mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3253 lines
121 KiB
3253 lines
121 KiB
/* |
|
* HEVC video Decoder |
|
* |
|
* Copyright (C) 2012 - 2013 Guillaume Martres |
|
* Copyright (C) 2012 - 2013 Mickael Raulet |
|
* Copyright (C) 2012 - 2013 Gildas Cocherel |
|
* Copyright (C) 2012 - 2013 Wassim Hamidouche |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/atomic.h" |
|
#include "libavutil/attributes.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/md5.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/pixdesc.h" |
|
#include "libavutil/stereo3d.h" |
|
|
|
#include "bytestream.h" |
|
#include "cabac_functions.h" |
|
#include "dsputil.h" |
|
#include "golomb.h" |
|
#include "hevc.h" |
|
|
|
const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 }; |
|
|
|
/** |
|
* NOTE: Each function hls_foo correspond to the function foo in the |
|
* specification (HLS stands for High Level Syntax). |
|
*/ |
|
|
|
/** |
|
* Section 5.7 |
|
*/ |
|
|
|
/* free everything allocated by pic_arrays_init() */ |
|
static void pic_arrays_free(HEVCContext *s) |
|
{ |
|
av_freep(&s->sao); |
|
av_freep(&s->deblock); |
|
av_freep(&s->split_cu_flag); |
|
|
|
av_freep(&s->skip_flag); |
|
av_freep(&s->tab_ct_depth); |
|
|
|
av_freep(&s->tab_ipm); |
|
av_freep(&s->cbf_luma); |
|
av_freep(&s->is_pcm); |
|
|
|
av_freep(&s->qp_y_tab); |
|
av_freep(&s->tab_slice_address); |
|
av_freep(&s->filter_slice_edges); |
|
|
|
av_freep(&s->horizontal_bs); |
|
av_freep(&s->vertical_bs); |
|
|
|
av_freep(&s->sh.entry_point_offset); |
|
av_freep(&s->sh.size); |
|
av_freep(&s->sh.offset); |
|
|
|
av_buffer_pool_uninit(&s->tab_mvf_pool); |
|
av_buffer_pool_uninit(&s->rpl_tab_pool); |
|
} |
|
|
|
/* allocate arrays that depend on frame dimensions */ |
|
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps) |
|
{ |
|
int log2_min_cb_size = sps->log2_min_cb_size; |
|
int width = sps->width; |
|
int height = sps->height; |
|
int pic_size = width * height; |
|
int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * |
|
((height >> log2_min_cb_size) + 1); |
|
int ctb_count = sps->ctb_width * sps->ctb_height; |
|
int min_pu_size = sps->min_pu_width * sps->min_pu_height; |
|
|
|
s->bs_width = width >> 3; |
|
s->bs_height = height >> 3; |
|
|
|
s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao)); |
|
s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock)); |
|
s->split_cu_flag = av_malloc(pic_size); |
|
if (!s->sao || !s->deblock || !s->split_cu_flag) |
|
goto fail; |
|
|
|
s->skip_flag = av_malloc(pic_size_in_ctb); |
|
s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width); |
|
if (!s->skip_flag || !s->tab_ct_depth) |
|
goto fail; |
|
|
|
s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height); |
|
s->tab_ipm = av_mallocz(min_pu_size); |
|
s->is_pcm = av_malloc(min_pu_size); |
|
if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm) |
|
goto fail; |
|
|
|
s->filter_slice_edges = av_malloc(ctb_count); |
|
s->tab_slice_address = av_malloc(pic_size_in_ctb * |
|
sizeof(*s->tab_slice_address)); |
|
s->qp_y_tab = av_malloc(pic_size_in_ctb * |
|
sizeof(*s->qp_y_tab)); |
|
if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address) |
|
goto fail; |
|
|
|
s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1)); |
|
s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1)); |
|
if (!s->horizontal_bs || !s->vertical_bs) |
|
goto fail; |
|
|
|
s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField), |
|
av_buffer_allocz); |
|
s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab), |
|
av_buffer_allocz); |
|
if (!s->tab_mvf_pool || !s->rpl_tab_pool) |
|
goto fail; |
|
|
|
return 0; |
|
|
|
fail: |
|
pic_arrays_free(s); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static void pred_weight_table(HEVCContext *s, GetBitContext *gb) |
|
{ |
|
int i = 0; |
|
int j = 0; |
|
uint8_t luma_weight_l0_flag[16]; |
|
uint8_t chroma_weight_l0_flag[16]; |
|
uint8_t luma_weight_l1_flag[16]; |
|
uint8_t chroma_weight_l1_flag[16]; |
|
|
|
s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb); |
|
if (s->sps->chroma_format_idc != 0) { |
|
int delta = get_se_golomb(gb); |
|
s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7); |
|
} |
|
|
|
for (i = 0; i < s->sh.nb_refs[L0]; i++) { |
|
luma_weight_l0_flag[i] = get_bits1(gb); |
|
if (!luma_weight_l0_flag[i]) { |
|
s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom; |
|
s->sh.luma_offset_l0[i] = 0; |
|
} |
|
} |
|
if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for" |
|
for (i = 0; i < s->sh.nb_refs[L0]; i++) |
|
chroma_weight_l0_flag[i] = get_bits1(gb); |
|
} else { |
|
for (i = 0; i < s->sh.nb_refs[L0]; i++) |
|
chroma_weight_l0_flag[i] = 0; |
|
} |
|
for (i = 0; i < s->sh.nb_refs[L0]; i++) { |
|
if (luma_weight_l0_flag[i]) { |
|
int delta_luma_weight_l0 = get_se_golomb(gb); |
|
s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0; |
|
s->sh.luma_offset_l0[i] = get_se_golomb(gb); |
|
} |
|
if (chroma_weight_l0_flag[i]) { |
|
for (j = 0; j < 2; j++) { |
|
int delta_chroma_weight_l0 = get_se_golomb(gb); |
|
int delta_chroma_offset_l0 = get_se_golomb(gb); |
|
s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0; |
|
s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j]) |
|
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127); |
|
} |
|
} else { |
|
s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom; |
|
s->sh.chroma_offset_l0[i][0] = 0; |
|
s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom; |
|
s->sh.chroma_offset_l0[i][1] = 0; |
|
} |
|
} |
|
if (s->sh.slice_type == B_SLICE) { |
|
for (i = 0; i < s->sh.nb_refs[L1]; i++) { |
|
luma_weight_l1_flag[i] = get_bits1(gb); |
|
if (!luma_weight_l1_flag[i]) { |
|
s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom; |
|
s->sh.luma_offset_l1[i] = 0; |
|
} |
|
} |
|
if (s->sps->chroma_format_idc != 0) { |
|
for (i = 0; i < s->sh.nb_refs[L1]; i++) |
|
chroma_weight_l1_flag[i] = get_bits1(gb); |
|
} else { |
|
for (i = 0; i < s->sh.nb_refs[L1]; i++) |
|
chroma_weight_l1_flag[i] = 0; |
|
} |
|
for (i = 0; i < s->sh.nb_refs[L1]; i++) { |
|
if (luma_weight_l1_flag[i]) { |
|
int delta_luma_weight_l1 = get_se_golomb(gb); |
|
s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1; |
|
s->sh.luma_offset_l1[i] = get_se_golomb(gb); |
|
} |
|
if (chroma_weight_l1_flag[i]) { |
|
for (j = 0; j < 2; j++) { |
|
int delta_chroma_weight_l1 = get_se_golomb(gb); |
|
int delta_chroma_offset_l1 = get_se_golomb(gb); |
|
s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1; |
|
s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j]) |
|
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127); |
|
} |
|
} else { |
|
s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom; |
|
s->sh.chroma_offset_l1[i][0] = 0; |
|
s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom; |
|
s->sh.chroma_offset_l1[i][1] = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb) |
|
{ |
|
const HEVCSPS *sps = s->sps; |
|
int max_poc_lsb = 1 << sps->log2_max_poc_lsb; |
|
int prev_delta_msb = 0; |
|
unsigned int nb_sps = 0, nb_sh; |
|
int i; |
|
|
|
rps->nb_refs = 0; |
|
if (!sps->long_term_ref_pics_present_flag) |
|
return 0; |
|
|
|
if (sps->num_long_term_ref_pics_sps > 0) |
|
nb_sps = get_ue_golomb_long(gb); |
|
nb_sh = get_ue_golomb_long(gb); |
|
|
|
if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
rps->nb_refs = nb_sh + nb_sps; |
|
|
|
for (i = 0; i < rps->nb_refs; i++) { |
|
uint8_t delta_poc_msb_present; |
|
|
|
if (i < nb_sps) { |
|
uint8_t lt_idx_sps = 0; |
|
|
|
if (sps->num_long_term_ref_pics_sps > 1) |
|
lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); |
|
|
|
rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; |
|
rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps]; |
|
} else { |
|
rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); |
|
rps->used[i] = get_bits1(gb); |
|
} |
|
|
|
delta_poc_msb_present = get_bits1(gb); |
|
if (delta_poc_msb_present) { |
