|
#else |
|
cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); |
|
#endif /* USE_FIXED */ |
|
} while (len -= 2); |
|
} |
|
break; |
|
|
|
default: |
|
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
|
#if USE_FIXED |
|
int *icf = cfo; |
|
int v; |
|
#else |
|
float *cf = cfo; |
|
uint32_t *icf = (uint32_t *) cf; |
|
#endif /* USE_FIXED */ |
|
int len = off_len; |
|
|
|
do { |
|
int code; |
|
unsigned nzt, nnz; |
|
unsigned cb_idx; |
|
uint32_t bits; |
|
int j; |
|
|
|
UPDATE_CACHE(re, gb); |
|
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
|
cb_idx = code; |
|
|
|
if (cb_idx == 0x0000) { |
|
*icf++ = 0; |
|
*icf++ = 0; |
|
continue; |
|
} |
|
|
|
nnz = cb_idx >> 12; |
|
nzt = cb_idx >> 8; |
|
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz); |
|
LAST_SKIP_BITS(re, gb, nnz); |
|
|
|
for (j = 0; j < 2; j++) { |
|
if (nzt & 1<<j) { |
|
uint32_t b; |
|
int n; |
|
/* The total length of escape_sequence must be < 22 bits according |
|
to the specification (i.e. max is 111111110xxxxxxxxxxxx). */ |
|
UPDATE_CACHE(re, gb); |
|
b = GET_CACHE(re, gb); |
|
b = 31 - av_log2(~b); |
|
|
|
if (b > 8) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
SKIP_BITS(re, gb, b + 1); |
|
b += 4; |
|
n = (1 << b) + SHOW_UBITS(re, gb, b); |
|
LAST_SKIP_BITS(re, gb, b); |
|
#if USE_FIXED |
|
v = n; |
|
if (bits & 1U<<31) |
|
v = -v; |
|
*icf++ = v; |
|
#else |
|
*icf++ = ff_cbrt_tab[n] | (bits & 1U<<31); |
|
#endif /* USE_FIXED */ |
|
bits <<= 1; |
|
} else { |
|
#if USE_FIXED |
|
v = cb_idx & 15; |
|
if (bits & 1U<<31) |
|
v = -v; |
|
*icf++ = v; |
|
#else |
|
unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; |
|
*icf++ = (bits & 1U<<31) | v; |
|
#endif /* USE_FIXED */ |
|
bits <<= !!v; |
|
} |
|
cb_idx >>= 4; |
|
} |
|
} while (len -= 2); |
|
#if !USE_FIXED |
|
ac->fdsp->vector_fmul_scalar(cfo, cfo, sf[idx], off_len); |
|
#endif /* !USE_FIXED */ |
|
} |
|
} |
|
|
|
CLOSE_READER(re, gb); |
|
} |
|
} |
|
coef += g_len << 7; |
|
} |
|
|
|
if (pulse_present) { |
|
idx = 0; |
|
for (i = 0; i < pulse->num_pulse; i++) { |
|
INTFLOAT co = coef_base[ pulse->pos[i] ]; |
|
while (offsets[idx + 1] <= pulse->pos[i]) |
|
idx++; |
|
if (band_type[idx] != NOISE_BT && sf[idx]) { |
|
INTFLOAT ico = -pulse->amp[i]; |
|
#if USE_FIXED |
|
if (co) { |
|
ico = co + (co > 0 ? -ico : ico); |
|
} |
|
coef_base[ pulse->pos[i] ] = ico; |
|
#else |
|
if (co) { |
|
co /= sf[idx]; |
|
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); |
|
} |
|
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; |
|
#endif /* USE_FIXED */ |
|
} |
|
} |
|
} |
|
#if USE_FIXED |
|
coef = coef_base; |
|
idx = 0; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
unsigned g_len = ics->group_len[g]; |
|
|
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
const unsigned cbt_m1 = band_type[idx] - 1; |
|
int *cfo = coef + offsets[i]; |
|
int off_len = offsets[i + 1] - offsets[i]; |
|
int group; |
|
|
|
if (cbt_m1 < NOISE_BT - 1) { |
|
for (group = 0; group < (int)g_len; group++, cfo+=128) { |
|
ac->vector_pow43(cfo, off_len); |
|
ac->subband_scale(cfo, cfo, sf[idx], 34, off_len, ac->avctx); |
|
} |
|
} |
|
} |
|
coef += g_len << 7; |
|
} |
|
#endif /* USE_FIXED */ |
|
return 0; |
|
} |
|
|
|
/** |
|
* Apply AAC-Main style frequency domain prediction. |
|
*/ |
|
static void apply_prediction(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
int sfb, k; |
|
|
|
if (!sce->ics.predictor_initialized) { |
|
reset_all_predictors(sce->predictor_state); |
|
sce->ics.predictor_initialized = 1; |
|
} |
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
|
for (sfb = 0; |
|
sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; |
|
sfb++) { |
|
for (k = sce->ics.swb_offset[sfb]; |
|
k < sce->ics.swb_offset[sfb + 1]; |
|
k++) { |
|
predict(&sce->predictor_state[k], &sce->coeffs[k], |
|
sce->ics.predictor_present && |
|
sce->ics.prediction_used[sfb]); |
|
} |
|
} |
|
if (sce->ics.predictor_reset_group) |
|
reset_predictor_group(sce->predictor_state, |
|
sce->ics.predictor_reset_group); |
|
} else |
|
reset_all_predictors(sce->predictor_state); |
|
} |
|
|
|
static void decode_gain_control(SingleChannelElement * sce, GetBitContext * gb) |
|
{ |
|
// wd_num, wd_test, aloc_size |
|
static const uint8_t gain_mode[4][3] = { |
|
{1, 0, 5}, // ONLY_LONG_SEQUENCE = 0, |
|
{2, 1, 2}, // LONG_START_SEQUENCE, |
|
{8, 0, 2}, // EIGHT_SHORT_SEQUENCE, |
|
{2, 1, 5}, // LONG_STOP_SEQUENCE |
|
}; |
|
|
|
const int mode = sce->ics.window_sequence[0]; |
|
uint8_t bd, wd, ad; |
|
|
|
// FIXME: Store the gain control data on |sce| and do something with it. |
|
uint8_t max_band = get_bits(gb, 2); |
|
for (bd = 0; bd < max_band; bd++) { |
|
for (wd = 0; wd < gain_mode[mode][0]; wd++) { |
|
uint8_t adjust_num = get_bits(gb, 3); |
|
for (ad = 0; ad < adjust_num; ad++) { |
|
skip_bits(gb, 4 + ((wd == 0 && gain_mode[mode][1]) |
|
? 4 |
|
: gain_mode[mode][2])); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Decode an individual_channel_stream payload; reference: table 4.44. |
|
* |
|
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. |
|
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_ics(AACContext *ac, SingleChannelElement *sce, |
|
GetBitContext *gb, int common_window, int scale_flag) |
|
{ |
|
Pulse pulse; |
|
TemporalNoiseShaping *tns = &sce->tns; |
|
IndividualChannelStream *ics = &sce->ics; |
|
INTFLOAT *out = sce->coeffs; |
|
int global_gain, eld_syntax, er_syntax, pulse_present = 0; |
|
int ret; |
|
|
|
eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
|
er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC || |
|
ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP || |
|
ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD || |
|
ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
|
|
|
/* This assignment is to silence a GCC warning about the variable being used |
|
* uninitialized when in fact it always is. |
|
*/ |
|
pulse.num_pulse = 0; |
|
|
|
global_gain = get_bits(gb, 8); |
|
|
|
if (!common_window && !scale_flag) { |
|
ret = decode_ics_info(ac, ics, gb); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
if ((ret = decode_band_types(ac, sce->band_type, |
|
sce->band_type_run_end, gb, ics)) < 0) |
|
goto fail; |
|
