mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1746 lines
57 KiB
1746 lines
57 KiB
/* |
|
* AC-3 Audio Decoder |
|
* This code is developed as part of Google Summer of Code 2006 Program. |
|
* |
|
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). |
|
* Copyright (c) 2007 Justin Ruggles |
|
* |
|
* Portions of this code are derived from liba52 |
|
* http://liba52.sourceforge.net |
|
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> |
|
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stddef.h> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#include "avcodec.h" |
|
#include "ac3.h" |
|
#include "ac3tab.h" |
|
#include "bitstream.h" |
|
#include "dsputil.h" |
|
#include "random.h" |
|
|
|
static const int nfchans_tbl[8] = { 2, 1, 2, 3, 3, 4, 4, 5 }; |
|
|
|
/* table for exponent to scale_factor mapping |
|
* scale_factor[i] = 2 ^ -(i + 15) |
|
*/ |
|
static float scale_factors[25]; |
|
|
|
/** table for grouping exponents */ |
|
static uint8_t exp_ungroup_tbl[128][3]; |
|
|
|
static int16_t l3_quantizers_1[32]; |
|
static int16_t l3_quantizers_2[32]; |
|
static int16_t l3_quantizers_3[32]; |
|
|
|
static int16_t l5_quantizers_1[128]; |
|
static int16_t l5_quantizers_2[128]; |
|
static int16_t l5_quantizers_3[128]; |
|
|
|
static int16_t l7_quantizers[7]; |
|
|
|
static int16_t l11_quantizers_1[128]; |
|
static int16_t l11_quantizers_2[128]; |
|
|
|
static int16_t l15_quantizers[15]; |
|
|
|
static const uint8_t qntztab[16] = { 0, 5, 7, 3, 7, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 }; |
|
|
|
/* Adjustmens in dB gain */ |
|
#define LEVEL_MINUS_3DB 0.7071067811865476 |
|
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605 |
|
#define LEVEL_MINUS_6DB 0.5000000000000000 |
|
#define LEVEL_PLUS_3DB 1.4142135623730951 |
|
#define LEVEL_PLUS_6DB 2.0000000000000000 |
|
#define LEVEL_ZERO 0.0000000000000000 |
|
|
|
static const float clevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, |
|
LEVEL_MINUS_6DB, LEVEL_MINUS_4POINT5DB }; |
|
|
|
static const float slevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_6DB }; |
|
|
|
#define BLOCK_SIZE 256 |
|
|
|
/* Output and input configurations. */ |
|
#define AC3_OUTPUT_UNMODIFIED 0x01 |
|
#define AC3_OUTPUT_MONO 0x02 |
|
#define AC3_OUTPUT_STEREO 0x04 |
|
#define AC3_OUTPUT_DOLBY 0x08 |
|
#define AC3_OUTPUT_LFEON 0x10 |
|
|
|
typedef struct { |
|
uint16_t crc1; |
|
uint8_t fscod; |
|
|
|
uint8_t acmod; |
|
uint8_t cmixlev; |
|
uint8_t surmixlev; |
|
uint8_t dsurmod; |
|
|
|
uint8_t blksw; |
|
uint8_t dithflag; |
|
uint8_t cplinu; |
|
uint8_t chincpl; |
|
uint8_t phsflginu; |
|
uint8_t cplbegf; |
|
uint8_t cplendf; |
|
uint8_t cplcoe; |
|
uint32_t cplbndstrc; |
|
uint8_t rematstr; |
|
uint8_t rematflg; |
|
uint8_t cplexpstr; |
|
uint8_t lfeexpstr; |
|
uint8_t chexpstr[5]; |
|
uint8_t sdcycod; |
|
uint8_t fdcycod; |
|
uint8_t sgaincod; |
|
uint8_t dbpbcod; |
|
uint8_t floorcod; |
|
uint8_t csnroffst; |
|
uint8_t cplfsnroffst; |
|
uint8_t cplfgaincod; |
|
uint8_t fsnroffst[5]; |
|
uint8_t fgaincod[5]; |
|
uint8_t lfefsnroffst; |
|
uint8_t lfefgaincod; |
|
uint8_t cplfleak; |
|
uint8_t cplsleak; |
|
uint8_t cpldeltbae; |
|
uint8_t deltbae[5]; |
|
uint8_t cpldeltnseg; |
|
uint8_t cpldeltoffst[8]; |
|
uint8_t cpldeltlen[8]; |
|
uint8_t cpldeltba[8]; |
|
uint8_t deltnseg[5]; |
|
uint8_t deltoffst[5][8]; |
|
uint8_t deltlen[5][8]; |
|
uint8_t deltba[5][8]; |
|
|
|
/* Derived Attributes. */ |
|
int sampling_rate; |
|
int bit_rate; |
|
int frame_size; |
|
|
|
int nfchans; //number of channels |
|
int lfeon; //lfe channel in use |
|
|
|
float dynrng; //dynamic range gain |
|
float dynrng2; //dynamic range gain for 1+1 mode |
|
float chcoeffs[6]; //normalized channel coefficients |
|
float cplco[5][18]; //coupling coordinates |
|
int ncplbnd; //number of coupling bands |
|
int ncplsubnd; //number of coupling sub bands |
|
int cplstrtmant; //coupling start mantissa |
|
int cplendmant; //coupling end mantissa |
|
int endmant[5]; //channel end mantissas |
|
AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters |
|
|
|
uint8_t dcplexps[256]; //decoded coupling exponents |
|
uint8_t dexps[5][256]; //decoded fbw channel exponents |
|
uint8_t dlfeexps[256]; //decoded lfe channel exponents |
|
uint8_t cplbap[256]; //coupling bit allocation pointers |
|
uint8_t bap[5][256]; //fbw channel bit allocation pointers |
|
uint8_t lfebap[256]; //lfe channel bit allocation pointers |
|
|
|
int blkoutput; //output configuration for block |
|
|
|
DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][BLOCK_SIZE]); //transform coefficients |
|
|
|
/* For IMDCT. */ |
|
MDCTContext imdct_512; //for 512 sample imdct transform |
|
MDCTContext imdct_256; //for 256 sample imdct transform |
|
DSPContext dsp; //for optimization |
|
|
|
DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS][BLOCK_SIZE]); //output after imdct transform and windowing |
|
DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS][BLOCK_SIZE]); //delay - added to the next block |
|
DECLARE_ALIGNED_16(float, tmp_imdct[BLOCK_SIZE]); //temporary storage for imdct transform |
|
DECLARE_ALIGNED_16(float, tmp_output[BLOCK_SIZE * 2]); //temporary storage for output before windowing |
|
DECLARE_ALIGNED_16(float, window[BLOCK_SIZE]); //window coefficients |
|
|
|
/* Miscellaneous. */ |
|
GetBitContext gb; |
|
AVRandomState dith_state; //for dither generation |
|
} AC3DecodeContext; |
|
|
|
/*********** BEGIN INIT HELPER FUNCTIONS ***********/ |
|
/** |
|
* Generate a Kaiser-Bessel Derived Window. |
|
*/ |
|
static void ac3_window_init(float *window) |
|
{ |
|
int i, j; |
|
double sum = 0.0, bessel, tmp; |
|
double local_window[256]; |
|
double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0); |
|
|
|
for (i = 0; i < 256; i++) { |
|
tmp = i * (256 - i) * alpha2; |
|
bessel = 1.0; |
|
for (j = 100; j > 0; j--) /* defaul to 100 iterations */ |
|
