mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
7.8 KiB
243 lines
7.8 KiB
/* |
|
* audio resampling |
|
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* audio resampling |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#if defined(TEMPLATE_RESAMPLE_DBL) \ |
|
|| defined(TEMPLATE_RESAMPLE_DBL_SSE2) |
|
|
|
# define FILTER_SHIFT 0 |
|
# define DELEM double |
|
# define FELEM double |
|
# define FELEM2 double |
|
# define FELEML double |
|
# define OUT(d, v) d = v |
|
|
|
# if defined(TEMPLATE_RESAMPLE_DBL) |
|
# define RENAME(N) N ## _double |
|
# elif defined(TEMPLATE_RESAMPLE_DBL_SSE2) |
|
# define COMMON_CORE COMMON_CORE_DBL_SSE2 |
|
# define LINEAR_CORE LINEAR_CORE_DBL_SSE2 |
|
# define RENAME(N) N ## _double_sse2 |
|
# endif |
|
|
|
#elif defined(TEMPLATE_RESAMPLE_FLT) \ |
|
|| defined(TEMPLATE_RESAMPLE_FLT_SSE) |
|
|
|
# define FILTER_SHIFT 0 |
|
# define DELEM float |
|
# define FELEM float |
|
# define FELEM2 float |
|
# define FELEML float |
|
# define OUT(d, v) d = v |
|
|
|
# if defined(TEMPLATE_RESAMPLE_FLT) |
|
# define RENAME(N) N ## _float |
|
# elif defined(TEMPLATE_RESAMPLE_FLT_SSE) |
|
# define COMMON_CORE COMMON_CORE_FLT_SSE |
|
# define LINEAR_CORE LINEAR_CORE_FLT_SSE |
|
# define RENAME(N) N ## _float_sse |
|
# endif |
|
|
|
#elif defined(TEMPLATE_RESAMPLE_S32) |
|
# define RENAME(N) N ## _int32 |
|
# define FILTER_SHIFT 30 |
|
# define DELEM int32_t |
|
# define FELEM int32_t |
|
# define FELEM2 int64_t |
|
# define FELEML int64_t |
|
# define FELEM_MAX INT32_MAX |
|
# define FELEM_MIN INT32_MIN |
|
# define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v |
|
|
|
#elif defined(TEMPLATE_RESAMPLE_S16) \ |
|
|| defined(TEMPLATE_RESAMPLE_S16_MMX2) \ |
|
|| defined(TEMPLATE_RESAMPLE_S16_SSE2) |
|
|
|
# define FILTER_SHIFT 15 |
|
# define DELEM int16_t |
|
# define FELEM int16_t |
|
# define FELEM2 int32_t |
|
# define FELEML int64_t |
|
# define FELEM_MAX INT16_MAX |
|
# define FELEM_MIN INT16_MIN |
|
# define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v |
|
|
|
# if defined(TEMPLATE_RESAMPLE_S16) |
|
# define RENAME(N) N ## _int16 |
|
# elif defined(TEMPLATE_RESAMPLE_S16_MMX2) |
|
# define COMMON_CORE COMMON_CORE_INT16_MMX2 |
|
# define LINEAR_CORE LINEAR_CORE_INT16_MMX2 |
|
# define RENAME(N) N ## _int16_mmx2 |
|
# elif defined(TEMPLATE_RESAMPLE_S16_SSE2) |
|
# define COMMON_CORE COMMON_CORE_INT16_SSE2 |
|
# define LINEAR_CORE LINEAR_CORE_INT16_SSE2 |
|
# define RENAME(N) N ## _int16_sse2 |
|
# endif |
|
|
|
#endif |
|
|
|
int RENAME(swri_resample)(ResampleContext *c, DELEM *dst, const DELEM *src, int *consumed, int src_size, int dst_size, int update_ctx){ |
|
int dst_index, i; |
|
int index= c->index; |
|
int frac= c->frac; |
|
int dst_incr_frac= c->dst_incr % c->src_incr; |
|
int dst_incr= c->dst_incr / c->src_incr; |
|
int compensation_distance= c->compensation_distance; |
|
|
|
av_assert1(c->filter_shift == FILTER_SHIFT); |
|
av_assert1(c->felem_size == sizeof(FELEM)); |
|
|
|
if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){ |
|
int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index; |
|
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; |
|
int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr; |