|
int delta = get_ue_golomb_long(gb); |
|
|
|
if (i && i != nb_sps) |
|
delta += prev_delta_msb; |
|
|
|
rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb; |
|
prev_delta_msb = delta; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int set_sps(HEVCContext *s, const HEVCSPS *sps) |
|
{ |
|
int ret; |
|
unsigned int num = 0, den = 0; |
|
|
|
pic_arrays_free(s); |
|
ret = pic_arrays_init(s, sps); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
s->avctx->coded_width = sps->width; |
|
s->avctx->coded_height = sps->height; |
|
s->avctx->width = sps->output_width; |
|
s->avctx->height = sps->output_height; |
|
s->avctx->pix_fmt = sps->pix_fmt; |
|
s->avctx->sample_aspect_ratio = sps->vui.sar; |
|
s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; |
|
|
|
if (sps->vui.video_signal_type_present_flag) |
|
s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG |
|
: AVCOL_RANGE_MPEG; |
|
else |
|
s->avctx->color_range = AVCOL_RANGE_MPEG; |
|
|
|
if (sps->vui.colour_description_present_flag) { |
|
s->avctx->color_primaries = sps->vui.colour_primaries; |
|
s->avctx->color_trc = sps->vui.transfer_characteristic; |
|
s->avctx->colorspace = sps->vui.matrix_coeffs; |
|
} else { |
|
s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; |
|
s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED; |
|
s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED; |
|
} |
|
|
|
ff_hevc_pred_init(&s->hpc, sps->bit_depth); |
|
ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); |
|
ff_videodsp_init (&s->vdsp, sps->bit_depth); |
|
|
|
if (sps->sao_enabled) { |
|
av_frame_unref(s->tmp_frame); |
|
ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF); |
|
if (ret < 0) |
|
goto fail; |
|
s->frame = s->tmp_frame; |
|
} |
|
|
|
s->sps = sps; |
|
s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data; |
|
|
|
if (s->vps->vps_timing_info_present_flag) { |
|
num = s->vps->vps_num_units_in_tick; |
|
den = s->vps->vps_time_scale; |
|
} else if (sps->vui.vui_timing_info_present_flag) { |
|
num = sps->vui.vui_num_units_in_tick; |
|
den = sps->vui.vui_time_scale; |
|
} |
|
|
|
if (num != 0 && den != 0) |
|
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, |
|
num, den, 1 << 30); |
|
|
|
return 0; |
|
|
|
fail: |
|
pic_arrays_free(s); |
|
s->sps = NULL; |
|
return ret; |
|
} |
|
|
|
static int is_sps_exist(HEVCContext *s, const HEVCSPS* last_sps) |
|
{ |
|
int i; |
|
|
|
for( i = 0; i < MAX_SPS_COUNT; i++) |
|
if(s->sps_list[i]) |
|
if (last_sps == (HEVCSPS*)s->sps_list[i]->data) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static int hls_slice_header(HEVCContext *s) |
|
{ |
|
GetBitContext *gb = &s->HEVClc->gb; |
|
SliceHeader *sh = &s->sh; |
|
int i, j, ret; |
|
|
|
// Coded parameters |
|
sh->first_slice_in_pic_flag = get_bits1(gb); |
|
if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) { |
|
s->seq_decode = (s->seq_decode + 1) & 0xff; |
|
s->max_ra = INT_MAX; |
|
if (IS_IDR(s)) |
|
ff_hevc_clear_refs(s); |
|
} |
|
sh->no_output_of_prior_pics_flag = 0; |
|
if (s->nal_unit_type >= 16 && s->nal_unit_type <= 23) |
|
sh->no_output_of_prior_pics_flag = get_bits1(gb); |
|
if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1) |
|
sh->no_output_of_prior_pics_flag = 1; |
|
|
|
sh->pps_id = get_ue_golomb_long(gb); |
|
if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (!sh->first_slice_in_pic_flag && |
|
s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) { |
|
av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data; |
|
|
|
if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) { |
|
const HEVCSPS* last_sps = s->sps; |
|
s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data; |
|
if (last_sps) { |
|
if (is_sps_exist(s, last_sps)) { |
|
if (s->sps->width != last_sps->width || s->sps->height != last_sps->height || |
|
s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering != last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering) |
|
sh->no_output_of_prior_pics_flag = 0; |
|
} else |
|
sh->no_output_of_prior_pics_flag = 0; |
|
} |
|
ff_hevc_clear_refs(s); |
|
ret = set_sps(s, s->sps); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->seq_decode = (s->seq_decode + 1) & 0xff; |
|
s->max_ra = INT_MAX; |
|
} |
|
|
|
s->avctx->profile = s->sps->ptl.general_ptl.profile_idc; |
|
s->avctx->level = s->sps->ptl.general_ptl.level_idc; |
|
|
|
sh->dependent_slice_segment_flag = 0; |
|
if (!sh->first_slice_in_pic_flag) { |
|
int slice_address_length; |
|
|
|
if (s->pps->dependent_slice_segments_enabled_flag) |
|
sh->dependent_slice_segment_flag = get_bits1(gb); |
|
|
|
slice_address_length = av_ceil_log2(s->sps->ctb_width * |
|
s->sps->ctb_height); |
|
sh->slice_segment_addr = get_bits(gb, slice_address_length); |
|
if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid slice segment address: %u.\n", |
|
sh->slice_segment_addr); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!sh->dependent_slice_segment_flag) { |
|
sh->slice_addr = sh->slice_segment_addr; |
|
s->slice_idx++; |
|
} |
|
} else { |
|
sh->slice_segment_addr = sh->slice_addr = 0; |
|
s->slice_idx = 0; |
|
s->slice_initialized = 0; |
|
} |
|
|
|
if (!sh->dependent_slice_segment_flag) { |
|
s->slice_initialized = 0; |
|
|
|
for (i = 0; i < s->pps->num_extra_slice_header_bits; i++) |
|
skip_bits(gb, 1); // slice_reserved_undetermined_flag[] |
|
|
|
sh->slice_type = get_ue_golomb_long(gb); |
|
if (!(sh->slice_type == I_SLICE || |
|
sh->slice_type == P_SLICE || |
|
sh->slice_type == B_SLICE)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", |
|
sh->slice_type); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (IS_IRAP(s) && sh->slice_type != I_SLICE) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->pic_output_flag = 1; |
|
if (s->pps->output_flag_present_flag) |
|
sh->pic_output_flag = get_bits1(gb); |
|
|
|
if (s->sps->separate_colour_plane_flag) |
|
sh->colour_plane_id = get_bits(gb, 2); |
|
|
|
if (!IS_IDR(s)) { |
|
int short_term_ref_pic_set_sps_flag, poc; |
|
|
|
sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb); |
|
poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb); |
|
if (!sh->first_slice_in_pic_flag && poc != s->poc) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Ignoring POC change between slices: %d -> %d\n", s->poc, poc); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
poc = s->poc; |
|
} |
|
s->poc = poc; |
|
|
|
short_term_ref_pic_set_sps_flag = get_bits1(gb); |
|
if (!short_term_ref_pic_set_sps_flag) { |
|
ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1); |
|
if (ret < 0) |
|
return ret; |
|
|
|
sh->short_term_rps = &sh->slice_rps; |
|
} else { |
|
int numbits, rps_idx; |
|
|
|
if (!s->sps->nb_st_rps) { |
|
av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
numbits = av_ceil_log2(s->sps->nb_st_rps); |
|
rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; |
|
sh->short_term_rps = &s->sps->st_rps[rps_idx]; |
|
} |
|
|
|
ret = decode_lt_rps(s, &sh->long_term_rps, gb); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->sps->sps_temporal_mvp_enabled_flag) |
|
sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); |
|
else |
|
sh->slice_temporal_mvp_enabled_flag = 0; |
|
} else { |
|
s->sh.short_term_rps = NULL; |
|
s->poc = 0; |
|
} |
|
|
|
/* 8.3.1 */ |
|
if (s->temporal_id == 0 && |
|
s->nal_unit_type != NAL_TRAIL_N && |
|
s->nal_unit_type != NAL_TSA_N && |
|
s->nal_unit_type != NAL_STSA_N && |
|
s->nal_unit_type != NAL_RADL_N && |
|
s->nal_unit_type != NAL_RADL_R && |
|
s->nal_unit_type != NAL_RASL_N && |
|
s->nal_unit_type != NAL_RASL_R) |
|
s->pocTid0 = s->poc; |
|
|
|
if (s->sps->sao_enabled) { |
|
sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); |
|
sh->slice_sample_adaptive_offset_flag[1] = |
|
sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); |
|
} else { |
|
sh->slice_sample_adaptive_offset_flag[0] = 0; |
|
sh->slice_sample_adaptive_offset_flag[1] = 0; |
|