bessel = bessel * tmp / (j * j) + 1; |
|
sum += bessel; |
|
local_window[i] = sum; |
|
} |
|
|
|
sum++; |
|
for (i = 0; i < 256; i++) |
|
window[i] = sqrt(local_window[i] / sum); |
|
} |
|
|
|
/* |
|
* Generate quantizer tables. |
|
*/ |
|
static void generate_quantizers_table(int16_t quantizers[], int level, int length) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < length; i++) |
|
quantizers[i] = ((2 * i - level + 1) << 15) / level; |
|
} |
|
|
|
static void generate_quantizers_table_1(int16_t quantizers[], int level, int length1, int length2, int size) |
|
{ |
|
int i, j; |
|
int16_t v; |
|
|
|
for (i = 0; i < length1; i++) { |
|
v = ((2 * i - level + 1) << 15) / level; |
|
for (j = 0; j < length2; j++) |
|
quantizers[i * length2 + j] = v; |
|
} |
|
|
|
for (i = length1 * length2; i < size; i++) |
|
quantizers[i] = 0; |
|
} |
|
|
|
static void generate_quantizers_table_2(int16_t quantizers[], int level, int length1, int length2, int size) |
|
{ |
|
int i, j; |
|
int16_t v; |
|
|
|
for (i = 0; i < length1; i++) { |
|
v = ((2 * (i % level) - level + 1) << 15) / level; |
|
for (j = 0; j < length2; j++) |
|
quantizers[i * length2 + j] = v; |
|
} |
|
|
|
for (i = length1 * length2; i < size; i++) |
|
quantizers[i] = 0; |
|
|
|
} |
|
|
|
static void generate_quantizers_table_3(int16_t quantizers[], int level, int length1, int length2, int size) |
|
{ |
|
int i, j; |
|
|
|
for (i = 0; i < length1; i++) |
|
for (j = 0; j < length2; j++) |
|
quantizers[i * length2 + j] = ((2 * (j % level) - level + 1) << 15) / level; |
|
|
|
for (i = length1 * length2; i < size; i++) |
|
quantizers[i] = 0; |
|
} |
|
|
|
/* |
|
* Initialize tables at runtime. |
|
*/ |
|
static void ac3_tables_init(void) |
|
{ |
|
int i; |
|
|
|
/* Quantizer ungrouping tables. */ |
|
// for level-3 quantizers |
|
generate_quantizers_table_1(l3_quantizers_1, 3, 3, 9, 32); |
|
generate_quantizers_table_2(l3_quantizers_2, 3, 9, 3, 32); |
|
generate_quantizers_table_3(l3_quantizers_3, 3, 9, 3, 32); |
|
|
|
//for level-5 quantizers |
|
generate_quantizers_table_1(l5_quantizers_1, 5, 5, 25, 128); |
|
generate_quantizers_table_2(l5_quantizers_2, 5, 25, 5, 128); |
|
generate_quantizers_table_3(l5_quantizers_3, 5, 25, 5, 128); |
|
|
|
//for level-7 quantizers |
|
generate_quantizers_table(l7_quantizers, 7, 7); |
|
|
|
//for level-4 quantizers |
|
generate_quantizers_table_2(l11_quantizers_1, 11, 11, 11, 128); |
|
generate_quantizers_table_3(l11_quantizers_2, 11, 11, 11, 128); |
|
|
|
//for level-15 quantizers |
|
generate_quantizers_table(l15_quantizers, 15, 15); |
|
/* End Quantizer ungrouping tables. */ |
|
|
|
//generate scale factors |
|
for (i = 0; i < 25; i++) |
|
scale_factors[i] = pow(2.0, -(i + 15)); |
|
|
|
/* generate exponent tables |
|
reference: Section 7.1.3 Exponent Decoding */ |
|
for(i=0; i<128; i++) { |
|
exp_ungroup_tbl[i][0] = i / 25; |
|
exp_ungroup_tbl[i][1] = (i % 25) / 5; |
|
exp_ungroup_tbl[i][2] = (i % 25) % 5; |
|
} |
|
} |
|
|
|
|
|
static int ac3_decode_init(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = avctx->priv_data; |
|
|
|
ac3_common_init(); |
|
ac3_tables_init(); |
|
ff_mdct_init(&ctx->imdct_256, 8, 1); |
|
ff_mdct_init(&ctx->imdct_512, 9, 1); |
|
ac3_window_init(ctx->window); |
|
dsputil_init(&ctx->dsp, avctx); |
|
av_init_random(0, &ctx->dith_state); |
|
|
|
return 0; |
|
} |
|
/*********** END INIT FUNCTIONS ***********/ |
|
|
|
/* Synchronize to ac3 bitstream. |
|
* This function searches for the syncword '0xb77'. |
|
* |
|
* @param buf Pointer to "probable" ac3 bitstream buffer |
|
* @param buf_size Size of buffer |
|
* @return Returns the position where syncword is found, -1 if no syncword is found |
|
*/ |
|
static int ac3_synchronize(uint8_t *buf, int buf_size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < buf_size - 1; i++) |
|
if (buf[i] == 0x0b && buf[i + 1] == 0x77) |
|
return i; |
|
|
|
return -1; |
|
} |
|
|
|
/* Parse the 'sync_info' from the ac3 bitstream. |
|
* This function extracts the sync_info from ac3 bitstream. |
|
* GetBitContext within AC3DecodeContext must point to |
|
* start of the synchronized ac3 bitstream. |
|
* |
|
* @param ctx AC3DecodeContext |
|
* @return Returns framesize, returns 0 if fscod, frmsizecod or bsid is not valid |
|
*/ |
|
static int ac3_parse_sync_info(AC3DecodeContext *ctx) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int frmsizecod, bsid; |
|
|
|
skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16); |
|
ctx->crc1 = get_bits(gb, 16); |
|
ctx->fscod = get_bits(gb, 2); |
|
if (ctx->fscod == 0x03) |
|
return 0; |
|
frmsizecod = get_bits(gb, 6); |
|
if (frmsizecod >= 38) |
|
return 0; |
|
ctx->sampling_rate = ff_ac3_freqs[ctx->fscod]; |
|
ctx->bit_rate = ff_ac3_bitratetab[frmsizecod >> 1]; |
|
|
|
/* we include it here in order to determine validity of ac3 frame */ |
|
bsid = get_bits(gb, 5); |
|
if (bsid > 0x08) |
|
return 0; |
|
skip_bits(gb, 3); //skip the bsmod, bsi->bsmod = get_bits(gb, 3); |
|
|
|
switch (ctx->fscod) { |
|
case 0x00: |
|
ctx->frame_size = 4 * ctx->bit_rate; |
|
return ctx->frame_size; |
|
case 0x01: |
|
ctx->frame_size = 2 * (320 * ctx->bit_rate / 147 + (frmsizecod & 1)); |
|
return ctx->frame_size; |
|
case 0x02: |
|
ctx->frame_size = 6 * ctx->bit_rate; |
|
return ctx->frame_size; |
|
} |
|
|
|
/* never reached */ |
|
return 0; |
|
} |
|
|
|
/* Parse bsi from ac3 bitstream. |
|
* This function extracts the bitstream information (bsi) from ac3 bitstream. |
|
* |
|
* @param ctx AC3DecodeContext after processed by ac3_parse_sync_info |
|
*/ |
|
static void ac3_parse_bsi(AC3DecodeContext *ctx) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int i; |
|
|
|
ctx->cmixlev = 0; |
|
ctx->surmixlev = 0; |
|
ctx->dsurmod = 0; |
|
ctx->nfchans = 0; |
|
ctx->cpldeltbae = DBA_NONE; |
|
ctx->cpldeltnseg = 0; |
|
for (i = 0; i < 5; i++) { |
|
ctx->deltbae[i] = DBA_NONE; |
|
ctx->deltnseg[i] = 0; |
|
} |
|