if ((ret = decode_scalefactors(ac, sce->sf, gb, global_gain, ics, |
|
sce->band_type, sce->band_type_run_end)) < 0) |
|
goto fail; |
|
|
|
pulse_present = 0; |
|
if (!scale_flag) { |
|
if (!eld_syntax && (pulse_present = get_bits1(gb))) { |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Pulse tool not allowed in eight short sequence.\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"Pulse data corrupt or invalid.\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} |
|
tns->present = get_bits1(gb); |
|
if (tns->present && !er_syntax) { |
|
ret = decode_tns(ac, tns, gb, ics); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
if (!eld_syntax && get_bits1(gb)) { |
|
decode_gain_control(sce, gb); |
|
if (!ac->warned_gain_control) { |
|
avpriv_report_missing_feature(ac->avctx, "Gain control"); |
|
ac->warned_gain_control = 1; |
|
} |
|
} |
|
// I see no textual basis in the spec for this occurring after SSR gain |
|
// control, but this is what both reference and real implmentations do |
|
if (tns->present && er_syntax) { |
|
ret = decode_tns(ac, tns, gb, ics); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
} |
|
|
|
ret = decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, |
|
&pulse, ics, sce->band_type); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) |
|
apply_prediction(ac, sce); |
|
|
|
return 0; |
|
fail: |
|
tns->present = 0; |
|
return ret; |
|
} |
|
|
|
/** |
|
* Mid/Side stereo decoding; reference: 4.6.8.1.3. |
|
*/ |
|
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) |
|
{ |
|
const IndividualChannelStream *ics = &cpe->ch[0].ics; |
|
INTFLOAT *ch0 = cpe->ch[0].coeffs; |
|
INTFLOAT *ch1 = cpe->ch[1].coeffs; |
|
int g, i, group, idx = 0; |
|
const uint16_t *offsets = ics->swb_offset; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
if (cpe->ms_mask[idx] && |
|
cpe->ch[0].band_type[idx] < NOISE_BT && |
|
cpe->ch[1].band_type[idx] < NOISE_BT) { |
|
#if USE_FIXED |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
ac->fdsp->butterflies_fixed(ch0 + group * 128 + offsets[i], |
|
ch1 + group * 128 + offsets[i], |
|
offsets[i+1] - offsets[i]); |
|
#else |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
ac->fdsp->butterflies_float(ch0 + group * 128 + offsets[i], |
|
ch1 + group * 128 + offsets[i], |
|
offsets[i+1] - offsets[i]); |
|
#endif /* USE_FIXED */ |
|
} |
|
} |
|
} |
|
ch0 += ics->group_len[g] * 128; |
|
ch1 += ics->group_len[g] * 128; |
|
} |
|
} |
|
|
|
/** |
|
* intensity stereo decoding; reference: 4.6.8.2.3 |
|
* |
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
|
* [1] mask is decoded from bitstream; [2] mask is all 1s; |
|
* [3] reserved for scalable AAC |
|
*/ |
|
static void apply_intensity_stereo(AACContext *ac, |
|
ChannelElement *cpe, int ms_present) |
|
{ |
|
const IndividualChannelStream *ics = &cpe->ch[1].ics; |
|
SingleChannelElement *sce1 = &cpe->ch[1]; |
|
INTFLOAT *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; |
|
const uint16_t *offsets = ics->swb_offset; |
|
int g, group, i, idx = 0; |
|
int c; |
|
INTFLOAT scale; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb;) { |
|
if (sce1->band_type[idx] == INTENSITY_BT || |
|
sce1->band_type[idx] == INTENSITY_BT2) { |
|
const int bt_run_end = sce1->band_type_run_end[idx]; |
|
for (; i < bt_run_end; i++, idx++) { |
|
c = -1 + 2 * (sce1->band_type[idx] - 14); |
|
if (ms_present) |
|
c *= 1 - 2 * cpe->ms_mask[idx]; |
|
scale = c * sce1->sf[idx]; |
|
for (group = 0; group < ics->group_len[g]; group++) |
|
#if USE_FIXED |
|
ac->subband_scale(coef1 + group * 128 + offsets[i], |
|
coef0 + group * 128 + offsets[i], |
|
scale, |
|
23, |
|
offsets[i + 1] - offsets[i] ,ac->avctx); |
|
#else |
|
ac->fdsp->vector_fmul_scalar(coef1 + group * 128 + offsets[i], |
|
coef0 + group * 128 + offsets[i], |
|
scale, |
|
offsets[i + 1] - offsets[i]); |
|
#endif /* USE_FIXED */ |
|
} |
|
} else { |
|
int bt_run_end = sce1->band_type_run_end[idx]; |
|
idx += bt_run_end - i; |
|
i = bt_run_end; |
|
} |
|
} |
|
coef0 += ics->group_len[g] * 128; |
|
coef1 += ics->group_len[g] * 128; |
|
} |
|
} |
|
|
|
/** |
|
* Decode a channel_pair_element; reference: table 4.4. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) |
|
{ |
|
int i, ret, common_window, ms_present = 0; |
|
int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
|
|
|
common_window = eld_syntax || get_bits1(gb); |
|
if (common_window) { |
|
if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) |
|
return AVERROR_INVALIDDATA; |
|
i = cpe->ch[1].ics.use_kb_window[0]; |
|
cpe->ch[1].ics = cpe->ch[0].ics; |
|
cpe->ch[1].ics.use_kb_window[1] = i; |
|
if (cpe->ch[1].ics.predictor_present && |
|
(ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) |
|
if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) |
|
decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); |
|
ms_present = get_bits(gb, 2); |
|
if (ms_present == 3) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} else if (ms_present) |
|
decode_mid_side_stereo(cpe, gb, ms_present); |
|
} |
|
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
|
return ret; |
|
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
|
return ret; |
|
|
|
if (common_window) { |
|
if (ms_present) |
|
apply_mid_side_stereo(ac, cpe); |
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { |
|
apply_prediction(ac, &cpe->ch[0]); |
|
apply_prediction(ac, &cpe->ch[1]); |
|
} |
|
} |
|
|
|
apply_intensity_stereo(ac, cpe, ms_present); |
|
return 0; |
|
} |
|
|
|
static const float cce_scale[] = { |
|
1.09050773266525765921, //2^(1/8) |
|
1.18920711500272106672, //2^(1/4) |
|
M_SQRT2, |
|
2, |
|
}; |
|
|
|
/** |
|
* Decode coupling_channel_element; reference: table 4.8. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) |
|
{ |
|
int num_gain = 0; |
|
int c, g, sfb, ret; |
|
int sign; |
|
INTFLOAT scale; |
|
SingleChannelElement *sce = &che->ch[0]; |
|
ChannelCoupling *coup = &che->coup; |
|
|
|
coup->coupling_point = 2 * get_bits1(gb); |
|
coup->num_coupled = get_bits(gb, 3); |
|
for (c = 0; c <= coup->num_coupled; c++) { |
|
num_gain++; |
|
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; |
|
coup->id_select[c] = get_bits(gb, 4); |
|
if (coup->type[c] == TYPE_CPE) { |
|