sh->slice_sample_adaptive_offset_flag[2] = 0; |
|
} |
|
|
|
sh->nb_refs[L0] = sh->nb_refs[L1] = 0; |
|
if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) { |
|
int nb_refs; |
|
|
|
sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active; |
|
if (sh->slice_type == B_SLICE) |
|
sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active; |
|
|
|
if (get_bits1(gb)) { // num_ref_idx_active_override_flag |
|
sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1; |
|
if (sh->slice_type == B_SLICE) |
|
sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1; |
|
} |
|
if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", |
|
sh->nb_refs[L0], sh->nb_refs[L1]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->rpl_modification_flag[0] = 0; |
|
sh->rpl_modification_flag[1] = 0; |
|
nb_refs = ff_hevc_frame_nb_refs(s); |
|
if (!nb_refs) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->pps->lists_modification_present_flag && nb_refs > 1) { |
|
sh->rpl_modification_flag[0] = get_bits1(gb); |
|
if (sh->rpl_modification_flag[0]) { |
|
for (i = 0; i < sh->nb_refs[L0]; i++) |
|
sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
|
} |
|
|
|
if (sh->slice_type == B_SLICE) { |
|
sh->rpl_modification_flag[1] = get_bits1(gb); |
|
if (sh->rpl_modification_flag[1] == 1) |
|
for (i = 0; i < sh->nb_refs[L1]; i++) |
|
sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
|
} |
|
} |
|
|
|
if (sh->slice_type == B_SLICE) |
|
sh->mvd_l1_zero_flag = get_bits1(gb); |
|
|
|
if (s->pps->cabac_init_present_flag) |
|
sh->cabac_init_flag = get_bits1(gb); |
|
else |
|
sh->cabac_init_flag = 0; |
|
|
|
sh->collocated_ref_idx = 0; |
|
if (sh->slice_temporal_mvp_enabled_flag) { |
|
sh->collocated_list = L0; |
|
if (sh->slice_type == B_SLICE) |
|
sh->collocated_list = !get_bits1(gb); |
|
|
|
if (sh->nb_refs[sh->collocated_list] > 1) { |
|
sh->collocated_ref_idx = get_ue_golomb_long(gb); |
|
if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid collocated_ref_idx: %d.\n", |
|
sh->collocated_ref_idx); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) || |
|
(s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) { |
|
pred_weight_table(s, gb); |
|
} |
|
|
|
sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); |
|
if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid number of merging MVP candidates: %d.\n", |
|
sh->max_num_merge_cand); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
sh->slice_qp_delta = get_se_golomb(gb); |
|
|
|
if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) { |
|
sh->slice_cb_qp_offset = get_se_golomb(gb); |
|
sh->slice_cr_qp_offset = get_se_golomb(gb); |
|
} else { |
|
sh->slice_cb_qp_offset = 0; |
|
sh->slice_cr_qp_offset = 0; |
|
} |
|
|
|
if (s->pps->deblocking_filter_control_present_flag) { |
|
int deblocking_filter_override_flag = 0; |
|
|
|
if (s->pps->deblocking_filter_override_enabled_flag) |
|
deblocking_filter_override_flag = get_bits1(gb); |
|
|
|
if (deblocking_filter_override_flag) { |
|
sh->disable_deblocking_filter_flag = get_bits1(gb); |
|
if (!sh->disable_deblocking_filter_flag) { |
|
sh->beta_offset = get_se_golomb(gb) * 2; |
|
sh->tc_offset = get_se_golomb(gb) * 2; |
|
} |
|
} else { |
|
sh->disable_deblocking_filter_flag = s->pps->disable_dbf; |
|
sh->beta_offset = s->pps->beta_offset; |
|
sh->tc_offset = s->pps->tc_offset; |
|
} |
|
} else { |
|
sh->disable_deblocking_filter_flag = 0; |
|
sh->beta_offset = 0; |
|
sh->tc_offset = 0; |
|
} |
|
|
|
if (s->pps->seq_loop_filter_across_slices_enabled_flag && |
|
(sh->slice_sample_adaptive_offset_flag[0] || |
|
sh->slice_sample_adaptive_offset_flag[1] || |
|
!sh->disable_deblocking_filter_flag)) { |
|
sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); |
|
} else { |
|
sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag; |
|
} |
|
} else if (!s->slice_initialized) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->num_entry_point_offsets = 0; |
|
if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) { |
|
sh->num_entry_point_offsets = get_ue_golomb_long(gb); |
|
if (sh->num_entry_point_offsets > 0) { |
|
int offset_len = get_ue_golomb_long(gb) + 1; |
|
int segments = offset_len >> 4; |
|
int rest = (offset_len & 15); |
|
av_freep(&sh->entry_point_offset); |
|
av_freep(&sh->offset); |
|
av_freep(&sh->size); |
|
sh->entry_point_offset = av_malloc(sh->num_entry_point_offsets * sizeof(int)); |
|
sh->offset = av_malloc(sh->num_entry_point_offsets * sizeof(int)); |
|
sh->size = av_malloc(sh->num_entry_point_offsets * sizeof(int)); |
|
if (!sh->entry_point_offset || !sh->offset || !sh->size) { |
|
sh->num_entry_point_offsets = 0; |
|
av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
for (i = 0; i < sh->num_entry_point_offsets; i++) { |
|
int val = 0; |
|
for (j = 0; j < segments; j++) { |
|
val <<= 16; |
|
val += get_bits(gb, 16); |
|
} |
|
if (rest) { |
|
val <<= rest; |
|
val += get_bits(gb, rest); |
|
} |
|
sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size |
|
} |
|
if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) { |
|
s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here |
|
s->threads_number = 1; |
|
} else |
|
s->enable_parallel_tiles = 0; |
|
} else |
|
s->enable_parallel_tiles = 0; |
|
} |
|
|
|
if (s->pps->slice_header_extension_present_flag) { |
|
unsigned int length = get_ue_golomb_long(gb); |
|
for (i = 0; i < length; i++) |
|
skip_bits(gb, 8); // slice_header_extension_data_byte |
|
} |
|
|
|
// Inferred parameters |
|
sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta; |
|
if (sh->slice_qp > 51 || |
|
sh->slice_qp < -s->sps->qp_bd_offset) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"The slice_qp %d is outside the valid range " |
|
"[%d, 51].\n", |
|
sh->slice_qp, |
|
-s->sps->qp_bd_offset); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->slice_ctb_addr_rs = sh->slice_segment_addr; |
|
|
|
if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag; |
|
|
|
if (!s->pps->cu_qp_delta_enabled_flag) |
|
s->HEVClc->qp_y = s->sh.slice_qp; |
|
|
|
s->slice_initialized = 1; |
|
|
|
return 0; |
|
} |
|
|
|
#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)]) |
|
|
|
#define SET_SAO(elem, value) \ |
|
do { \ |
|
if (!sao_merge_up_flag && !sao_merge_left_flag) \ |
|
sao->elem = value; \ |
|
else if (sao_merge_left_flag) \ |
|
sao->elem = CTB(s->sao, rx-1, ry).elem; \ |
|
else if (sao_merge_up_flag) \ |
|
sao->elem = CTB(s->sao, rx, ry-1).elem; \ |
|
else \ |
|
sao->elem = 0; \ |
|
} while (0) |
|
|
|
static void hls_sao_param(HEVCContext *s, int rx, int ry) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int sao_merge_left_flag = 0; |
|
int sao_merge_up_flag = 0; |
|
int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10); |
|
SAOParams *sao = &CTB(s->sao, rx, ry); |
|
int c_idx, i; |
|
|
|
if (s->sh.slice_sample_adaptive_offset_flag[0] || |
|
s->sh.slice_sample_adaptive_offset_flag[1]) { |
|
if (rx > 0) { |
|
if (lc->ctb_left_flag) |
|
sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s); |
|
} |
|
if (ry > 0 && !sao_merge_left_flag) { |
|
if (lc->ctb_up_flag) |
|
sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s); |
|
} |
|
} |
|
|
|
for (c_idx = 0; c_idx < 3; c_idx++) { |
|
if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { |
|
sao->type_idx[c_idx] = SAO_NOT_APPLIED; |
|
continue; |
|
} |
|
|
|
if (c_idx == 2) { |
|
sao->type_idx[2] = sao->type_idx[1]; |
|
sao->eo_class[2] = sao->eo_class[1]; |
|
} else { |
|
SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s)); |
|
} |
|
|
|
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) |
|
continue; |
|
|
|
for (i = 0; i < 4; i++) |
|
SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s)); |
|
|
|
if (sao->type_idx[c_idx] == SAO_BAND) { |
|
for (i = 0; i < 4; i++) { |
|
if (sao->offset_abs[c_idx][i]) { |
|
SET_SAO(offset_sign[c_idx][i], |
|
ff_hevc_sao_offset_sign_decode(s)); |
|
} else { |
|
sao->offset_sign[c_idx][i] = 0; |
|
} |
|
} |
|
SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s)); |
|
} else if (c_idx != 2) { |
|
SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s)); |
|
} |
|
|
|
// Inferred parameters |
|
sao->offset_val[c_idx][0] = 0; |
|
for (i = 0; i < 4; i++) { |
|
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift; |
|
if (sao->type_idx[c_idx] == SAO_EDGE) { |
|
if (i > 1) |
|
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
|
} else if (sao->offset_sign[c_idx][i]) { |
|
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#undef SET_SAO |
|
#undef CTB |
|
|
|
static int hls_transform_unit(HEVCContext *s, int x0, int y0, |
|
int xBase, int yBase, int cb_xBase, int cb_yBase, |
|
int log2_cb_size, int log2_trafo_size, |
|
int trafo_depth, int blk_idx) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
int trafo_size = 1 << log2_trafo_size; |
|
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); |
|
|
|
s->hpc.intra_pred(s, x0, y0, log2_trafo_size, 0); |
|
if (log2_trafo_size > 2) { |
|
trafo_size = trafo_size << (s->sps->hshift[1] - 1); |
|
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); |
|
s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 1); |
|
s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 2); |
|
} else if (blk_idx == 3) { |
|
trafo_size = trafo_size << s->sps->hshift[1]; |
|
ff_hevc_set_neighbour_available(s, xBase, yBase, |
|
trafo_size, trafo_size); |
|
s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 1); |
|
s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 2); |
|
} |
|
} |
|
|
|
if (lc->tt.cbf_luma || |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) || |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) { |
|
int scan_idx = SCAN_DIAG; |
|
int scan_idx_c = SCAN_DIAG; |
|
|
|
if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { |
|
lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s); |
|
if (lc->tu.cu_qp_delta != 0) |
|
if (ff_hevc_cu_qp_delta_sign_flag(s) == 1) |
|
lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; |
|
lc->tu.is_cu_qp_delta_coded = 1; |
|
|
|
if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) || |
|
lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"The cu_qp_delta %d is outside the valid range " |
|
"[%d, %d].\n", |
|
lc->tu.cu_qp_delta, |
|
-(26 + s->sps->qp_bd_offset / 2), |
|
(25 + s->sps->qp_bd_offset / 2)); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size); |
|
} |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { |
|
if (lc->tu.cur_intra_pred_mode >= 6 && |
|
lc->tu.cur_intra_pred_mode <= 14) { |
|
scan_idx = SCAN_VERT; |
|
} else if (lc->tu.cur_intra_pred_mode >= 22 && |
|
lc->tu.cur_intra_pred_mode <= 30) { |
|
scan_idx = SCAN_HORIZ; |
|
} |
|
|
|
if (lc->pu.intra_pred_mode_c >= 6 && |
|
lc->pu.intra_pred_mode_c <= 14) { |
|
scan_idx_c = SCAN_VERT; |
|
} else if (lc->pu.intra_pred_mode_c >= 22 && |
|
lc->pu.intra_pred_mode_c <= 30) { |
|
scan_idx_c = SCAN_HORIZ; |
|
} |
|
} |
|
|
|
if (lc->tt.cbf_luma) |
|
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0); |
|
if (log2_trafo_size > 2) { |
|
if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0)) |
|
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1); |
|
if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) |
|
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2); |
|
} else if (blk_idx == 3) { |
|
if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase)) |
|
ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1); |
|
if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase)) |
|
ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size) |
|
{ |
|
int cb_size = 1 << log2_cb_size; |
|
int log2_min_pu_size = s->sps->log2_min_pu_size; |
|
|
|
int min_pu_width = s->sps->min_pu_width; |
|
int x_end = FFMIN(x0 + cb_size, s->sps->width); |
|
int y_end = FFMIN(y0 + cb_size, s->sps->height); |
|
int i, j; |
|
|
|
for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) |
|
for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) |
|
s->is_pcm[i + j * min_pu_width] = 2; |
|
} |
|
|
|
static int hls_transform_tree(HEVCContext *s, int x0, int y0, |
|
int xBase, int yBase, int cb_xBase, int cb_yBase, |
|
int log2_cb_size, int log2_trafo_size, |
|
int trafo_depth, int blk_idx) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
uint8_t split_transform_flag; |
|
int ret; |
|
|
|
if (trafo_depth > 0 && log2_trafo_size == 2) { |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase); |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase); |
|
} else { |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0; |
|
} |
|
|
|
if (lc->cu.intra_split_flag) { |
|
if (trafo_depth == 1) |
|
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; |
|
} else { |
|
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0]; |
|
} |
|
|
|
lc->tt.cbf_luma = 1; |
|
|
|
lc->tt.inter_split_flag = s->sps->max_transform_hierarchy_depth_inter == 0 && |
|
lc->cu.pred_mode == MODE_INTER && |
|
lc->cu.part_mode != PART_2Nx2N && |
|
trafo_depth == 0; |
|
|
|
if (log2_trafo_size <= s->sps->log2_max_trafo_size && |
|
log2_trafo_size > s->sps->log2_min_tb_size && |
|
trafo_depth < lc->cu.max_trafo_depth && |
|
!(lc->cu.intra_split_flag && trafo_depth == 0)) { |
|
split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size); |
|
} else { |
|
split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size || |
|
(lc->cu.intra_split_flag && trafo_depth == 0) || |
|
lc->tt.inter_split_flag; |
|
} |
|
|
|
if (log2_trafo_size > 2) { |
|
if (trafo_depth == 0 || |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) { |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) = |
|
ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
|
} |
|
|
|
if (trafo_depth == 0 || |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) { |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = |
|
ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
|
} |
|
} |
|
|
|
if (split_transform_flag) { |
|
int x1 = x0 + ((1 << log2_trafo_size) >> 1); |
|
int y1 = y0 + ((1 << log2_trafo_size) >> 1); |
|
|
|
ret = hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size - 1, |
|
trafo_depth + 1, 0); |
|
if (ret < 0) |
|
return ret; |
|
ret = hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size - 1, |
|
trafo_depth + 1, 1); |
|
if (ret < 0) |
|
return ret; |
|
ret = hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size - 1, |
|
trafo_depth + 1, 2); |
|
if (ret < 0) |
|
return ret; |
|
ret = hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size - 1, |
|
trafo_depth + 1, 3); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
int min_tu_size = 1 << s->sps->log2_min_tb_size; |
|
int log2_min_tu_size = s->sps->log2_min_tb_size; |
|
int min_tu_width = s->sps->min_tb_width; |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || |
|
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) || |
|
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) { |
|
lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth); |
|
} |
|
|
|
ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size, trafo_depth, |
|
blk_idx); |
|
if (ret < 0) |
|
return ret; |
|
// TODO: store cbf_luma somewhere else |
|
if (lc->tt.cbf_luma) { |
|
int i, j; |
|
for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) |
|
for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { |
|
int x_tu = (x0 + j) >> log2_min_tu_size; |
|
int y_tu = (y0 + i) >> log2_min_tu_size; |
|
s->cbf_luma[y_tu * min_tu_width + x_tu] = 1; |
|
} |
|
} |
|
if (!s->sh.disable_deblocking_filter_flag) { |
|
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size); |
|
if (s->pps->transquant_bypass_enable_flag && |
|
lc->cu.cu_transquant_bypass_flag) |
|
set_deblocking_bypass(s, x0, y0, log2_trafo_size); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size) |
|
{ |
|
//TODO: non-4:2:0 support |
|
GetBitContext gb; |
|
int cb_size = 1 << log2_cb_size; |
|
int stride0 = s->frame->linesize[0]; |
|
uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)]; |
|
int stride1 = s->frame->linesize[1]; |
|
uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)]; |
|
int stride2 = s->frame->linesize[2]; |
|
uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)]; |
|
|
|
int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma; |
|
const uint8_t *pcm = skip_bytes(&s->HEVClc->cc, (length + 7) >> 3); |
|
int ret; |
|
|
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
|
|
|
ret = init_get_bits(&gb, pcm, length); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth); |
|
s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma); |
|
s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma); |
|
return 0; |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.1 Luma sample unidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref reference picture buffer at origin (0, 0) |
|
* @param mv motion vector (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param luma_weight weighting factor applied to the luma prediction |
|
* @param luma_offset additive offset applied to the luma prediction value |
|
*/ |
|
|
|
static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, |
|
AVFrame *ref, const Mv *mv, int x_off, int y_off, |
|
int block_w, int block_h, int luma_weight, int luma_offset) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
uint8_t *src = ref->data[0]; |
|
ptrdiff_t srcstride = ref->linesize[0]; |
|
int pic_width = s->sps->width; |
|
int pic_height = s->sps->height; |
|
int mx = mv->x & 3; |
|
int my = mv->y & 3; |
|
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || |
|
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); |
|
int idx = ff_hevc_pel_weight[block_w]; |
|
|
|
x_off += mv->x >> 2; |
|
y_off += mv->y >> 2; |
|
src += y_off * srcstride + (x_off << s->sps->pixel_shift); |
|
|
|
if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER || |
|
x_off >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, |
|
edge_emu_stride, srcstride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src = lc->edge_emu_buffer + buf_offset; |
|
srcstride = edge_emu_stride; |
|
} |
|
|
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride, |
|
block_h, mx, my, block_w); |
|
else |
|
s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride, |
|
block_h, s->sh.luma_log2_weight_denom, |
|
luma_weight, luma_offset, mx, my, block_w); |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.1 Luma sample bidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref0 reference picture0 buffer at origin (0, 0) |
|
* @param mv0 motion vector0 (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param ref1 reference picture1 buffer at origin (0, 0) |
|
* @param mv1 motion vector1 (relative to block position) to get pixel data from |
|
* @param current_mv current motion vector structure |
|
*/ |
|
static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, |
|
AVFrame *ref0, const Mv *mv0, int x_off, int y_off, |
|
int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]); |
|
ptrdiff_t src0stride = ref0->linesize[0]; |
|
ptrdiff_t src1stride = ref1->linesize[0]; |
|
int pic_width = s->sps->width; |
|
int pic_height = s->sps->height; |
|
int mx0 = mv0->x & 3; |
|
int my0 = mv0->y & 3; |
|
int mx1 = mv1->x & 3; |
|
int my1 = mv1->y & 3; |
|
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || |
|
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); |
|
int x_off0 = x_off + (mv0->x >> 2); |
|
int y_off0 = y_off + (mv0->y >> 2); |
|
int x_off1 = x_off + (mv1->x >> 2); |
|
int y_off1 = y_off + (mv1->y >> 2); |
|
int idx = ff_hevc_pel_weight[block_w]; |
|
|
|
uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (x_off0 << s->sps->pixel_shift); |
|
uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (x_off1 << s->sps->pixel_shift); |
|
|
|
if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER || |
|
x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset, |
|
edge_emu_stride, src0stride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src0 = lc->edge_emu_buffer + buf_offset; |
|
src0stride = edge_emu_stride; |
|
} |
|
|
|
if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER || |
|
x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset, |
|
edge_emu_stride, src1stride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src1 = lc->edge_emu_buffer2 + buf_offset; |
|
src1stride = edge_emu_stride; |
|
} |
|
|
|
s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](tmp, MAX_PB_SIZE, src0, src0stride, |
|
block_h, mx0, my0, block_w); |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE, |
|
block_h, mx1, my1, block_w); |
|
else |
|
s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE, |
|
block_h, s->sh.luma_log2_weight_denom, |
|
s->sh.luma_weight_l0[current_mv->ref_idx[0]], |
|
s->sh.luma_weight_l1[current_mv->ref_idx[1]], |
|
s->sh.luma_offset_l0[current_mv->ref_idx[0]], |
|
s->sh.luma_offset_l1[current_mv->ref_idx[1]], |
|
mx1, my1, block_w); |
|
|
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.2 Chroma sample uniprediction interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst1 target buffer for block data at block position (U plane) |
|
* @param dst2 target buffer for block data at block position (V plane) |
|
* @param dststride stride of the dst1 and dst2 buffers |
|
* @param ref reference picture buffer at origin (0, 0) |
|
* @param mv motion vector (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param chroma_weight weighting factor applied to the chroma prediction |
|
* @param chroma_offset additive offset applied to the chroma prediction value |
|
*/ |
|
|
|
static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0, |
|
ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist, |
|
int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int pic_width = s->sps->width >> s->sps->hshift[1]; |
|
int pic_height = s->sps->height >> s->sps->vshift[1]; |
|
const Mv *mv = ¤t_mv->mv[reflist]; |
|
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || |
|
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); |
|
int idx = ff_hevc_pel_weight[block_w]; |
|
int hshift = s->sps->hshift[1]; |
|
int vshift = s->sps->vshift[1]; |
|
intptr_t mx = mv->x & ((1 << (2 + hshift)) - 1); |
|
intptr_t my = mv->y & ((1 << (2 + vshift)) - 1); |
|
intptr_t _mx = mx << (1 - hshift); |
|
intptr_t _my = my << (1 - vshift); |
|
|
|
x_off += mv->x >> (2 + hshift); |
|
y_off += mv->y >> (2 + vshift); |
|
src0 += y_off * srcstride + (x_off << s->sps->pixel_shift); |
|
|
|
if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || |
|
x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift)); |
|
int buf_offset0 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << s->sps->pixel_shift)); |
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0, |
|
edge_emu_stride, srcstride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off - EPEL_EXTRA_BEFORE, |
|
y_off - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src0 = lc->edge_emu_buffer + buf_offset0; |
|
srcstride = edge_emu_stride; |
|
} |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
|
block_h, _mx, _my, block_w); |
|
else |
|
s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
|
block_h, s->sh.chroma_log2_weight_denom, |
|
chroma_weight, chroma_offset, _mx, _my, block_w); |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.2 Chroma sample bidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref0 reference picture0 buffer at origin (0, 0) |
|
* @param mv0 motion vector0 (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param ref1 reference picture1 buffer at origin (0, 0) |
|
* @param mv1 motion vector1 (relative to block position) to get pixel data from |
|
* @param current_mv current motion vector structure |
|
* @param cidx chroma component(cb, cr) |
|
*/ |
|
static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1, |
|
int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx) |