ctx->dynrng = 1.0; |
|
ctx->dynrng2 = 1.0; |
|
|
|
ctx->acmod = get_bits(gb, 3); |
|
ctx->nfchans = nfchans_tbl[ctx->acmod]; |
|
|
|
if (ctx->acmod & 0x01 && ctx->acmod != 0x01) |
|
ctx->cmixlev = get_bits(gb, 2); |
|
if (ctx->acmod & 0x04) |
|
ctx->surmixlev = get_bits(gb, 2); |
|
if (ctx->acmod == 0x02) |
|
ctx->dsurmod = get_bits(gb, 2); |
|
|
|
ctx->lfeon = get_bits1(gb); |
|
|
|
i = !(ctx->acmod); |
|
do { |
|
skip_bits(gb, 5); //skip dialog normalization |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip compression |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip language code |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 7); //skip audio production information |
|
} while (i--); |
|
|
|
skip_bits(gb, 2); //skip copyright bit and original bitstream bit |
|
|
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode1 |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode2 |
|
|
|
if (get_bits1(gb)) { |
|
i = get_bits(gb, 6); //additional bsi length |
|
do { |
|
skip_bits(gb, 8); |
|
} while(i--); |
|
} |
|
} |
|
|
|
/** |
|
* Decodes the grouped exponents. |
|
* This function decodes the coded exponents according to exponent strategy |
|
* and stores them in the decoded exponents buffer. |
|
* |
|
* @param[in] gb GetBitContext which points to start of coded exponents |
|
* @param[in] expstr Exponent coding strategy |
|
* @param[in] ngrps Number of grouped exponents |
|
* @param[in] absexp Absolute exponent or DC exponent |
|
* @param[out] dexps Decoded exponents are stored in dexps |
|
*/ |
|
static void decode_exponents(GetBitContext *gb, int expstr, int ngrps, |
|
uint8_t absexp, uint8_t *dexps) |
|
{ |
|
int i, j, grp, grpsize; |
|
int dexp[256]; |
|
int expacc, prevexp; |
|
|
|
/* unpack groups */ |
|
grpsize = expstr + (expstr == EXP_D45); |
|
for(grp=0,i=0; grp<ngrps; grp++) { |
|
expacc = get_bits(gb, 7); |
|
dexp[i++] = exp_ungroup_tbl[expacc][0]; |
|
dexp[i++] = exp_ungroup_tbl[expacc][1]; |
|
dexp[i++] = exp_ungroup_tbl[expacc][2]; |
|
} |
|
|
|
/* convert to absolute exps and expand groups */ |
|
prevexp = absexp; |
|
for(i=0; i<ngrps*3; i++) { |
|
prevexp = av_clip(prevexp + dexp[i]-2, 0, 24); |
|
for(j=0; j<grpsize; j++) { |
|
dexps[(i*grpsize)+j] = prevexp; |
|
} |
|
} |
|
} |
|
|
|
/* Performs bit allocation. |
|
* This function performs bit allocation for the requested chanenl. |
|
*/ |
|
static void do_bit_allocation(AC3DecodeContext *ctx, int chnl) |
|
{ |
|
int fgain, snroffset; |
|
|
|
if (chnl == 5) { |
|
fgain = ff_fgaintab[ctx->cplfgaincod]; |
|
snroffset = (((ctx->csnroffst - 15) << 4) + ctx->cplfsnroffst) << 2; |
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->cplbap, |
|
ctx->dcplexps, ctx->cplstrtmant, |
|
ctx->cplendmant, snroffset, fgain, 0, |
|
ctx->cpldeltbae, ctx->cpldeltnseg, |
|
ctx->cpldeltoffst, ctx->cpldeltlen, |
|
ctx->cpldeltba); |
|
} |
|
else if (chnl == 6) { |
|
fgain = ff_fgaintab[ctx->lfefgaincod]; |
|
snroffset = (((ctx->csnroffst - 15) << 4) + ctx->lfefsnroffst) << 2; |
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->lfebap, |
|
ctx->dlfeexps, 0, 7, snroffset, fgain, 1, |
|
DBA_NONE, 0, NULL, NULL, NULL); |
|
} |
|
else { |
|
fgain = ff_fgaintab[ctx->fgaincod[chnl]]; |
|
snroffset = (((ctx->csnroffst - 15) << 4) + ctx->fsnroffst[chnl]) << 2; |
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->bap[chnl], |
|
ctx->dexps[chnl], 0, ctx->endmant[chnl], |
|
snroffset, fgain, 0, ctx->deltbae[chnl], |
|
ctx->deltnseg[chnl], ctx->deltoffst[chnl], |
|
ctx->deltlen[chnl], ctx->deltba[chnl]); |
|
} |
|
} |
|
|
|
typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */ |
|
int16_t l3_quantizers[3]; |
|
int16_t l5_quantizers[3]; |
|
int16_t l11_quantizers[2]; |
|
int l3ptr; |
|
int l5ptr; |
|
int l11ptr; |
|
} mant_groups; |
|
|
|
#define TRANSFORM_COEFF(tc, m, e, f) (tc) = (m) * (f)[(e)] |
|
|
|
/* Get the transform coefficients for coupling channel and uncouple channels. |
|
* The coupling transform coefficients starts at the the cplstrtmant, which is |
|
* equal to endmant[ch] for fbw channels. Hence we can uncouple channels before |
|
* getting transform coefficients for the channel. |
|
*/ |
|
static int get_transform_coeffs_cpling(AC3DecodeContext *ctx, mant_groups *m) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int ch, start, end, cplbndstrc, bnd, gcode, tbap; |
|
float cplcos[5], cplcoeff; |
|
uint8_t *exps = ctx->dcplexps; |
|
uint8_t *bap = ctx->cplbap; |
|
|
|
cplbndstrc = ctx->cplbndstrc; |
|
start = ctx->cplstrtmant; |
|
bnd = 0; |
|
|
|
while (start < ctx->cplendmant) { |
|
end = start + 12; |
|
while (cplbndstrc & 1) { |
|
end += 12; |
|
cplbndstrc >>= 1; |
|
} |
|
cplbndstrc >>= 1; |
|
for (ch = 0; ch < ctx->nfchans; ch++) |
|
cplcos[ch] = ctx->chcoeffs[ch] * ctx->cplco[ch][bnd]; |
|
bnd++; |
|
|
|
while (start < end) { |
|
tbap = bap[start]; |
|
switch(tbap) { |
|
case 0: |
|
for (ch = 0; ch < ctx->nfchans; ch++) |
|
if (((ctx->chincpl) >> ch) & 1) { |
|
if ((ctx->dithflag >> ch) & 1) { |
|
TRANSFORM_COEFF(cplcoeff, av_random(&ctx->dith_state) & 0xFFFF, exps[start], scale_factors); |
|
ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch] * LEVEL_MINUS_3DB; |
|
} else |
|
ctx->transform_coeffs[ch + 1][start] = 0; |
|
} |
|
start++; |
|
continue; |
|
case 1: |
|
if (m->l3ptr > 2) { |
|
gcode = get_bits(gb, 5); |
|
m->l3_quantizers[0] = l3_quantizers_1[gcode]; |
|
m->l3_quantizers[1] = l3_quantizers_2[gcode]; |
|
m->l3_quantizers[2] = l3_quantizers_3[gcode]; |
|
m->l3ptr = 0; |
|
} |
|
TRANSFORM_COEFF(cplcoeff, m->l3_quantizers[m->l3ptr++], exps[start], scale_factors); |
|
break; |
|
|
|
case 2: |
|
if (m->l5ptr > 2) { |
|
gcode = get_bits(gb, 7); |
|
m->l5_quantizers[0] = l5_quantizers_1[gcode]; |
|
m->l5_quantizers[1] = l5_quantizers_2[gcode]; |
|
m->l5_quantizers[2] = l5_quantizers_3[gcode]; |
|
m->l5ptr = 0; |
|
} |
|
TRANSFORM_COEFF(cplcoeff, m->l5_quantizers[m->l5ptr++], exps[start], scale_factors); |