coup->ch_select[c] = get_bits(gb, 2); |
|
if (coup->ch_select[c] == 3) |
|
num_gain++; |
|
} else |
|
coup->ch_select[c] = 2; |
|
} |
|
coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1); |
|
|
|
sign = get_bits(gb, 1); |
|
#if USE_FIXED |
|
scale = get_bits(gb, 2); |
|
#else |
|
scale = cce_scale[get_bits(gb, 2)]; |
|
#endif |
|
|
|
if ((ret = decode_ics(ac, sce, gb, 0, 0))) |
|
return ret; |
|
|
|
for (c = 0; c < num_gain; c++) { |
|
int idx = 0; |
|
int cge = 1; |
|
int gain = 0; |
|
INTFLOAT gain_cache = FIXR10(1.); |
|
if (c) { |
|
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); |
|
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; |
|
gain_cache = GET_GAIN(scale, gain); |
|
#if USE_FIXED |
|
if ((abs(gain_cache)-1024) >> 3 > 30) |
|
return AVERROR(ERANGE); |
|
#endif |
|
} |
|
if (coup->coupling_point == AFTER_IMDCT) { |
|
coup->gain[c][0] = gain_cache; |
|
} else { |
|
for (g = 0; g < sce->ics.num_window_groups; g++) { |
|
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { |
|
if (sce->band_type[idx] != ZERO_BT) { |
|
if (!cge) { |
|
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
|
if (t) { |
|
int s = 1; |
|
t = gain += t; |
|
if (sign) { |
|
s -= 2 * (t & 0x1); |
|
t >>= 1; |
|
} |
|
gain_cache = GET_GAIN(scale, t) * s; |
|
#if USE_FIXED |
|
if ((abs(gain_cache)-1024) >> 3 > 30) |
|
return AVERROR(ERANGE); |
|
#endif |
|
} |
|
} |
|
coup->gain[c][idx] = gain_cache; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. |
|
* |
|
* @return Returns number of bytes consumed. |
|
*/ |
|
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, |
|
GetBitContext *gb) |
|
{ |
|
int i; |
|
int num_excl_chan = 0; |
|
|
|
do { |
|
for (i = 0; i < 7; i++) |
|
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
|
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
|
|
|
return num_excl_chan / 7; |
|
} |
|
|
|
/** |
|
* Decode dynamic range information; reference: table 4.52. |
|
* |
|
* @return Returns number of bytes consumed. |
|
*/ |
|
static int decode_dynamic_range(DynamicRangeControl *che_drc, |
|
GetBitContext *gb) |
|
{ |
|
int n = 1; |
|
int drc_num_bands = 1; |
|
int i; |
|
|
|
/* pce_tag_present? */ |
|
if (get_bits1(gb)) { |
|
che_drc->pce_instance_tag = get_bits(gb, 4); |
|
skip_bits(gb, 4); // tag_reserved_bits |
|
n++; |
|
} |
|
|
|
/* excluded_chns_present? */ |
|
if (get_bits1(gb)) { |
|
n += decode_drc_channel_exclusions(che_drc, gb); |
|
} |
|
|
|
/* drc_bands_present? */ |
|
if (get_bits1(gb)) { |
|
che_drc->band_incr = get_bits(gb, 4); |
|
che_drc->interpolation_scheme = get_bits(gb, 4); |
|
n++; |
|
drc_num_bands += che_drc->band_incr; |
|
for (i = 0; i < drc_num_bands; i++) { |
|
che_drc->band_top[i] = get_bits(gb, 8); |
|
n++; |
|
} |
|
} |
|
|
|
/* prog_ref_level_present? */ |
|
if (get_bits1(gb)) { |
|
che_drc->prog_ref_level = get_bits(gb, 7); |
|
skip_bits1(gb); // prog_ref_level_reserved_bits |
|
n++; |
|
} |
|
|
|
for (i = 0; i < drc_num_bands; i++) { |
|
che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
|
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); |
|
n++; |
|
} |
|
|
|
return n; |
|
} |
|
|
|
static int decode_fill(AACContext *ac, GetBitContext *gb, int len) { |
|
uint8_t buf[256]; |
|
int i, major, minor; |
|
|
|
if (len < 13+7*8) |
|
goto unknown; |
|
|
|
get_bits(gb, 13); len -= 13; |
|
|
|
for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) |
|
buf[i] = get_bits(gb, 8); |
|
|
|
buf[i] = 0; |
|
if (ac->avctx->debug & FF_DEBUG_PICT_INFO) |
|
av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); |
|
|
|
if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ |
|
ac->avctx->internal->skip_samples = 1024; |
|
} |
|
|
|
unknown: |
|
skip_bits_long(gb, len); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode extension data (incomplete); reference: table 4.51. |
|
* |
|
* @param cnt length of TYPE_FIL syntactic element in bytes |
|
* |
|
* @return Returns number of bytes consumed |
|
*/ |
|
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, |
|
ChannelElement *che, enum RawDataBlockType elem_type) |
|
{ |
|
int crc_flag = 0; |
|
int res = cnt; |
|
int type = get_bits(gb, 4); |
|
|
|
if (ac->avctx->debug & FF_DEBUG_STARTCODE) |
|
av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt); |
|
|
|
switch (type) { // extension type |
|
case EXT_SBR_DATA_CRC: |
|
crc_flag++; |
|
case EXT_SBR_DATA: |
|
if (!che) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); |
|
return res; |
|
} else if (ac->oc[1].m4ac.frame_length_short) { |
|
if (!ac->warned_960_sbr) |
|
avpriv_report_missing_feature(ac->avctx, |
|
"SBR with 960 frame length"); |
|
ac->warned_960_sbr = 1; |
|
skip_bits_long(gb, 8 * cnt - 4); |
|
return res; |
|
} else if (!ac->oc[1].m4ac.sbr) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); |
|
skip_bits_long(gb, 8 * cnt - 4); |
|
return res; |
|
} else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); |
|
skip_bits_long(gb, 8 * cnt - 4); |
|
return res; |
|
} else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && |
|
ac->avctx->ch_layout.nb_channels == 1) { |
|
ac->oc[1].m4ac.sbr = 1; |
|
ac->oc[1].m4ac.ps = 1; |
|
ac->avctx->profile = FF_PROFILE_AAC_HE_V2; |
|
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
|
ac->oc[1].status, 1); |
|
} else { |
|
ac->oc[1].m4ac.sbr = 1; |
|
ac->avctx->profile = FF_PROFILE_AAC_HE; |
|
} |
|
res = AAC_RENAME(ff_decode_sbr_extension)(ac, &che->sbr, gb, crc_flag, cnt, elem_type); |
|
if (ac->oc[1].m4ac.ps == 1 && !ac->warned_he_aac_mono) { |
|
av_log(ac->avctx, AV_LOG_VERBOSE, "Treating HE-AAC mono as stereo.\n"); |
|
ac->warned_he_aac_mono = 1; |
|
} |
|
break; |
|
case EXT_DYNAMIC_RANGE: |
|
res = decode_dynamic_range(&ac->che_drc, gb); |
|
break; |
|
case EXT_FILL: |
|
decode_fill(ac, gb, 8 * cnt - 4); |
|
break; |
|
case EXT_FILL_DATA: |
|
case EXT_DATA_ELEMENT: |
|
default: |
|
skip_bits_long(gb, 8 * cnt - 4); |
|
break; |
|
}; |
|
return res; |
|
} |
|
|
|
/** |
|
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. |
|
* |
|
* @param decode 1 if tool is used normally, 0 if tool is used in LTP. |
|
* @param coef spectral coefficients |
|
*/ |
|
static void apply_tns(INTFLOAT coef_param[1024], TemporalNoiseShaping *tns, |
|
IndividualChannelStream *ics, int decode) |