|
{ |
|
DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]); |
|
int tmpstride = MAX_PB_SIZE; |
|
HEVCLocalContext *lc = s->HEVClc; |
|
uint8_t *src1 = ref0->data[cidx+1]; |
|
uint8_t *src2 = ref1->data[cidx+1]; |
|
ptrdiff_t src1stride = ref0->linesize[cidx+1]; |
|
ptrdiff_t src2stride = ref1->linesize[cidx+1]; |
|
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) || |
|
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag); |
|
int pic_width = s->sps->width >> s->sps->hshift[1]; |
|
int pic_height = s->sps->height >> s->sps->vshift[1]; |
|
Mv *mv0 = ¤t_mv->mv[0]; |
|
Mv *mv1 = ¤t_mv->mv[1]; |
|
int hshift = s->sps->hshift[1]; |
|
int vshift = s->sps->vshift[1]; |
|
|
|
intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1); |
|
intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1); |
|
intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1); |
|
intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1); |
|
intptr_t _mx0 = mx0 << (1 - hshift); |
|
intptr_t _my0 = my0 << (1 - vshift); |
|
intptr_t _mx1 = mx1 << (1 - hshift); |
|
intptr_t _my1 = my1 << (1 - vshift); |
|
|
|
int x_off0 = x_off + (mv0->x >> (2 + hshift)); |
|
int y_off0 = y_off + (mv0->y >> (2 + vshift)); |
|
int x_off1 = x_off + (mv1->x >> (2 + hshift)); |
|
int y_off1 = y_off + (mv1->y >> (2 + vshift)); |
|
int idx = ff_hevc_pel_weight[block_w]; |
|
src1 += y_off0 * src1stride + (x_off0 << s->sps->pixel_shift); |
|
src2 += y_off1 * src2stride + (x_off1 << s->sps->pixel_shift); |
|
|
|
if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER || |
|
x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift)); |
|
int buf_offset1 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << s->sps->pixel_shift)); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, |
|
edge_emu_stride, src1stride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off0 - EPEL_EXTRA_BEFORE, |
|
y_off0 - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src1 = lc->edge_emu_buffer + buf_offset1; |
|
src1stride = edge_emu_stride; |
|
} |
|
|
|
if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER || |
|
x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift; |
|
int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift)); |
|
int buf_offset1 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << s->sps->pixel_shift)); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1, |
|
edge_emu_stride, src2stride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off1 - EPEL_EXTRA_BEFORE, |
|
y_off1 - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src2 = lc->edge_emu_buffer2 + buf_offset1; |
|
src2stride = edge_emu_stride; |
|
} |
|
|
|
s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](tmp, tmpstride, src1, src1stride, |
|
block_h, _mx0, _my0, block_w); |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], |
|
src2, src2stride, tmp, tmpstride, |
|
block_h, _mx1, _my1, block_w); |
|
else |
|
s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], |
|
src2, src2stride, tmp, tmpstride, |
|
block_h, |
|
s->sh.chroma_log2_weight_denom, |
|
s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx], |
|
s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx], |
|
s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx], |
|
s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx], |
|
_mx1, _my1, block_w); |
|
} |
|
|
|
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, |
|
const Mv *mv, int y0, int height) |
|
{ |
|
int y = (mv->y >> 2) + y0 + height + 9; |
|
|
|
if (s->threads_type == FF_THREAD_FRAME ) |
|
ff_thread_await_progress(&ref->tf, y, 0); |
|
} |
|
|
|
static void hls_prediction_unit(HEVCContext *s, int x0, int y0, |
|
int nPbW, int nPbH, |
|
int log2_cb_size, int partIdx) |
|
{ |
|
#define POS(c_idx, x, y) \ |
|
&s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \ |
|
(((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)] |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int merge_idx = 0; |
|
struct MvField current_mv = {{{ 0 }}}; |
|
|
|
int min_pu_width = s->sps->min_pu_width; |
|
|
|
MvField *tab_mvf = s->ref->tab_mvf; |
|
RefPicList *refPicList = s->ref->refPicList; |
|
HEVCFrame *ref0, *ref1; |
|
uint8_t *dst0 = POS(0, x0, y0); |
|
uint8_t *dst1 = POS(1, x0, y0); |
|
uint8_t *dst2 = POS(2, x0, y0); |
|
int log2_min_cb_size = s->sps->log2_min_cb_size; |
|
int min_cb_width = s->sps->min_cb_width; |
|
int x_cb = x0 >> log2_min_cb_size; |
|
int y_cb = y0 >> log2_min_cb_size; |
|
int ref_idx[2]; |
|
int mvp_flag[2]; |
|
int x_pu, y_pu; |
|
int i, j; |
|
|
|
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { |
|
if (s->sh.max_num_merge_cand > 1) |
|
merge_idx = ff_hevc_merge_idx_decode(s); |
|
else |
|
merge_idx = 0; |
|
|
|
ff_hevc_luma_mv_merge_mode(s, x0, y0, |
|
1 << log2_cb_size, |
|
1 << log2_cb_size, |
|
log2_cb_size, partIdx, |
|
merge_idx, ¤t_mv); |
|
x_pu = x0 >> s->sps->log2_min_pu_size; |
|
y_pu = y0 >> s->sps->log2_min_pu_size; |
|
|
|
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) |
|
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; |
|
} else { /* MODE_INTER */ |
|
lc->pu.merge_flag = ff_hevc_merge_flag_decode(s); |
|
if (lc->pu.merge_flag) { |
|
if (s->sh.max_num_merge_cand > 1) |
|
merge_idx = ff_hevc_merge_idx_decode(s); |
|
else |
|
merge_idx = 0; |
|
|
|
ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
|
partIdx, merge_idx, ¤t_mv); |
|
x_pu = x0 >> s->sps->log2_min_pu_size; |
|
y_pu = y0 >> s->sps->log2_min_pu_size; |
|
|
|
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) |
|
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; |
|
} else { |
|
enum InterPredIdc inter_pred_idc = PRED_L0; |
|
ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); |
|
current_mv.pred_flag = 0; |
|
if (s->sh.slice_type == B_SLICE) |
|
inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH); |
|
|
|
if (inter_pred_idc != PRED_L1) { |
|
if (s->sh.nb_refs[L0]) { |
|
ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]); |
|
current_mv.ref_idx[0] = ref_idx[0]; |
|
} |
|
current_mv.pred_flag = PF_L0; |
|
ff_hevc_hls_mvd_coding(s, x0, y0, 0); |
|
mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s); |
|
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
|
partIdx, merge_idx, ¤t_mv, |
|
mvp_flag[0], 0); |
|
current_mv.mv[0].x += lc->pu.mvd.x; |
|
current_mv.mv[0].y += lc->pu.mvd.y; |
|
} |
|
|
|
if (inter_pred_idc != PRED_L0) { |
|
if (s->sh.nb_refs[L1]) { |
|
ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]); |
|
current_mv.ref_idx[1] = ref_idx[1]; |
|
} |
|
|
|
if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { |
|
lc->pu.mvd.x = 0; |
|
lc->pu.mvd.y = 0; |
|
} else { |
|
ff_hevc_hls_mvd_coding(s, x0, y0, 1); |
|
} |
|
|
|
current_mv.pred_flag += PF_L1; |
|
mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s); |
|
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
|
partIdx, merge_idx, ¤t_mv, |
|
mvp_flag[1], 1); |
|
current_mv.mv[1].x += lc->pu.mvd.x; |
|
current_mv.mv[1].y += lc->pu.mvd.y; |
|
} |
|
|
|
x_pu = x0 >> s->sps->log2_min_pu_size; |
|
y_pu = y0 >> s->sps->log2_min_pu_size; |
|
|
|
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++) |
|
for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; |
|
} |
|
} |
|
|
|
if (current_mv.pred_flag & PF_L0) { |
|
ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; |
|
if (!ref0) |
|
return; |
|
hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); |
|
} |
|
if (current_mv.pred_flag & PF_L1) { |
|
ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; |
|
if (!ref1) |
|
return; |
|
hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); |
|
} |
|
|
|
if (current_mv.pred_flag == PF_L0) { |
|
int x0_c = x0 >> s->sps->hshift[1]; |
|
int y0_c = y0 >> s->sps->vshift[1]; |
|
int nPbW_c = nPbW >> s->sps->hshift[1]; |
|
int nPbH_c = nPbH >> s->sps->vshift[1]; |
|
|
|
luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame, |
|
¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
|
s->sh.luma_weight_l0[current_mv.ref_idx[0]], |
|
s->sh.luma_offset_l0[current_mv.ref_idx[0]]); |
|
|
|
chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1], |
|
0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]); |
|
chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2], |
|
0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]); |
|
} else if (current_mv.pred_flag == PF_L1) { |
|
int x0_c = x0 >> s->sps->hshift[1]; |
|
int y0_c = y0 >> s->sps->vshift[1]; |
|
int nPbW_c = nPbW >> s->sps->hshift[1]; |
|
int nPbH_c = nPbH >> s->sps->vshift[1]; |
|
|
|
luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame, |
|
¤t_mv.mv[1], x0, y0, nPbW, nPbH, |
|
s->sh.luma_weight_l1[current_mv.ref_idx[1]], |
|
s->sh.luma_offset_l1[current_mv.ref_idx[1]]); |
|
|
|
chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1], |
|
1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]); |
|
|
|
chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2], |
|
1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]); |
|
} else if (current_mv.pred_flag == PF_BI) { |
|
int x0_c = x0 >> s->sps->hshift[1]; |
|
int y0_c = y0 >> s->sps->vshift[1]; |
|
int nPbW_c = nPbW >> s->sps->hshift[1]; |
|
int nPbH_c = nPbH >> s->sps->vshift[1]; |
|
|
|
luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame, |
|
¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
|
ref1->frame, ¤t_mv.mv[1], ¤t_mv); |
|
|
|
chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame, |
|
x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0); |
|
|
|
chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame, |
|
x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1); |
|
} |
|
} |
|
|
|
/** |
|
* 8.4.1 |
|
*/ |
|
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, |
|
int prev_intra_luma_pred_flag) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int x_pu = x0 >> s->sps->log2_min_pu_size; |
|
int y_pu = y0 >> s->sps->log2_min_pu_size; |
|
int min_pu_width = s->sps->min_pu_width; |
|
int size_in_pus = pu_size >> s->sps->log2_min_pu_size; |
|
int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); |
|
int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); |
|
|
|
int cand_up = (lc->ctb_up_flag || y0b) ? |
|
s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; |
|
int cand_left = (lc->ctb_left_flag || x0b) ? |
|
s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; |
|
|
|
int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size); |
|
|
|
MvField *tab_mvf = s->ref->tab_mvf; |
|
int intra_pred_mode; |
|
int candidate[3]; |
|
int i, j; |
|
|
|
// intra_pred_mode prediction does not cross vertical CTB boundaries |
|
if ((y0 - 1) < y_ctb) |
|
cand_up = INTRA_DC; |
|
|
|
if (cand_left == cand_up) { |
|
if (cand_left < 2) { |
|
candidate[0] = INTRA_PLANAR; |
|
candidate[1] = INTRA_DC; |
|
candidate[2] = INTRA_ANGULAR_26; |
|
} else { |
|
candidate[0] = cand_left; |
|
candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); |
|
candidate[2] = 2 + ((cand_left - 2 + 1) & 31); |
|
} |
|
} else { |
|
candidate[0] = cand_left; |
|
candidate[1] = cand_up; |
|
if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { |
|
candidate[2] = INTRA_PLANAR; |
|
} else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { |
|
candidate[2] = INTRA_DC; |
|
} else { |
|
candidate[2] = INTRA_ANGULAR_26; |
|
} |
|
} |
|
|
|
if (prev_intra_luma_pred_flag) { |
|
intra_pred_mode = candidate[lc->pu.mpm_idx]; |
|
} else { |
|
if (candidate[0] > candidate[1]) |
|
FFSWAP(uint8_t, candidate[0], candidate[1]); |
|
if (candidate[0] > candidate[2]) |
|
FFSWAP(uint8_t, candidate[0], candidate[2]); |
|
if (candidate[1] > candidate[2]) |
|
FFSWAP(uint8_t, candidate[1], candidate[2]); |
|
|
|
intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; |
|
for (i = 0; i < 3; i++) |
|
if (intra_pred_mode >= candidate[i]) |
|
intra_pred_mode++; |
|
} |
|
|
|
/* write the intra prediction units into the mv array */ |
|
if (!size_in_pus) |
|
size_in_pus = 1; |
|
for (i = 0; i < size_in_pus; i++) { |
|
memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu], |
|
intra_pred_mode, size_in_pus); |
|
|
|
for (j = 0; j < size_in_pus; j++) { |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA; |
|
} |
|
} |
|
|
|
return intra_pred_mode; |
|
} |
|
|
|
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, |
|
int log2_cb_size, int ct_depth) |
|
{ |
|
int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size; |
|
int x_cb = x0 >> s->sps->log2_min_cb_size; |
|
int y_cb = y0 >> s->sps->log2_min_cb_size; |
|
int y; |
|
|
|
for (y = 0; y < length; y++) |
|
memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb], |
|
ct_depth, length); |
|
} |
|
|
|
static void intra_prediction_unit(HEVCContext *s, int x0, int y0, |
|
int log2_cb_size) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; |
|
uint8_t prev_intra_luma_pred_flag[4]; |
|
int split = lc->cu.part_mode == PART_NxN; |
|
int pb_size = (1 << log2_cb_size) >> split; |
|
int side = split + 1; |
|
int chroma_mode; |
|
int i, j; |
|
|
|
for (i = 0; i < side; i++) |
|
for (j = 0; j < side; j++) |
|
prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s); |
|
|
|
for (i = 0; i < side; i++) { |
|
for (j = 0; j < side; j++) { |
|
if (prev_intra_luma_pred_flag[2 * i + j]) |
|
lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s); |
|
else |
|
lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s); |
|
|
|
lc->pu.intra_pred_mode[2 * i + j] = |
|
luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size, |
|
prev_intra_luma_pred_flag[2 * i + j]); |
|
} |
|
} |
|
|
|
chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); |
|
if (chroma_mode != 4) { |
|
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) |
|
lc->pu.intra_pred_mode_c = 34; |
|
else |
|
lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode]; |
|
} else { |
|
lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0]; |
|
} |
|
} |
|
|
|
static void intra_prediction_unit_default_value(HEVCContext *s, |
|
int x0, int y0, |
|
int log2_cb_size) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int pb_size = 1 << log2_cb_size; |
|
int size_in_pus = pb_size >> s->sps->log2_min_pu_size; |
|
int min_pu_width = s->sps->min_pu_width; |
|
MvField *tab_mvf = s->ref->tab_mvf; |
|
int x_pu = x0 >> s->sps->log2_min_pu_size; |
|
int y_pu = y0 >> s->sps->log2_min_pu_size; |
|
int j, k; |
|
|
|
if (size_in_pus == 0) |
|
size_in_pus = 1; |
|
for (j = 0; j < size_in_pus; j++) |
|
memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); |
|
if (lc->cu.pred_mode == MODE_INTRA) |
|
for (j = 0; j < size_in_pus; j++) |
|
for (k = 0; k < size_in_pus; k++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA; |
|
} |
|
|
|
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) |
|
{ |
|
int cb_size = 1 << log2_cb_size; |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int log2_min_cb_size = s->sps->log2_min_cb_size; |
|
int length = cb_size >> log2_min_cb_size; |
|
int min_cb_width = s->sps->min_cb_width; |
|
int x_cb = x0 >> log2_min_cb_size; |
|
int y_cb = y0 >> log2_min_cb_size; |
|
int x, y, ret; |
|
int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1; |
|
|
|
lc->cu.x = x0; |
|
lc->cu.y = y0; |
|
lc->cu.rqt_root_cbf = 1; |
|
lc->cu.pred_mode = MODE_INTRA; |
|
lc->cu.part_mode = PART_2Nx2N; |
|
lc->cu.intra_split_flag = 0; |
|
lc->cu.pcm_flag = 0; |
|
|
|
SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0; |
|
for (x = 0; x < 4; x++) |
|
lc->pu.intra_pred_mode[x] = 1; |
|
if (s->pps->transquant_bypass_enable_flag) { |
|
lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s); |
|
if (lc->cu.cu_transquant_bypass_flag) |
|
set_deblocking_bypass(s, x0, y0, log2_cb_size); |
|
} else |
|
lc->cu.cu_transquant_bypass_flag = 0; |
|
|
|
if (s->sh.slice_type != I_SLICE) { |
|
uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb); |
|
|
|
x = y_cb * min_cb_width + x_cb; |