|
break; |
|
|
|
case 3: |
|
TRANSFORM_COEFF(cplcoeff, l7_quantizers[get_bits(gb, 3)], exps[start], scale_factors); |
|
break; |
|
|
|
case 4: |
|
if (m->l11ptr > 1) { |
|
gcode = get_bits(gb, 7); |
|
m->l11_quantizers[0] = l11_quantizers_1[gcode]; |
|
m->l11_quantizers[1] = l11_quantizers_2[gcode]; |
|
m->l11ptr = 0; |
|
} |
|
TRANSFORM_COEFF(cplcoeff, m->l11_quantizers[m->l11ptr++], exps[start], scale_factors); |
|
break; |
|
|
|
case 5: |
|
TRANSFORM_COEFF(cplcoeff, l15_quantizers[get_bits(gb, 4)], exps[start], scale_factors); |
|
break; |
|
|
|
default: |
|
TRANSFORM_COEFF(cplcoeff, get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]), |
|
exps[start], scale_factors); |
|
} |
|
for (ch = 0; ch < ctx->nfchans; ch++) |
|
if ((ctx->chincpl >> ch) & 1) |
|
ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch]; |
|
start++; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Get the transform coefficients for particular channel */ |
|
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int i, gcode, tbap, dithflag, end; |
|
uint8_t *exps; |
|
uint8_t *bap; |
|
float *coeffs; |
|
float factors[25]; |
|
|
|
for (i = 0; i < 25; i++) |
|
factors[i] = scale_factors[i] * ctx->chcoeffs[ch_index]; |
|
|
|
if (ch_index != -1) { /* fbw channels */ |
|
dithflag = (ctx->dithflag >> ch_index) & 1; |
|
exps = ctx->dexps[ch_index]; |
|
bap = ctx->bap[ch_index]; |
|
coeffs = ctx->transform_coeffs[ch_index + 1]; |
|
end = ctx->endmant[ch_index]; |
|
} else if (ch_index == -1) { |
|
dithflag = 0; |
|
exps = ctx->dlfeexps; |
|
bap = ctx->lfebap; |
|
coeffs = ctx->transform_coeffs[0]; |
|
end = 7; |
|
} |
|
|
|
|
|
for (i = 0; i < end; i++) { |
|
tbap = bap[i]; |
|
switch (tbap) { |
|
case 0: |
|
if (!dithflag) { |
|
coeffs[i] = 0; |
|
continue; |
|
} |
|
else { |
|
TRANSFORM_COEFF(coeffs[i], av_random(&ctx->dith_state) & 0xFFFF, exps[i], factors); |
|
coeffs[i] *= LEVEL_MINUS_3DB; |
|
continue; |
|
} |
|
|
|
case 1: |
|
if (m->l3ptr > 2) { |
|
gcode = get_bits(gb, 5); |
|
m->l3_quantizers[0] = l3_quantizers_1[gcode]; |
|
m->l3_quantizers[1] = l3_quantizers_2[gcode]; |
|
m->l3_quantizers[2] = l3_quantizers_3[gcode]; |
|
m->l3ptr = 0; |
|
} |
|
TRANSFORM_COEFF(coeffs[i], m->l3_quantizers[m->l3ptr++], exps[i], factors); |
|
continue; |
|
|
|
case 2: |
|
if (m->l5ptr > 2) { |
|
gcode = get_bits(gb, 7); |
|
m->l5_quantizers[0] = l5_quantizers_1[gcode]; |
|
m->l5_quantizers[1] = l5_quantizers_2[gcode]; |
|
m->l5_quantizers[2] = l5_quantizers_3[gcode]; |
|
m->l5ptr = 0; |
|
} |
|
TRANSFORM_COEFF(coeffs[i], m->l5_quantizers[m->l5ptr++], exps[i], factors); |
|
continue; |
|
|
|
case 3: |
|
TRANSFORM_COEFF(coeffs[i], l7_quantizers[get_bits(gb, 3)], exps[i], factors); |
|
continue; |
|
|
|
case 4: |
|
if (m->l11ptr > 1) { |
|
gcode = get_bits(gb, 7); |
|
m->l11_quantizers[0] = l11_quantizers_1[gcode]; |
|
m->l11_quantizers[1] = l11_quantizers_2[gcode]; |
|
m->l11ptr = 0; |
|
} |
|
TRANSFORM_COEFF(coeffs[i], m->l11_quantizers[m->l11ptr++], exps[i], factors); |
|
continue; |
|
|
|
case 5: |
|
TRANSFORM_COEFF(coeffs[i], l15_quantizers[get_bits(gb, 4)], exps[i], factors); |
|
continue; |
|
|
|
default: |
|
TRANSFORM_COEFF(coeffs[i], get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]), exps[i], factors); |
|
continue; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Get the transform coefficients. |
|
* This function extracts the tranform coefficients form the ac3 bitstream. |
|
* This function is called after bit allocation is performed. |
|
*/ |
|
static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
{ |
|
int i, end; |
|
int got_cplchan = 0; |
|
mant_groups m; |
|
|
|
m.l3ptr = m.l5ptr = m.l11ptr = 3; |
|
|
|
for (i = 0; i < ctx->nfchans; i++) { |
|
/* transform coefficients for individual channel */ |
|
if (get_transform_coeffs_ch(ctx, i, &m)) |
|
return -1; |
|
/* tranform coefficients for coupling channels */ |
|
if ((ctx->chincpl >> i) & 1) { |
|
if (!got_cplchan) { |
|
if (get_transform_coeffs_cpling(ctx, &m)) { |
|
av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n"); |
|
return -1; |
|
} |
|
got_cplchan = 1; |
|
} |
|
end = ctx->cplendmant; |
|
} else |
|
end = ctx->endmant[i]; |
|
do |
|
ctx->transform_coeffs[i + 1][end] = 0; |
|
while(++end < 256); |
|
} |
|
if (ctx->lfeon) { |
|
if (get_transform_coeffs_ch(ctx, -1, &m)) |
|
return -1; |
|
for (i = 7; i < 256; i++) { |
|
ctx->transform_coeffs[0][i] = 0; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Rematrixing routines. */ |
|
static void do_rematrixing1(AC3DecodeContext *ctx, int start, int end) |
|
{ |
|
float tmp0, tmp1; |
|
|
|
while (start < end) { |
|
tmp0 = ctx->transform_coeffs[1][start]; |
|
tmp1 = ctx->transform_coeffs[2][start]; |
|
ctx->transform_coeffs[1][start] = tmp0 + tmp1; |
|
ctx->transform_coeffs[2][start] = tmp0 - tmp1; |
|
start++; |
|
} |
|
} |
|
|
|
static void do_rematrixing(AC3DecodeContext *ctx) |
|
{ |
|
int bnd1 = 13, bnd2 = 25, bnd3 = 37, bnd4 = 61; |
|
int end, bndend; |
|
|
|
end = FFMIN(ctx->endmant[0], ctx->endmant[1]); |
|
|
|
if (ctx->rematflg & 1) |
|
do_rematrixing1(ctx, bnd1, bnd2); |
|
|
|
if (ctx->rematflg & 2) |
|
do_rematrixing1(ctx, bnd2, bnd3); |
|
|
|
bndend = bnd4; |
|
if (bndend > end) { |
|
bndend = end; |
|
if (ctx->rematflg & 4) |
|
do_rematrixing1(ctx, bnd3, bndend); |
|
} else { |
|
if (ctx->rematflg & 4) |
|
do_rematrixing1(ctx, bnd3, bnd4); |
|
if (ctx->rematflg & 8) |
|
do_rematrixing1(ctx, bnd4, end); |
|
} |
|
} |
|
|
|
/* This function sets the normalized channel coefficients. |
|
* Transform coefficients are multipllied by the channel |
|
* coefficients to get normalized transform coefficients. |
|
*/ |
|
static void get_downmix_coeffs(AC3DecodeContext *ctx) |
|
{ |
|
int from = ctx->acmod; |
|
int to = ctx->blkoutput; |
|
float clev = clevs[ctx->cmixlev]; |
|
float slev = slevs[ctx->surmixlev]; |
|
float nf = 1.0; //normalization factor for downmix coeffs |