|
{ |
|
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); |
|
int w, filt, m, i; |
|
int bottom, top, order, start, end, size, inc; |
|
INTFLOAT lpc[TNS_MAX_ORDER]; |
|
INTFLOAT tmp[TNS_MAX_ORDER+1]; |
|
UINTFLOAT *coef = coef_param; |
|
|
|
if(!mmm) |
|
return; |
|
|
|
for (w = 0; w < ics->num_windows; w++) { |
|
bottom = ics->num_swb; |
|
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
|
top = bottom; |
|
bottom = FFMAX(0, top - tns->length[w][filt]); |
|
order = tns->order[w][filt]; |
|
if (order == 0) |
|
continue; |
|
|
|
// tns_decode_coef |
|
AAC_RENAME(compute_lpc_coefs)(tns->coef[w][filt], order, lpc, 0, 0, 0); |
|
|
|
start = ics->swb_offset[FFMIN(bottom, mmm)]; |
|
end = ics->swb_offset[FFMIN( top, mmm)]; |
|
if ((size = end - start) <= 0) |
|
continue; |
|
if (tns->direction[w][filt]) { |
|
inc = -1; |
|
start = end - 1; |
|
} else { |
|
inc = 1; |
|
} |
|
start += w * 128; |
|
|
|
if (decode) { |
|
// ar filter |
|
for (m = 0; m < size; m++, start += inc) |
|
for (i = 1; i <= FFMIN(m, order); i++) |
|
coef[start] -= AAC_MUL26((INTFLOAT)coef[start - i * inc], lpc[i - 1]); |
|
} else { |
|
// ma filter |
|
for (m = 0; m < size; m++, start += inc) { |
|
tmp[0] = coef[start]; |
|
for (i = 1; i <= FFMIN(m, order); i++) |
|
coef[start] += AAC_MUL26(tmp[i], lpc[i - 1]); |
|
for (i = order; i > 0; i--) |
|
tmp[i] = tmp[i - 1]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Apply windowing and MDCT to obtain the spectral |
|
* coefficient from the predicted sample by LTP. |
|
*/ |
|
static void windowing_and_mdct_ltp(AACContext *ac, INTFLOAT *out, |
|
INTFLOAT *in, IndividualChannelStream *ics) |
|
{ |
|
const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); |
|
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); |
|
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); |
|
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); |
|
|
|
if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) { |
|
ac->fdsp->vector_fmul(in, in, lwindow_prev, 1024); |
|
} else { |
|
memset(in, 0, 448 * sizeof(*in)); |
|
ac->fdsp->vector_fmul(in + 448, in + 448, swindow_prev, 128); |
|
} |
|
if (ics->window_sequence[0] != LONG_START_SEQUENCE) { |
|
ac->fdsp->vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024); |
|
} else { |
|
ac->fdsp->vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128); |
|
memset(in + 1024 + 576, 0, 448 * sizeof(*in)); |
|
} |
|
ac->mdct_ltp_fn(ac->mdct_ltp, out, in, sizeof(INTFLOAT)); |
|
} |
|
|
|
/** |
|
* Apply the long term prediction |
|
*/ |
|
static void apply_ltp(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
const LongTermPrediction *ltp = &sce->ics.ltp; |
|
const uint16_t *offsets = sce->ics.swb_offset; |
|
int i, sfb; |
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
|
INTFLOAT *predTime = sce->ret; |
|
INTFLOAT *predFreq = ac->buf_mdct; |
|
int16_t num_samples = 2048; |
|
|
|
if (ltp->lag < 1024) |
|
num_samples = ltp->lag + 1024; |
|
for (i = 0; i < num_samples; i++) |
|
predTime[i] = AAC_MUL30(sce->ltp_state[i + 2048 - ltp->lag], ltp->coef); |
|
memset(&predTime[i], 0, (2048 - i) * sizeof(*predTime)); |
|
|
|
ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics); |
|
|
|
if (sce->tns.present) |
|
ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0); |
|
|
|
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) |
|
if (ltp->used[sfb]) |
|
for (i = offsets[sfb]; i < offsets[sfb + 1]; i++) |
|
sce->coeffs[i] += (UINTFLOAT)predFreq[i]; |
|
} |
|
} |
|
|
|
/** |
|
* Update the LTP buffer for next frame |
|
*/ |
|
static void update_ltp(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
IndividualChannelStream *ics = &sce->ics; |
|
INTFLOAT *saved = sce->saved; |
|
INTFLOAT *saved_ltp = sce->coeffs; |
|
const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); |
|
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); |
|
int i; |
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
memcpy(saved_ltp, saved, 512 * sizeof(*saved_ltp)); |
|
memset(saved_ltp + 576, 0, 448 * sizeof(*saved_ltp)); |
|
ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); |
|
|
|
for (i = 0; i < 64; i++) |
|
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], swindow[63 - i]); |
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
|
memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(*saved_ltp)); |
|
memset(saved_ltp + 576, 0, 448 * sizeof(*saved_ltp)); |
|
ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); |
|
|
|
for (i = 0; i < 64; i++) |
|
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], swindow[63 - i]); |
|
} else { // LONG_STOP or ONLY_LONG |
|
ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512); |
|
|
|
for (i = 0; i < 512; i++) |
|
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], lwindow[511 - i]); |
|
} |
|
|
|
memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state)); |
|
memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state)); |
|
memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state)); |
|
} |
|
|
|
/** |
|
* Conduct IMDCT and windowing. |
|
*/ |
|
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
IndividualChannelStream *ics = &sce->ics; |
|
INTFLOAT *in = sce->coeffs; |
|
INTFLOAT *out = sce->ret; |
|
INTFLOAT *saved = sce->saved; |
|
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); |
|
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); |
|
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); |
|
INTFLOAT *buf = ac->buf_mdct; |
|
INTFLOAT *temp = ac->temp; |
|
int i; |
|
|
|
// imdct |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
for (i = 0; i < 1024; i += 128) |
|
ac->mdct128_fn(ac->mdct128, buf + i, in + i, sizeof(INTFLOAT)); |
|
} else { |
|
ac->mdct1024_fn(ac->mdct1024, buf, in, sizeof(INTFLOAT)); |
|
} |
|
|
|
/* window overlapping |
|
* NOTE: To simplify the overlapping code, all 'meaningless' short to long |
|
* and long to short transitions are considered to be short to short |
|
* transitions. This leaves just two cases (long to long and short to short) |
|
* with a little special sauce for EIGHT_SHORT_SEQUENCE. |
|
*/ |
|
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && |
|
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { |
|
ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512); |
|
} else { |
|
memcpy( out, saved, 448 * sizeof(*out)); |
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
ac->fdsp->vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64); |
|
ac->fdsp->vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64); |
|
ac->fdsp->vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64); |
|
ac->fdsp->vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64); |
|
ac->fdsp->vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64); |
|
memcpy( out + 448 + 4*128, temp, 64 * sizeof(*out)); |
|
} else { |
|
ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); |
|
memcpy( out + 576, buf + 64, 448 * sizeof(*out)); |
|
} |
|
} |
|
|
|
// buffer update |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
memcpy( saved, temp + 64, 64 * sizeof(*saved)); |
|
ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); |
|
ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); |
|
ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); |
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(*saved)); |
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
|
memcpy( saved, buf + 512, 448 * sizeof(*saved)); |
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(*saved)); |
|
} else { // LONG_STOP or ONLY_LONG |
|
memcpy( saved, buf + 512, 512 * sizeof(*saved)); |
|
} |
|
} |
|
|
|
/** |
|
* Conduct IMDCT and windowing. |
|
*/ |
|
static void imdct_and_windowing_960(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
IndividualChannelStream *ics = &sce->ics; |
|
INTFLOAT *in = sce->coeffs; |
|
INTFLOAT *out = sce->ret; |
|
INTFLOAT *saved = sce->saved; |
|
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120); |
|
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_long_960) : AAC_RENAME(sine_960); |
|
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120); |
|
INTFLOAT *buf = ac->buf_mdct; |
|
INTFLOAT *temp = ac->temp; |
|
int i; |
|
|
|
// imdct |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
for (i = 0; i < 8; i++) |
|
ac->mdct120_fn(ac->mdct120, buf + i * 120, in + i * 128, sizeof(INTFLOAT)); |
|
} else { |
|
ac->mdct960_fn(ac->mdct960, buf, in, sizeof(INTFLOAT)); |
|
} |
|
|
|
/* window overlapping |
|
* NOTE: To simplify the overlapping code, all 'meaningless' short to long |
|
* and long to short transitions are considered to be short to short |
|
* transitions. This leaves just two cases (long to long and short to short) |
|
* with a little special sauce for EIGHT_SHORT_SEQUENCE. |
|
*/ |
|
|
|
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && |
|
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { |
|
ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 480); |
|
} else { |
|
memcpy( out, saved, 420 * sizeof(*out)); |
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
ac->fdsp->vector_fmul_window(out + 420 + 0*120, saved + 420, buf + 0*120, swindow_prev, 60); |
|
ac->fdsp->vector_fmul_window(out + 420 + 1*120, buf + 0*120 + 60, buf + 1*120, swindow, 60); |
|
ac->fdsp->vector_fmul_window(out + 420 + 2*120, buf + 1*120 + 60, buf + 2*120, swindow, 60); |
|
ac->fdsp->vector_fmul_window(out + 420 + 3*120, buf + 2*120 + 60, buf + 3*120, swindow, 60); |
|
ac->fdsp->vector_fmul_window(temp, buf + 3*120 + 60, buf + 4*120, swindow, 60); |
|
memcpy( out + 420 + 4*120, temp, 60 * sizeof(*out)); |
|
} else { |
|
ac->fdsp->vector_fmul_window(out + 420, saved + 420, buf, swindow_prev, 60); |
|
memcpy( out + 540, buf + 60, 420 * sizeof(*out)); |
|
} |
|
} |
|
|
|
// buffer update |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
memcpy( saved, temp + 60, 60 * sizeof(*saved)); |
|
ac->fdsp->vector_fmul_window(saved + 60, buf + 4*120 + 60, buf + 5*120, swindow, 60); |
|
ac->fdsp->vector_fmul_window(saved + 180, buf + 5*120 + 60, buf + 6*120, swindow, 60); |
|
ac->fdsp->vector_fmul_window(saved + 300, buf + 6*120 + 60, buf + 7*120, swindow, 60); |
|
memcpy( saved + 420, buf + 7*120 + 60, 60 * sizeof(*saved)); |
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
|
memcpy( saved, buf + 480, 420 * sizeof(*saved)); |
|
memcpy( saved + 420, buf + 7*120 + 60, 60 * sizeof(*saved)); |
|
} else { // LONG_STOP or ONLY_LONG |
|
memcpy( saved, buf + 480, 480 * sizeof(*saved)); |
|
} |
|
} |
|
static void imdct_and_windowing_ld(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
IndividualChannelStream *ics = &sce->ics; |
|
INTFLOAT *in = sce->coeffs; |
|
INTFLOAT *out = sce->ret; |
|
INTFLOAT *saved = sce->saved; |
|
INTFLOAT *buf = ac->buf_mdct; |
|
|
|
// imdct |
|
ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT)); |
|
|
|
// window overlapping |
|
if (ics->use_kb_window[1]) { |
|
// AAC LD uses a low overlap sine window instead of a KBD window |
|
memcpy(out, saved, 192 * sizeof(*out)); |
|
ac->fdsp->vector_fmul_window(out + 192, saved + 192, buf, AAC_RENAME2(sine_128), 64); |
|
memcpy( out + 320, buf + 64, 192 * sizeof(*out)); |
|
} else { |
|
ac->fdsp->vector_fmul_window(out, saved, buf, AAC_RENAME2(sine_512), 256); |
|
} |
|
|
|
// buffer update |
|
memcpy(saved, buf + 256, 256 * sizeof(*saved)); |
|
} |
|
|
|
static void imdct_and_windowing_eld(AACContext *ac, SingleChannelElement *sce) |
|
{ |
|
UINTFLOAT *in = sce->coeffs; |
|
INTFLOAT *out = sce->ret; |
|
INTFLOAT *saved = sce->saved; |
|
INTFLOAT *buf = ac->buf_mdct; |
|
int i; |
|
const int n = ac->oc[1].m4ac.frame_length_short ? 480 : 512; |
|
const int n2 = n >> 1; |
|
const int n4 = n >> 2; |
|
const INTFLOAT *const window = n == 480 ? AAC_RENAME(ff_aac_eld_window_480) : |
|
AAC_RENAME(ff_aac_eld_window_512); |
|
|
|
// Inverse transform, mapped to the conventional IMDCT by |
|
// Chivukula, R.K.; Reznik, Y.A.; Devarajan, V., |
|
// "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks," |
|
// International Conference on Audio, Language and Image Processing, ICALIP 2008. |
|
// URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950 |
|
for (i = 0; i < n2; i+=2) { |
|
INTFLOAT temp; |
|
temp = in[i ]; in[i ] = -in[n - 1 - i]; in[n - 1 - i] = temp; |
|
temp = -in[i + 1]; in[i + 1] = in[n - 2 - i]; in[n - 2 - i] = temp; |
|
} |
|
|
|
if (n == 480) |
|
ac->mdct480_fn(ac->mdct480, buf, in, sizeof(INTFLOAT)); |