|
|
|
dst_size= FFMIN(dst_size, new_size); |
|
|
|
for(dst_index=0; dst_index < dst_size; dst_index++){ |
|
dst[dst_index] = src[index2>>32]; |
|
index2 += incr; |
|
} |
|
index += dst_index * dst_incr; |
|
index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr; |
|
frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr; |
|
av_assert2(index >= 0); |
|
*consumed= index; |
|
index = 0; |
|
}else if(compensation_distance == 0 && !c->linear && index >= 0){ |
|
int sample_index = 0; |
|
for(dst_index=0; dst_index < dst_size; dst_index++){ |
|
FELEM *filter; |
|
sample_index += index >> c->phase_shift; |
|
index &= c->phase_mask; |
|
filter= ((FELEM*)c->filter_bank) + c->filter_alloc*index; |
|
|
|
if(sample_index + c->filter_length > src_size){ |
|
break; |
|
}else{ |
|
#ifdef COMMON_CORE |
|
COMMON_CORE |
|
#else |
|
FELEM2 val=0; |
|
for(i=0; i<c->filter_length; i++){ |
|
val += src[sample_index + i] * (FELEM2)filter[i]; |
|
} |
|
OUT(dst[dst_index], val); |
|
#endif |
|
} |
|
|
|
frac += dst_incr_frac; |
|
index += dst_incr; |
|
if(frac >= c->src_incr){ |
|
frac -= c->src_incr; |
|
index++; |
|
} |
|
} |
|
*consumed = sample_index; |
|
}else{ |
|
int sample_index = 0; |
|
for(dst_index=0; dst_index < dst_size; dst_index++){ |
|
FELEM *filter; |
|
FELEM2 val=0; |
|
|
|
sample_index += index >> c->phase_shift; |
|
index &= c->phase_mask; |
|
filter = ((FELEM*)c->filter_bank) + c->filter_alloc*index; |
|
|
|
if(sample_index + c->filter_length > src_size || -sample_index >= src_size){ |
|
break; |
|
}else if(sample_index < 0){ |
|
for(i=0; i<c->filter_length; i++) |
|
val += src[FFABS(sample_index + i)] * (FELEM2)filter[i]; |
|
OUT(dst[dst_index], val); |
|
}else if(c->linear){ |
|
FELEM2 v2=0; |
|
#ifdef LINEAR_CORE |
|
LINEAR_CORE |
|
#else |
|
for(i=0; i<c->filter_length; i++){ |
|
val += src[sample_index + i] * (FELEM2)filter[i]; |
|
v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_alloc]; |
|
} |
|
#endif |
|
val+=(v2-val)*(FELEML)frac / c->src_incr; |
|
OUT(dst[dst_index], val); |
|
}else{ |
|
#ifdef COMMON_CORE |
|
COMMON_CORE |
|
#else |
|
for(i=0; i<c->filter_length; i++){ |
|
val += src[sample_index + i] * (FELEM2)filter[i]; |
|
} |
|
OUT(dst[dst_index], val); |
|
#endif |
|
} |
|
|
|
frac += dst_incr_frac; |
|
index += dst_incr; |
|
if(frac >= c->src_incr){ |
|
frac -= c->src_incr; |
|
index++; |
|
} |
|
|
|
if(dst_index + 1 == compensation_distance){ |
|
compensation_distance= 0; |
|
dst_incr_frac= c->ideal_dst_incr % c->src_incr; |
|
dst_incr= c->ideal_dst_incr / c->src_incr; |
|
} |
|
} |
|
*consumed= FFMAX(sample_index, 0); |
|
index += FFMIN(sample_index, 0) << c->phase_shift; |
|
|
|
if(compensation_distance){ |
|
compensation_distance -= dst_index; |
|
av_assert1(compensation_distance > 0); |
|
} |
|
} |
|
|
|
if(update_ctx){ |
|
c->frac= frac; |
|
c->index= index; |
|
c->dst_incr= dst_incr_frac + c->src_incr*dst_incr; |
|
c->compensation_distance= compensation_distance; |
|
} |
|
|
|
return dst_index; |
|
} |
|
|
|
#undef COMMON_CORE |
|
#undef LINEAR_CORE |
|
#undef RENAME |
|
#undef FILTER_SHIFT |
|
#undef DELEM |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef FELEML |
|
#undef FELEM_MAX |
|
#undef FELEM_MIN |
|
#undef OUT
|
|
|