|
int i; |
|
|
|
if (!ctx->acmod) { |
|
ctx->chcoeffs[0] = 2 * ctx->dynrng; |
|
ctx->chcoeffs[1] = 2 * ctx->dynrng2; |
|
} else { |
|
for (i = 0; i < ctx->nfchans; i++) |
|
ctx->chcoeffs[i] = 2 * ctx->dynrng; |
|
} |
|
|
|
if (to == AC3_OUTPUT_UNMODIFIED) |
|
return; |
|
|
|
switch (from) { |
|
case AC3_ACMOD_DUALMONO: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
case AC3_OUTPUT_STEREO: /* We Assume that sum of both mono channels is requested */ |
|
nf = 0.5; |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_MONO: |
|
switch (to) { |
|
case AC3_OUTPUT_STEREO: |
|
nf = LEVEL_MINUS_3DB; |
|
ctx->chcoeffs[0] *= nf; |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_STEREO: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = LEVEL_MINUS_3DB; |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = LEVEL_MINUS_3DB / (1.0 + clev); |
|
ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[1] *= ((nf * clev * LEVEL_MINUS_3DB) / 2.0); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
nf = 1.0 / (1.0 + clev); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[2] *= nf; |
|
ctx->chcoeffs[1] *= (nf * clev); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_2F1R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = 2.0 * LEVEL_MINUS_3DB / (2.0 + slev); |
|
ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
nf = 1.0 / (1.0 + (slev * LEVEL_MINUS_3DB)); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
nf = 1.0 / (1.0 + LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F1R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = LEVEL_MINUS_3DB / (1.0 + clev + (slev / 2.0)); |
|
ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[1] *= (nf * clev * LEVEL_PLUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
nf = 1.0 / (1.0 + clev + (slev * LEVEL_MINUS_3DB)); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[2] *= nf; |
|
ctx->chcoeffs[1] *= (nf * clev); |
|
ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
nf = 1.0 / (1.0 + (2.0 * LEVEL_MINUS_3DB)); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_2F2R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = LEVEL_MINUS_3DB / (1.0 + slev); |
|
ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
nf = 1.0 / (1.0 + slev); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[2] *= (nf * slev); |
|
ctx->chcoeffs[3] *= (nf * slev); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
nf = 1.0 / (1.0 + (2.0 * LEVEL_MINUS_3DB)); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F2R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
nf = LEVEL_MINUS_3DB / (1.0 + clev + slev); |
|
ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[1] *= (nf * clev * LEVEL_PLUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[4] *= (nf * slev * LEVEL_MINUS_3DB); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
nf = 1.0 / (1.0 + clev + slev); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[2] *= nf; |
|
ctx->chcoeffs[1] *= (nf * clev); |
|
ctx->chcoeffs[3] *= (nf * slev); |
|
ctx->chcoeffs[4] *= (nf * slev); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
nf = 1.0 / (1.0 + (3.0 * LEVEL_MINUS_3DB)); |
|
ctx->chcoeffs[0] *= nf; |
|
ctx->chcoeffs[1] *= nf; |
|
ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB); |
|
ctx->chcoeffs[4] *= (nf * LEVEL_MINUS_3DB); |
|
break; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
/*********** BEGIN DOWNMIX FUNCTIONS ***********/ |
|
static inline void mix_dualmono_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] += output[2][i]; |
|
memset(output[2], 0, sizeof(output[2])); |
|
} |
|
|
|
static inline void mix_dualmono_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float tmp; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
tmp = output[1][i] + output[2][i]; |
|
output[1][i] = output[2][i] = tmp; |
|
} |
|
} |
|
|
|
static inline void upmix_mono_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[2][i] = output[1][i]; |
|
} |
|
|
|
static inline void mix_stereo_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] += output[2][i]; |
|
memset(output[2], 0, sizeof(output[2])); |
|
} |
|
|
|
static inline void mix_3f_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] += (output[2][i] + output[3][i]); |
|
memset(output[2], 0, sizeof(output[2])); |
|
memset(output[3], 0, sizeof(output[3])); |
|
} |
|
|
|
static inline void mix_3f_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += output[2][i]; |
|
output[2][i] += output[3][i]; |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
} |
|
|
|
static inline void mix_2f_1r_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] += (output[2][i] + output[3][i]); |
|
memset(output[2], 0, sizeof(output[2])); |
|
memset(output[3], 0, sizeof(output[3])); |
|
|
|
} |
|
|
|
static inline void mix_2f_1r_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += output[2][i]; |
|
output[2][i] += output[3][i]; |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
} |
|
|
|
static inline void mix_2f_1r_to_dolby(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] -= output[3][i]; |
|
output[2][i] += output[3][i]; |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
} |
|
|
|
static inline void mix_3f_1r_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] = (output[2][i] + output[3][i] + output[4][i]); |
|
memset(output[2], 0, sizeof(output[2])); |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_3f_1r_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += (output[2][i] + output[4][i]); |
|
output[2][i] += (output[3][i] + output[4][i]); |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_3f_1r_to_dolby(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += (output[2][i] - output[4][i]); |
|
output[2][i] += (output[3][i] + output[4][i]); |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_2f_2r_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] = (output[2][i] + output[3][i] + output[4][i]); |