|
else |
|
ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT)); |
|
|
|
for (i = 0; i < n; i+=2) { |
|
buf[i + 0] = -(USE_FIXED + 1)*buf[i + 0]; |
|
buf[i + 1] = (USE_FIXED + 1)*buf[i + 1]; |
|
} |
|
// Like with the regular IMDCT at this point we still have the middle half |
|
// of a transform but with even symmetry on the left and odd symmetry on |
|
// the right |
|
|
|
// window overlapping |
|
// The spec says to use samples [0..511] but the reference decoder uses |
|
// samples [128..639]. |
|
for (i = n4; i < n2; i ++) { |
|
out[i - n4] = AAC_MUL31( buf[ n2 - 1 - i] , window[i - n4]) + |
|
AAC_MUL31( saved[ i + n2] , window[i + n - n4]) + |
|
AAC_MUL31(-saved[n + n2 - 1 - i] , window[i + 2*n - n4]) + |
|
AAC_MUL31(-saved[ 2*n + n2 + i] , window[i + 3*n - n4]); |
|
} |
|
for (i = 0; i < n2; i ++) { |
|
out[n4 + i] = AAC_MUL31( buf[ i] , window[i + n2 - n4]) + |
|
AAC_MUL31(-saved[ n - 1 - i] , window[i + n2 + n - n4]) + |
|
AAC_MUL31(-saved[ n + i] , window[i + n2 + 2*n - n4]) + |
|
AAC_MUL31( saved[2*n + n - 1 - i] , window[i + n2 + 3*n - n4]); |
|
} |
|
for (i = 0; i < n4; i ++) { |
|
out[n2 + n4 + i] = AAC_MUL31( buf[ i + n2] , window[i + n - n4]) + |
|
AAC_MUL31(-saved[n2 - 1 - i] , window[i + 2*n - n4]) + |
|
AAC_MUL31(-saved[n + n2 + i] , window[i + 3*n - n4]); |
|
} |
|
|
|
// buffer update |
|
memmove(saved + n, saved, 2 * n * sizeof(*saved)); |
|
memcpy( saved, buf, n * sizeof(*saved)); |
|
} |
|
|
|
/** |
|
* channel coupling transformation interface |
|
* |
|
* @param apply_coupling_method pointer to (in)dependent coupling function |
|
*/ |
|
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, |
|
enum RawDataBlockType type, int elem_id, |
|
enum CouplingPoint coupling_point, |
|
void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) |
|
{ |
|
int i, c; |
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
ChannelElement *cce = ac->che[TYPE_CCE][i]; |
|
int index = 0; |
|
|
|
if (cce && cce->coup.coupling_point == coupling_point) { |
|
ChannelCoupling *coup = &cce->coup; |
|
|
|
for (c = 0; c <= coup->num_coupled; c++) { |
|
if (coup->type[c] == type && coup->id_select[c] == elem_id) { |
|
if (coup->ch_select[c] != 1) { |
|
apply_coupling_method(ac, &cc->ch[0], cce, index); |
|
if (coup->ch_select[c] != 0) |
|
index++; |
|
} |
|
if (coup->ch_select[c] != 2) |
|
apply_coupling_method(ac, &cc->ch[1], cce, index++); |
|
} else |
|
index += 1 + (coup->ch_select[c] == 3); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Convert spectral data to samples, applying all supported tools as appropriate. |
|
*/ |
|
static void spectral_to_sample(AACContext *ac, int samples) |
|
{ |
|
int i, type; |
|
void (*imdct_and_window)(AACContext *ac, SingleChannelElement *sce); |
|
switch (ac->oc[1].m4ac.object_type) { |
|
case AOT_ER_AAC_LD: |
|
imdct_and_window = imdct_and_windowing_ld; |
|
break; |
|
case AOT_ER_AAC_ELD: |
|
imdct_and_window = imdct_and_windowing_eld; |
|
break; |
|
default: |
|
if (ac->oc[1].m4ac.frame_length_short) |
|
imdct_and_window = imdct_and_windowing_960; |
|
else |
|
imdct_and_window = ac->imdct_and_windowing; |
|
} |
|
for (type = 3; type >= 0; type--) { |
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
ChannelElement *che = ac->che[type][i]; |
|
if (che && che->present) { |
|
if (type <= TYPE_CPE) |
|
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, AAC_RENAME(apply_dependent_coupling)); |
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { |
|
if (che->ch[0].ics.predictor_present) { |
|
if (che->ch[0].ics.ltp.present) |
|
ac->apply_ltp(ac, &che->ch[0]); |
|
if (che->ch[1].ics.ltp.present && type == TYPE_CPE) |
|
ac->apply_ltp(ac, &che->ch[1]); |
|
} |
|
} |
|
if (che->ch[0].tns.present) |
|
ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); |
|
if (che->ch[1].tns.present) |
|
ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); |
|
if (type <= TYPE_CPE) |
|
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, AAC_RENAME(apply_dependent_coupling)); |
|
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { |
|
imdct_and_window(ac, &che->ch[0]); |
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) |
|
ac->update_ltp(ac, &che->ch[0]); |
|
if (type == TYPE_CPE) { |
|
imdct_and_window(ac, &che->ch[1]); |
|
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) |
|
ac->update_ltp(ac, &che->ch[1]); |
|
} |
|
if (ac->oc[1].m4ac.sbr > 0) { |
|
AAC_RENAME(ff_sbr_apply)(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); |
|
} |
|
} |
|
if (type <= TYPE_CCE) |
|
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, AAC_RENAME(apply_independent_coupling)); |
|
|
|
#if USE_FIXED |
|
{ |
|
int j; |
|
/* preparation for resampler */ |
|
for(j = 0; j<samples; j++){ |
|
che->ch[0].ret[j] = (int32_t)av_clip64((int64_t)che->ch[0].ret[j]*128, INT32_MIN, INT32_MAX-0x8000)+0x8000; |
|
if (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) |
|
che->ch[1].ret[j] = (int32_t)av_clip64((int64_t)che->ch[1].ret[j]*128, INT32_MIN, INT32_MAX-0x8000)+0x8000; |
|
} |
|
} |
|
#endif /* USE_FIXED */ |
|
che->present = 0; |
|
} else if (che) { |
|
av_log(ac->avctx, AV_LOG_VERBOSE, "ChannelElement %d.%d missing \n", type, i); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb) |
|
{ |
|
int size; |
|
AACADTSHeaderInfo hdr_info; |
|
uint8_t layout_map[MAX_ELEM_ID*4][3]; |
|
int layout_map_tags, ret; |
|
|
|
size = ff_adts_header_parse(gb, &hdr_info); |
|
if (size > 0) { |
|
if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) { |
|
// This is 2 for "VLB " audio in NSV files. |
|
// See samples/nsv/vlb_audio. |
|
avpriv_report_missing_feature(ac->avctx, |
|
"More than one AAC RDB per ADTS frame"); |
|
ac->warned_num_aac_frames = 1; |
|
} |
|
push_output_configuration(ac); |
|
if (hdr_info.chan_config) { |
|
ac->oc[1].m4ac.chan_config = hdr_info.chan_config; |
|
if ((ret = set_default_channel_config(ac, ac->avctx, |
|
layout_map, |
|
&layout_map_tags, |
|
hdr_info.chan_config)) < 0) |
|
return ret; |
|
if ((ret = output_configure(ac, layout_map, layout_map_tags, |
|
FFMAX(ac->oc[1].status, |
|
OC_TRIAL_FRAME), 0)) < 0) |
|
return ret; |
|
} else { |
|
ac->oc[1].m4ac.chan_config = 0; |
|
/** |
|
* dual mono frames in Japanese DTV can have chan_config 0 |