|
memset(output[2], 0, sizeof(output[2])); |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_2f_2r_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += output[3][i]; |
|
output[2][i] += output[4][i]; |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_2f_2r_to_dolby(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] -= output[3][i]; |
|
output[2][i] += output[4][i]; |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
} |
|
|
|
static inline void mix_3f_2r_to_mono(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) |
|
output[1][i] += (output[2][i] + output[3][i] + output[4][i] + output[5][i]); |
|
memset(output[2], 0, sizeof(output[2])); |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
memset(output[5], 0, sizeof(output[5])); |
|
} |
|
|
|
static inline void mix_3f_2r_to_stereo(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += (output[2][i] + output[4][i]); |
|
output[2][i] += (output[3][i] + output[5][i]); |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
memset(output[5], 0, sizeof(output[5])); |
|
} |
|
|
|
static inline void mix_3f_2r_to_dolby(AC3DecodeContext *ctx) |
|
{ |
|
int i; |
|
float (*output)[BLOCK_SIZE] = ctx->output; |
|
|
|
for (i = 0; i < 256; i++) { |
|
output[1][i] += (output[2][i] - output[4][i] - output[5][i]); |
|
output[2][i] += (output[3][i] + output[4][i] + output[5][i]); |
|
} |
|
memset(output[3], 0, sizeof(output[3])); |
|
memset(output[4], 0, sizeof(output[4])); |
|
memset(output[5], 0, sizeof(output[5])); |
|
} |
|
/*********** END DOWNMIX FUNCTIONS ***********/ |
|
|
|
/* Downmix the output. |
|
* This function downmixes the output when the number of input |
|
* channels is not equal to the number of output channels requested. |
|
*/ |
|
static void do_downmix(AC3DecodeContext *ctx) |
|
{ |
|
int from = ctx->acmod; |
|
int to = ctx->blkoutput; |
|
|
|
if (to == AC3_OUTPUT_UNMODIFIED) |
|
return; |
|
|
|
switch (from) { |
|
case AC3_ACMOD_DUALMONO: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_dualmono_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: /* We assume that sum of both mono channels is requested */ |
|
mix_dualmono_to_stereo(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_MONO: |
|
switch (to) { |
|
case AC3_OUTPUT_STEREO: |
|
upmix_mono_to_stereo(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_STEREO: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_stereo_to_mono(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_3f_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
mix_3f_to_stereo(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_2F1R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_2f_1r_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
mix_2f_1r_to_stereo(ctx); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
mix_2f_1r_to_dolby(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F1R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_3f_1r_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
mix_3f_1r_to_stereo(ctx); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
mix_3f_1r_to_dolby(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_2F2R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_2f_2r_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
mix_2f_2r_to_stereo(ctx); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
mix_2f_2r_to_dolby(ctx); |
|
break; |
|
} |
|
break; |
|
case AC3_ACMOD_3F2R: |
|
switch (to) { |
|
case AC3_OUTPUT_MONO: |
|
mix_3f_2r_to_mono(ctx); |
|
break; |
|
case AC3_OUTPUT_STEREO: |
|
mix_3f_2r_to_stereo(ctx); |
|
break; |
|
case AC3_OUTPUT_DOLBY: |
|
mix_3f_2r_to_dolby(ctx); |
|
break; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
/* This function performs the imdct on 256 sample transform |
|
* coefficients. |
|
*/ |
|
static void do_imdct_256(AC3DecodeContext *ctx, int chindex) |
|
{ |
|
int i, k; |
|
float x[128]; |
|
FFTComplex z[2][64]; |
|
float *o_ptr = ctx->tmp_output; |
|
|
|
for(i=0; i<2; i++) { |
|
/* de-interleave coefficients */ |
|
for(k=0; k<128; k++) { |
|
x[k] = ctx->transform_coeffs[chindex][2*k+i]; |
|
} |
|
|
|
/* run standard IMDCT */ |
|
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); |
|
|
|
/* reverse the post-rotation & reordering from standard IMDCT */ |
|
for(k=0; k<32; k++) { |
|
z[i][32+k].re = -o_ptr[128+2*k]; |
|
z[i][32+k].im = -o_ptr[2*k]; |
|
z[i][31-k].re = o_ptr[2*k+1]; |
|
z[i][31-k].im = o_ptr[128+2*k+1]; |
|
} |
|
} |
|
|
|
/* apply AC-3 post-rotation & reordering */ |
|
for(k=0; k<64; k++) { |
|
o_ptr[ 2*k ] = -z[0][ k].im; |
|
o_ptr[ 2*k+1] = z[0][63-k].re; |
|
o_ptr[128+2*k ] = -z[0][ k].re; |
|
o_ptr[128+2*k+1] = z[0][63-k].im; |
|
o_ptr[256+2*k ] = -z[1][ k].re; |
|
o_ptr[256+2*k+1] = z[1][63-k].im; |
|
o_ptr[384+2*k ] = z[1][ k].im; |
|
o_ptr[384+2*k+1] = -z[1][63-k].re; |
|
} |
|
} |
|
|
|
/* IMDCT Transform. */ |
|
static inline void do_imdct(AC3DecodeContext *ctx) |
|
{ |
|
int ch; |
|
|
|
if (ctx->blkoutput & AC3_OUTPUT_LFEON) { |
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, |
|
ctx->transform_coeffs[0], ctx->tmp_imdct); |
|
} |
|
for (ch=1; ch<=ctx->nfchans; ch++) { |
|
if ((ctx->blksw >> (ch-1)) & 1) |
|
do_imdct_256(ctx, ch); |
|
else |
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, |
|
ctx->transform_coeffs[ch], |
|
ctx->tmp_imdct); |
|
|
|
ctx->dsp.vector_fmul_add_add(ctx->output[ch], ctx->tmp_output, |
|
ctx->window, ctx->delay[ch], 384, 256, 1); |
|
ctx->dsp.vector_fmul_reverse(ctx->delay[ch], ctx->tmp_output+256, |
|
ctx->window, 256); |
|
} |
|
} |
|
|
|
/* Parse the audio block from ac3 bitstream. |
|
* This function extract the audio block from the ac3 bitstream |
|
* and produces the output for the block. This function must |
|
* be called for each of the six audio block in the ac3 bitstream. |
|
*/ |
|
static int ac3_parse_audio_block(AC3DecodeContext * ctx) |
|
{ |
|