|
* WITHOUT specifying PCE. |
|
* thus, set dual mono as default. |
|
*/ |
|
if (ac->dmono_mode && ac->oc[0].status == OC_NONE) { |
|
layout_map_tags = 2; |
|
layout_map[0][0] = layout_map[1][0] = TYPE_SCE; |
|
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; |
|
layout_map[0][1] = 0; |
|
layout_map[1][1] = 1; |
|
if (output_configure(ac, layout_map, layout_map_tags, |
|
OC_TRIAL_FRAME, 0)) |
|
return -7; |
|
} |
|
} |
|
ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate; |
|
ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index; |
|
ac->oc[1].m4ac.object_type = hdr_info.object_type; |
|
ac->oc[1].m4ac.frame_length_short = 0; |
|
if (ac->oc[0].status != OC_LOCKED || |
|
ac->oc[0].m4ac.chan_config != hdr_info.chan_config || |
|
ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) { |
|
ac->oc[1].m4ac.sbr = -1; |
|
ac->oc[1].m4ac.ps = -1; |
|
} |
|
if (!hdr_info.crc_absent) |
|
skip_bits(gb, 16); |
|
} |
|
return size; |
|
} |
|
|
|
static int aac_decode_er_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, GetBitContext *gb) |
|
{ |
|
AACContext *ac = avctx->priv_data; |
|
const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; |
|
ChannelElement *che; |
|
int err, i; |
|
int samples = m4ac->frame_length_short ? 960 : 1024; |
|
int chan_config = m4ac->chan_config; |
|
int aot = m4ac->object_type; |
|
|
|
if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) |
|
samples >>= 1; |
|
|
|
ac->frame = data; |
|
|
|
if ((err = frame_configure_elements(avctx)) < 0) |
|
return err; |
|
|
|
// The FF_PROFILE_AAC_* defines are all object_type - 1 |
|
// This may lead to an undefined profile being signaled |
|
ac->avctx->profile = aot - 1; |
|
|
|
ac->tags_mapped = 0; |
|
|
|
if (chan_config < 0 || (chan_config >= 8 && chan_config < 11) || chan_config >= 13) { |
|
avpriv_request_sample(avctx, "Unknown ER channel configuration %d", |
|
chan_config); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
for (i = 0; i < tags_per_config[chan_config]; i++) { |
|
const int elem_type = aac_channel_layout_map[chan_config-1][i][0]; |
|
const int elem_id = aac_channel_layout_map[chan_config-1][i][1]; |
|
if (!(che=get_che(ac, elem_type, elem_id))) { |
|
av_log(ac->avctx, AV_LOG_ERROR, |
|
"channel element %d.%d is not allocated\n", |
|
elem_type, elem_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
che->present = 1; |
|
if (aot != AOT_ER_AAC_ELD) |
|
skip_bits(gb, 4); |
|
switch (elem_type) { |
|
case TYPE_SCE: |
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
|
break; |
|
case TYPE_CPE: |
|
err = decode_cpe(ac, gb, che); |
|
break; |
|
case TYPE_LFE: |
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
|
break; |
|
} |
|
if (err < 0) |
|
return err; |
|
} |
|
|
|
spectral_to_sample(ac, samples); |
|
|
|
if (!ac->frame->data[0] && samples) { |
|
av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ac->frame->nb_samples = samples; |
|
ac->frame->sample_rate = avctx->sample_rate; |
|
*got_frame_ptr = 1; |
|
|
|
skip_bits_long(gb, get_bits_left(gb)); |
|
return 0; |
|
} |
|
|
|
static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame, |
|
int *got_frame_ptr, GetBitContext *gb, |
|
const AVPacket *avpkt) |
|
{ |
|
AACContext *ac = avctx->priv_data; |
|
ChannelElement *che = NULL, *che_prev = NULL; |
|
enum RawDataBlockType elem_type, che_prev_type = TYPE_END; |
|
int err, elem_id; |
|
int samples = 0, multiplier, audio_found = 0, pce_found = 0; |
|
int is_dmono, sce_count = 0; |
|
int payload_alignment; |
|
uint8_t che_presence[4][MAX_ELEM_ID] = {{0}}; |
|
|
|
ac->frame = frame; |
|
|
|
if (show_bits(gb, 12) == 0xfff) { |
|
if ((err = parse_adts_frame_header(ac, gb)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); |
|
goto fail; |
|
} |
|
if (ac->oc[1].m4ac.sampling_index > 12) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} |
|
|
|
if ((err = frame_configure_elements(avctx)) < 0) |
|
goto fail; |
|
|
|
// The FF_PROFILE_AAC_* defines are all object_type - 1 |
|
// This may lead to an undefined profile being signaled |
|
ac->avctx->profile = ac->oc[1].m4ac.object_type - 1; |
|
|
|
payload_alignment = get_bits_count(gb); |
|
ac->tags_mapped = 0; |
|
// parse |
|
while ((elem_type = get_bits(gb, 3)) != TYPE_END) { |
|
elem_id = get_bits(gb, 4); |
|
|
|
if (avctx->debug & FF_DEBUG_STARTCODE) |
|
av_log(avctx, AV_LOG_DEBUG, "Elem type:%x id:%x\n", elem_type, elem_id); |
|
|
|
if (!avctx->ch_layout.nb_channels && elem_type != TYPE_PCE) { |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
if (elem_type < TYPE_DSE) { |
|
if (che_presence[elem_type][elem_id]) { |
|
int error = che_presence[elem_type][elem_id] > 1; |
|
av_log(ac->avctx, error ? AV_LOG_ERROR : AV_LOG_DEBUG, "channel element %d.%d duplicate\n", |
|
elem_type, elem_id); |
|
if (error) { |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} |
|
che_presence[elem_type][elem_id]++; |
|
|
|
if (!(che=get_che(ac, elem_type, elem_id))) { |
|
av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", |
|
elem_type, elem_id); |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
samples = ac->oc[1].m4ac.frame_length_short ? 960 : 1024; |
|
che->present = 1; |
|
} |
|
|
|
switch (elem_type) { |
|
|
|
case TYPE_SCE: |
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
|
audio_found = 1; |
|
sce_count++; |
|
break; |
|
|
|
case TYPE_CPE: |
|
err = decode_cpe(ac, gb, che); |
|
audio_found = 1; |
|
break; |
|
|
|
case TYPE_CCE: |
|
err = decode_cce(ac, gb, che); |
|
break; |
|
|
|
case TYPE_LFE: |
|
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
|
audio_found = 1; |
|
break; |
|
|
|
case TYPE_DSE: |
|
err = skip_data_stream_element(ac, gb); |
|
break; |
|
|
|
case TYPE_PCE: { |
|
uint8_t layout_map[MAX_ELEM_ID*4][3] = {{0}}; |
|
int tags; |
|
|
|
int pushed = push_output_configuration(ac); |
|
if (pce_found && !pushed) { |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb, |
|
payload_alignment); |
|
if (tags < 0) { |
|
err = tags; |
|
break; |
|
} |
|
if (pce_found) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Not evaluating a further program_config_element as this construct is dubious at best.\n"); |
|
pop_output_configuration(ac); |
|
} else { |
|
err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); |