int nfchans = ctx->nfchans; |
|
int acmod = ctx->acmod; |
|
int i, bnd, rbnd, seg, grpsize; |
|
GetBitContext *gb = &ctx->gb; |
|
int bit_alloc_flags = 0; |
|
uint8_t *dexps; |
|
int mstrcplco, cplcoexp, cplcomant; |
|
int dynrng, chbwcod, ngrps, cplabsexp, skipl; |
|
|
|
ctx->blksw = 0; |
|
for (i = 0; i < nfchans; i++) /*block switch flag */ |
|
ctx->blksw |= get_bits1(gb) << i; |
|
|
|
ctx->dithflag = 0; |
|
for (i = 0; i < nfchans; i++) /* dithering flag */ |
|
ctx->dithflag |= get_bits1(gb) << i; |
|
|
|
if (get_bits1(gb)) { /* dynamic range */ |
|
dynrng = get_sbits(gb, 8); |
|
ctx->dynrng = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]); |
|
} |
|
|
|
if (acmod == 0x00 && get_bits1(gb)) { /* dynamic range 1+1 mode */ |
|
dynrng = get_sbits(gb, 8); |
|
ctx->dynrng2 = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]); |
|
} |
|
|
|
get_downmix_coeffs(ctx); |
|
|
|
if (get_bits1(gb)) { /* coupling strategy */ |
|
ctx->cplinu = get_bits1(gb); |
|
ctx->cplbndstrc = 0; |
|
ctx->chincpl = 0; |
|
if (ctx->cplinu) { /* coupling in use */ |
|
for (i = 0; i < nfchans; i++) |
|
ctx->chincpl |= get_bits1(gb) << i; |
|
|
|
if (acmod == 0x02) |
|
ctx->phsflginu = get_bits1(gb); //phase flag in use |
|
|
|
ctx->cplbegf = get_bits(gb, 4); |
|
ctx->cplendf = get_bits(gb, 4); |
|
|
|
if (3 + ctx->cplendf - ctx->cplbegf < 0) { |
|
av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", ctx->cplendf, ctx->cplbegf); |
|
return -1; |
|
} |
|
|
|
ctx->ncplbnd = ctx->ncplsubnd = 3 + ctx->cplendf - ctx->cplbegf; |
|
ctx->cplstrtmant = ctx->cplbegf * 12 + 37; |
|
ctx->cplendmant = ctx->cplendf * 12 + 73; |
|
for (i = 0; i < ctx->ncplsubnd - 1; i++) /* coupling band structure */ |
|
if (get_bits1(gb)) { |
|
ctx->cplbndstrc |= 1 << i; |
|
ctx->ncplbnd--; |
|
} |
|
} |
|
} |
|
|
|
if (ctx->cplinu) { |
|
ctx->cplcoe = 0; |
|
|
|
for (i = 0; i < nfchans; i++) |
|
if ((ctx->chincpl) >> i & 1) |
|
if (get_bits1(gb)) { /* coupling co-ordinates */ |
|
ctx->cplcoe |= 1 << i; |
|
mstrcplco = 3 * get_bits(gb, 2); |
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++) { |
|
cplcoexp = get_bits(gb, 4); |
|
cplcomant = get_bits(gb, 4); |
|
if (cplcoexp == 15) |
|
cplcomant <<= 14; |
|
else |
|
cplcomant = (cplcomant | 0x10) << 13; |
|
ctx->cplco[i][bnd] = cplcomant * scale_factors[cplcoexp + mstrcplco]; |
|
} |
|
} |
|
|
|
if (acmod == 0x02 && ctx->phsflginu && (ctx->cplcoe & 1 || ctx->cplcoe & 2)) |
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++) |
|
if (get_bits1(gb)) |
|
ctx->cplco[1][bnd] = -ctx->cplco[1][bnd]; |
|
} |
|
|
|
if (acmod == 0x02) {/* rematrixing */ |
|
ctx->rematstr = get_bits1(gb); |
|
if (ctx->rematstr) { |
|
ctx->rematflg = 0; |
|
|
|
if (!(ctx->cplinu) || ctx->cplbegf > 2) |
|
for (rbnd = 0; rbnd < 4; rbnd++) |
|
ctx->rematflg |= get_bits1(gb) << rbnd; |
|
if (ctx->cplbegf > 0 && ctx->cplbegf <= 2 && ctx->cplinu) |
|
for (rbnd = 0; rbnd < 3; rbnd++) |
|
ctx->rematflg |= get_bits1(gb) << rbnd; |
|
if (ctx->cplbegf == 0 && ctx->cplinu) |
|
for (rbnd = 0; rbnd < 2; rbnd++) |
|
ctx->rematflg |= get_bits1(gb) << rbnd; |
|
} |
|
} |
|
|
|
ctx->cplexpstr = EXP_REUSE; |
|
ctx->lfeexpstr = EXP_REUSE; |
|
if (ctx->cplinu) /* coupling exponent strategy */ |
|
ctx->cplexpstr = get_bits(gb, 2); |
|
for (i = 0; i < nfchans; i++) /* channel exponent strategy */ |
|
ctx->chexpstr[i] = get_bits(gb, 2); |
|
if (ctx->lfeon) /* lfe exponent strategy */ |
|
ctx->lfeexpstr = get_bits1(gb); |
|
|
|
for (i = 0; i < nfchans; i++) /* channel bandwidth code */ |
|
if (ctx->chexpstr[i] != EXP_REUSE) { |
|
if ((ctx->chincpl >> i) & 1) |
|
ctx->endmant[i] = ctx->cplstrtmant; |
|
else { |
|
chbwcod = get_bits(gb, 6); |
|
if (chbwcod > 60) { |
|
av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod); |
|
return -1; |
|
} |
|
ctx->endmant[i] = chbwcod * 3 + 73; |
|
} |
|
} |
|
|
|
if (ctx->cplexpstr != EXP_REUSE) {/* coupling exponents */ |
|
bit_alloc_flags = 64; |
|
cplabsexp = get_bits(gb, 4) << 1; |
|
ngrps = (ctx->cplendmant - ctx->cplstrtmant) / (3 << (ctx->cplexpstr - 1)); |
|
decode_exponents(gb, ctx->cplexpstr, ngrps, cplabsexp, ctx->dcplexps + ctx->cplstrtmant); |
|
} |
|
|
|
for (i = 0; i < nfchans; i++) /* fbw channel exponents */ |
|
if (ctx->chexpstr[i] != EXP_REUSE) { |
|
bit_alloc_flags |= 1 << i; |
|
grpsize = 3 << (ctx->chexpstr[i] - 1); |
|
ngrps = (ctx->endmant[i] + grpsize - 4) / grpsize; |
|
dexps = ctx->dexps[i]; |
|
dexps[0] = get_bits(gb, 4); |
|
decode_exponents(gb, ctx->chexpstr[i], ngrps, dexps[0], dexps + 1); |
|
skip_bits(gb, 2); /* skip gainrng */ |
|
} |
|
|
|
if (ctx->lfeexpstr != EXP_REUSE) { /* lfe exponents */ |
|
bit_alloc_flags |= 32; |
|
ctx->dlfeexps[0] = get_bits(gb, 4); |
|
decode_exponents(gb, ctx->lfeexpstr, 2, ctx->dlfeexps[0], ctx->dlfeexps + 1); |
|
} |
|
|
|
if (get_bits1(gb)) { /* bit allocation information */ |
|
bit_alloc_flags = 127; |
|
ctx->sdcycod = get_bits(gb, 2); |
|
ctx->fdcycod = get_bits(gb, 2); |
|
ctx->sgaincod = get_bits(gb, 2); |
|
ctx->dbpbcod = get_bits(gb, 2); |
|
ctx->floorcod = get_bits(gb, 3); |
|
} |
|
|
|
if (get_bits1(gb)) { /* snroffset */ |
|
bit_alloc_flags = 127; |
|
ctx->csnroffst = get_bits(gb, 6); |
|
if (ctx->cplinu) { /* coupling fine snr offset and fast gain code */ |
|
ctx->cplfsnroffst = get_bits(gb, 4); |
|
ctx->cplfgaincod = get_bits(gb, 3); |
|
} |
|
for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */ |
|
ctx->fsnroffst[i] = get_bits(gb, 4); |
|
ctx->fgaincod[i] = get_bits(gb, 3); |
|
} |
|
if (ctx->lfeon) { /* lfe fine snr offset and fast gain code */ |
|
ctx->lfefsnroffst = get_bits(gb, 4); |
|
ctx->lfefgaincod = get_bits(gb, 3); |
|
} |
|
} |
|
|
|
if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */ |
|
bit_alloc_flags |= 64; |
|
ctx->cplfleak = get_bits(gb, 3); |
|
ctx->cplsleak = get_bits(gb, 3); |
|
} |
|
|
|
if (get_bits1(gb)) { /* delta bit allocation information */ |
|
bit_alloc_flags = 127; |
|
|
|
if (ctx->cplinu) { |
|
ctx->cpldeltbae = get_bits(gb, 2); |
|
if (ctx->cpldeltbae == DBA_RESERVED) { |
|
av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
for (i = 0; i < nfchans; i++) { |
|
ctx->deltbae[i] = get_bits(gb, 2); |
|
if (ctx->deltbae[i] == DBA_RESERVED) { |
|
av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
if (ctx->cplinu) |
|
if (ctx->cpldeltbae == DBA_NEW) { /*coupling delta offset, len and bit allocation */ |
|
ctx->cpldeltnseg = get_bits(gb, 3); |
|
for (seg = 0; seg <= ctx->cpldeltnseg; seg++) { |
|
ctx->cpldeltoffst[seg] = get_bits(gb, 5); |
|
ctx->cpldeltlen[seg] = get_bits(gb, 4); |
|
ctx->cpldeltba[seg] = get_bits(gb, 3); |
|
} |
|
} |
|
|
|
for (i = 0; i < nfchans; i++) |
|
if (ctx->deltbae[i] == DBA_NEW) {/*channel delta offset, len and bit allocation */ |
|
ctx->deltnseg[i] = get_bits(gb, 3); |
|
for (seg = 0; seg <= ctx->deltnseg[i]; seg++) { |
|
ctx->deltoffst[i][seg] = get_bits(gb, 5); |
|
ctx->deltlen[i][seg] = get_bits(gb, 4); |
|
ctx->deltba[i][seg] = get_bits(gb, 3); |
|
} |
|
} |
|
} |
|
|
|
if (bit_alloc_flags) { |
|
/* set bit allocation parameters */ |
|
ctx->bit_alloc_params.fscod = ctx->fscod; |
|
ctx->bit_alloc_params.halfratecod = 0; |
|
ctx->bit_alloc_params.sdecay = ff_sdecaytab[ctx->sdcycod]; |
|
ctx->bit_alloc_params.fdecay = ff_fdecaytab[ctx->fdcycod]; |
|
ctx->bit_alloc_params.sgain = ff_sgaintab[ctx->sgaincod]; |
|
ctx->bit_alloc_params.dbknee = ff_dbkneetab[ctx->dbpbcod]; |
|
ctx->bit_alloc_params.floor = ff_floortab[ctx->floorcod]; |
|
ctx->bit_alloc_params.cplfleak = ctx->cplfleak; |
|
ctx->bit_alloc_params.cplsleak = ctx->cplsleak; |
|
|
|
if (ctx->chincpl && (bit_alloc_flags & 64)) |
|
do_bit_allocation(ctx, 5); |
|
for (i = 0; i < nfchans; i++) |
|
if ((bit_alloc_flags >> i) & 1) |
|
do_bit_allocation(ctx, i); |
|
if (ctx->lfeon && (bit_alloc_flags & 32)) |
|
do_bit_allocation(ctx, 6); |
|
} |
|
|
|
if (get_bits1(gb)) { /* unused dummy data */ |
|
skipl = get_bits(gb, 9); |
|
while(skipl--) |
|
skip_bits(gb, 8); |
|
} |
|
/* unpack the transform coefficients |
|
* * this also uncouples channels if coupling is in use. |
|
*/ |
|
if (get_transform_coeffs(ctx)) { |
|
av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); |
|
return -1; |
|
} |
|
|
|
/* recover coefficients if rematrixing is in use */ |
|
if (ctx->rematflg) |
|
do_rematrixing(ctx); |
|
|
|
do_downmix(ctx); |
|
|
|
do_imdct(ctx); |
|
|
|
return 0; |
|
} |
|
|
|
static inline int16_t convert(int32_t i) |
|
{ |
|
if (i > 0x43c07fff) |
|
return 32767; |
|
else if (i <= 0x43bf8000) |
|
return -32768; |
|
else |
|
return (i - 0x43c00000); |
|
} |
|
|
|
/* Decode ac3 frame. |
|
* |
|
* @param avctx Pointer to AVCodecContext |
|
* @param data Pointer to pcm smaples |
|
* @param data_size Set to number of pcm samples produced by decoding |
|
* @param buf Data to be decoded |
|
* @param buf_size Size of the buffer |
|
*/ |
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
int frame_start; |
|
int16_t *out_samples = (int16_t *)data; |
|
int i, j, k, start; |
|
int32_t *int_ptr[6]; |
|
|
|
for (i = 0; i < 6; i++) |
|
int_ptr[i] = (int32_t *)(&ctx->output[i]); |
|
|
|
//Synchronize the frame. |
|
frame_start = ac3_synchronize(buf, buf_size); |
|
if (frame_start == -1) { |
|
av_log(avctx, AV_LOG_ERROR, "frame is not synchronized\n"); |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
//Initialize the GetBitContext with the start of valid AC3 Frame. |
|
init_get_bits(&(ctx->gb), buf + frame_start, (buf_size - frame_start) * 8); |
|
|
|
//Parse the syncinfo. |
|
//If 'fscod' or 'bsid' is not valid the decoder shall mute as per the standard. |
|
if (!ac3_parse_sync_info(ctx)) { |
|
av_log(avctx, AV_LOG_ERROR, "\n"); |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
//Parse the BSI. |
|
//If 'bsid' is not valid decoder shall not decode the audio as per the standard. |
|
ac3_parse_bsi(ctx); |
|
|
|
avctx->sample_rate = ctx->sampling_rate; |
|
avctx->bit_rate = ctx->bit_rate; |
|
|
|
if (avctx->channels == 0) { |
|
ctx->blkoutput |= AC3_OUTPUT_UNMODIFIED; |
|
if (ctx->lfeon) |
|
ctx->blkoutput |= AC3_OUTPUT_LFEON; |
|
avctx->channels = ctx->nfchans + ctx->lfeon; |
|
} |
|
else if (avctx->channels == 1) |
|
ctx->blkoutput |= AC3_OUTPUT_MONO; |
|
else if (avctx->channels == 2) { |
|
if (ctx->dsurmod == 0x02) |
|
ctx->blkoutput |= AC3_OUTPUT_DOLBY; |
|
else |
|
ctx->blkoutput |= AC3_OUTPUT_STEREO; |
|
} |
|
else { |
|
if (avctx->channels < (ctx->nfchans + ctx->lfeon)) |
|
av_log(avctx, AV_LOG_INFO, "ac3_decoder: AC3 Source Channels Are Less Then Specified %d: Output to %d Channels\n",avctx->channels, ctx->nfchans + ctx->lfeon); |
|
ctx->blkoutput |= AC3_OUTPUT_UNMODIFIED; |
|
if (ctx->lfeon) |
|
ctx->blkoutput |= AC3_OUTPUT_LFEON; |
|
avctx->channels = ctx->nfchans + ctx->lfeon; |
|
} |
|
|
|
//av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate); |
|
|
|
//Parse the Audio Blocks. |
|
for (i = 0; i < NB_BLOCKS; i++) { |
|
if (ac3_parse_audio_block(ctx)) { |
|
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); |
|
*data_size = 0; |
|
return ctx->frame_size; |
|
} |
|
start = (ctx->blkoutput & AC3_OUTPUT_LFEON) ? 0 : 1; |
|
for (k = 0; k < BLOCK_SIZE; k++) |
|
for (j = start; j <= avctx->channels; j++) |
|
*(out_samples++) = convert(int_ptr[j][k]); |
|
} |
|
*data_size = NB_BLOCKS * BLOCK_SIZE * avctx->channels * sizeof (int16_t); |
|
return ctx->frame_size; |
|
} |
|
|
|
/* Uninitialize ac3 decoder. |
|
*/ |
|
static int ac3_decode_end(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
ff_mdct_end(&ctx->imdct_512); |
|
ff_mdct_end(&ctx->imdct_256); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ac3_decoder = { |
|
.name = "ac3", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_AC3, |
|
.priv_data_size = sizeof (AC3DecodeContext), |
|
.init = ac3_decode_init, |
|
.close = ac3_decode_end, |
|
.decode = ac3_decode_frame, |
|
}; |
|
|
|
|