|
if (!err) |
|
ac->oc[1].m4ac.chan_config = 0; |
|
pce_found = 1; |
|
} |
|
break; |
|
} |
|
|
|
case TYPE_FIL: |
|
if (elem_id == 15) |
|
elem_id += get_bits(gb, 8) - 1; |
|
if (get_bits_left(gb) < 8 * elem_id) { |
|
av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
err = 0; |
|
while (elem_id > 0) { |
|
int ret = decode_extension_payload(ac, gb, elem_id, che_prev, che_prev_type); |
|
if (ret < 0) { |
|
err = ret; |
|
break; |
|
} |
|
elem_id -= ret; |
|
} |
|
break; |
|
|
|
default: |
|
err = AVERROR_BUG; /* should not happen, but keeps compiler happy */ |
|
break; |
|
} |
|
|
|
if (elem_type < TYPE_DSE) { |
|
che_prev = che; |
|
che_prev_type = elem_type; |
|
} |
|
|
|
if (err) |
|
goto fail; |
|
|
|
if (get_bits_left(gb) < 3) { |
|
av_log(avctx, AV_LOG_ERROR, overread_err); |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} |
|
|
|
if (!avctx->ch_layout.nb_channels) { |
|
*got_frame_ptr = 0; |
|
return 0; |
|
} |
|
|
|
multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; |
|
samples <<= multiplier; |
|
|
|
spectral_to_sample(ac, samples); |
|
|
|
if (ac->oc[1].status && audio_found) { |
|
avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; |
|
avctx->frame_size = samples; |
|
ac->oc[1].status = OC_LOCKED; |
|
} |
|
|
|
if (!ac->frame->data[0] && samples) { |
|
av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); |
|
err = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
if (samples) { |
|
ac->frame->nb_samples = samples; |
|
ac->frame->sample_rate = avctx->sample_rate; |
|
} else |
|
av_frame_unref(ac->frame); |
|
*got_frame_ptr = !!samples; |
|
|
|
/* for dual-mono audio (SCE + SCE) */ |
|
is_dmono = ac->dmono_mode && sce_count == 2 && |
|
!av_channel_layout_compare(&ac->oc[1].ch_layout, |
|
&(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO); |
|
if (is_dmono) { |
|
if (ac->dmono_mode == 1) |
|
frame->data[1] = frame->data[0]; |
|
else if (ac->dmono_mode == 2) |
|
frame->data[0] = frame->data[1]; |
|
} |
|
|
|
return 0; |
|
fail: |
|
pop_output_configuration(ac); |
|
return err; |
|
} |
|
|
|
static int aac_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
AACContext *ac = avctx->priv_data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
GetBitContext gb; |
|
int buf_consumed; |
|
int buf_offset; |
|
int err; |
|
size_t new_extradata_size; |
|
const uint8_t *new_extradata = av_packet_get_side_data(avpkt, |
|
AV_PKT_DATA_NEW_EXTRADATA, |
|
&new_extradata_size); |
|
size_t jp_dualmono_size; |
|
const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt, |
|
AV_PKT_DATA_JP_DUALMONO, |
|
&jp_dualmono_size); |
|
|
|
if (new_extradata) { |
|
/* discard previous configuration */ |
|
ac->oc[1].status = OC_NONE; |
|
err = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, |
|
new_extradata, |
|
new_extradata_size * 8LL, 1); |
|
if (err < 0) { |
|
return err; |
|
} |
|
} |
|
|
|
ac->dmono_mode = 0; |
|
if (jp_dualmono && jp_dualmono_size > 0) |
|
ac->dmono_mode = 1 + *jp_dualmono; |
|
if (ac->force_dmono_mode >= 0) |
|
ac->dmono_mode = ac->force_dmono_mode; |
|
|
|
if (INT_MAX / 8 <= buf_size) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if ((err = init_get_bits8(&gb, buf, buf_size)) < 0) |
|
return err; |
|
|
|
switch (ac->oc[1].m4ac.object_type) { |
|
case AOT_ER_AAC_LC: |
|
case AOT_ER_AAC_LTP: |
|
case AOT_ER_AAC_LD: |
|
case AOT_ER_AAC_ELD: |
|
err = aac_decode_er_frame(avctx, frame, got_frame_ptr, &gb); |
|
break; |
|
default: |
|
err = aac_decode_frame_int(avctx, frame, got_frame_ptr, &gb, avpkt); |
|
} |
|
if (err < 0) |
|
return err; |
|
|
|
buf_consumed = (get_bits_count(&gb) + 7) >> 3; |
|
for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++) |
|
if (buf[buf_offset]) |
|
break; |
|
|
|
return buf_size > buf_offset ? buf_consumed : buf_size; |
|
} |
|
|
|
static av_cold int aac_decode_close(AVCodecContext *avctx) |
|
{ |
|
AACContext *ac = avctx->priv_data; |
|
int i, type; |
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
for (type = 0; type < 4; type++) { |
|
if (ac->che[type][i]) |
|
AAC_RENAME(ff_aac_sbr_ctx_close)(&ac->che[type][i]->sbr); |
|
av_freep(&ac->che[type][i]); |
|
} |
|
} |
|
|
|
av_tx_uninit(&ac->mdct120); |
|
av_tx_uninit(&ac->mdct128); |
|
av_tx_uninit(&ac->mdct480); |
|
av_tx_uninit(&ac->mdct512); |
|
av_tx_uninit(&ac->mdct960); |
|
av_tx_uninit(&ac->mdct1024); |
|
av_tx_uninit(&ac->mdct_ltp); |
|
|
|
av_freep(&ac->fdsp); |
|
return 0; |
|
} |
|
|
|
static void aacdec_init(AACContext *c) |
|
{ |
|
c->imdct_and_windowing = imdct_and_windowing; |
|
c->apply_ltp = apply_ltp; |
|
c->apply_tns = apply_tns; |
|
c->windowing_and_mdct_ltp = windowing_and_mdct_ltp; |
|
c->update_ltp = update_ltp; |
|
#if USE_FIXED |
|
c->vector_pow43 = vector_pow43; |
|
c->subband_scale = subband_scale; |
|
#endif |
|
|
|
#if !USE_FIXED |
|
#if ARCH_MIPS |
|
ff_aacdec_init_mips(c); |
|
#endif |
|
#endif /* !USE_FIXED */ |
|
} |
|
/** |
|
* AVOptions for Japanese DTV specific extensions (ADTS only) |
|
*/ |
|
#define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
|
static const AVOption options[] = { |
|
{"dual_mono_mode", "Select the channel to decode for dual mono", |
|
offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2, |
|
AACDEC_FLAGS, "dual_mono_mode"}, |
|
|
|
{"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, |
|
{"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, |
|
{"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, |
|
{"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, |
|
|
|
{ "channel_order", "Order in which the channels are to be exported", |
|
offsetof(AACContext, output_channel_order), AV_OPT_TYPE_INT, |
|
{ .i64 = CHANNEL_ORDER_DEFAULT }, 0, 1, AACDEC_FLAGS, "channel_order" }, |
|
{ "default", "normal libavcodec channel order", 0, AV_OPT_TYPE_CONST, |
|
{ .i64 = CHANNEL_ORDER_DEFAULT }, .flags = AACDEC_FLAGS, "channel_order" }, |
|
{ "coded", "order in which the channels are coded in the bitstream", |
|
0, AV_OPT_TYPE_CONST, { .i64 = CHANNEL_ORDER_CODED }, .flags = AACDEC_FLAGS, "channel_order" }, |
|
|
|
{NULL}, |
|
}; |
|
|
|
static const AVClass aac_decoder_class = { |
|
.class_name = "AAC decoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
};
|
|
|