|
for (y = 0; y < length; y++) { |
|
memset(&s->skip_flag[x], skip_flag, length); |
|
x += min_cb_width; |
|
} |
|
lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; |
|
} |
|
|
|
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { |
|
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0); |
|
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
|
|
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
|
} else { |
|
if (s->sh.slice_type != I_SLICE) |
|
lc->cu.pred_mode = ff_hevc_pred_mode_decode(s); |
|
if (lc->cu.pred_mode != MODE_INTRA || |
|
log2_cb_size == s->sps->log2_min_cb_size) { |
|
lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size); |
|
lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && |
|
lc->cu.pred_mode == MODE_INTRA; |
|
} |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag && |
|
log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size && |
|
log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) { |
|
lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s); |
|
} |
|
if (lc->cu.pcm_flag) { |
|
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
|
ret = hls_pcm_sample(s, x0, y0, log2_cb_size); |
|
if (s->sps->pcm.loop_filter_disable_flag) |
|
set_deblocking_bypass(s, x0, y0, log2_cb_size); |
|
|
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
intra_prediction_unit(s, x0, y0, log2_cb_size); |
|
} |
|
} else { |
|
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
|
switch (lc->cu.part_mode) { |
|
case PART_2Nx2N: |
|
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0); |
|
break; |
|
case PART_2NxN: |
|
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1); |
|
break; |
|
case PART_Nx2N: |
|
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1); |
|
break; |
|
case PART_2NxnU: |
|
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1); |
|
break; |
|
case PART_2NxnD: |
|
hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1); |
|
break; |
|
case PART_nLx2N: |
|
hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1); |
|
break; |
|
case PART_nRx2N: |
|
hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1); |
|
break; |
|
case PART_NxN: |
|
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0); |
|
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1); |
|
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2); |
|
hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3); |
|
break; |
|
} |
|
} |
|
|
|
if (!lc->cu.pcm_flag) { |
|
if (lc->cu.pred_mode != MODE_INTRA && |
|
!(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { |
|
lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s); |
|
} |
|
if (lc->cu.rqt_root_cbf) { |
|
lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? |
|
s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : |
|
s->sps->max_transform_hierarchy_depth_inter; |
|
ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0, |
|
log2_cb_size, |
|
log2_cb_size, 0, 0); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
|
} |
|
} |
|
} |
|
|
|
if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) |
|
ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size); |
|
|
|
x = y_cb * min_cb_width + x_cb; |
|
for (y = 0; y < length; y++) { |
|
memset(&s->qp_y_tab[x], lc->qp_y, length); |
|
x += min_cb_width; |
|
} |
|
|
|
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
|
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) { |
|
lc->qPy_pred = lc->qp_y; |
|
} |
|
|
|
set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth); |
|
|
|
return 0; |
|
} |
|
|
|
static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, |
|
int log2_cb_size, int cb_depth) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
const int cb_size = 1 << log2_cb_size; |
|
int ret; |
|
int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1; |
|
|
|
lc->ct.depth = cb_depth; |
|
if (x0 + cb_size <= s->sps->width && |
|
y0 + cb_size <= s->sps->height && |
|
log2_cb_size > s->sps->log2_min_cb_size) { |
|
SAMPLE(s->split_cu_flag, x0, y0) = |
|
ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0); |
|
} else { |
|
SAMPLE(s->split_cu_flag, x0, y0) = |
|
(log2_cb_size > s->sps->log2_min_cb_size); |
|
} |
|
if (s->pps->cu_qp_delta_enabled_flag && |
|
log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) { |
|
lc->tu.is_cu_qp_delta_coded = 0; |
|
lc->tu.cu_qp_delta = 0; |
|
} |
|
|
|
if (SAMPLE(s->split_cu_flag, x0, y0)) { |
|
const int cb_size_split = cb_size >> 1; |
|
const int x1 = x0 + cb_size_split; |
|
const int y1 = y0 + cb_size_split; |
|
|
|
int more_data = 0; |
|
|
|
more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
|
|
if (more_data && x1 < s->sps->width) { |
|
more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
if (more_data && y1 < s->sps->height) { |
|
more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
if (more_data && x1 < s->sps->width && |
|
y1 < s->sps->height) { |
|
more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
|
|
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
|
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) |
|
lc->qPy_pred = lc->qp_y; |
|
|
|
if (more_data) |
|
return ((x1 + cb_size_split) < s->sps->width || |
|
(y1 + cb_size_split) < s->sps->height); |
|
else |
|
return 0; |
|
} else { |
|
ret = hls_coding_unit(s, x0, y0, log2_cb_size); |
|
if (ret < 0) |
|
return ret; |
|
if ((!((x0 + cb_size) % |
|
(1 << (s->sps->log2_ctb_size))) || |
|
(x0 + cb_size >= s->sps->width)) && |
|
(!((y0 + cb_size) % |
|
(1 << (s->sps->log2_ctb_size))) || |
|
(y0 + cb_size >= s->sps->height))) { |
|
int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s); |
|
return !end_of_slice_flag; |
|
} else { |
|
return 1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, |
|
int ctb_addr_ts) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int ctb_size = 1 << s->sps->log2_ctb_size; |
|
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; |
|
|
|
int tile_left_boundary, tile_up_boundary; |
|
int slice_left_boundary, slice_up_boundary; |
|
|
|
s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; |
|
|
|
if (s->pps->entropy_coding_sync_enabled_flag) { |
|
if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) |
|
lc->first_qp_group = 1; |
|
lc->end_of_tiles_x = s->sps->width; |
|
} else if (s->pps->tiles_enabled_flag) { |
|
if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) { |
|
int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size]; |
|
lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size); |
|
lc->first_qp_group = 1; |
|
} |
|
} else { |
|
lc->end_of_tiles_x = s->sps->width; |
|
} |
|
|
|
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height); |
|
|
|
if (s->pps->tiles_enabled_flag) { |
|
tile_left_boundary = x_ctb > 0 && |
|
s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]]; |
|
slice_left_boundary = x_ctb > 0 && |
|
s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1]; |
|
tile_up_boundary = y_ctb > 0 && |
|
s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]; |
|
slice_up_boundary = y_ctb > 0 && |
|
s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width]; |
|
} else { |
|
tile_left_boundary = |
|
tile_up_boundary = 0; |
|
slice_left_boundary = ctb_addr_in_slice <= 0; |
|
slice_up_boundary = ctb_addr_in_slice < s->sps->ctb_width; |
|
} |
|
lc->slice_or_tiles_left_boundary = slice_left_boundary + (tile_left_boundary << 1); |
|
lc->slice_or_tiles_up_boundary = slice_up_boundary + (tile_up_boundary << 1); |
|
lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !tile_left_boundary); |
|
lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !tile_up_boundary); |
|
lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]])); |
|
lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]])); |
|
} |
|
|
|
static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread) |
|
{ |
|
HEVCContext *s = avctxt->priv_data; |
|
int ctb_size = 1 << s->sps->log2_ctb_size; |
|
int more_data = 1; |
|
int x_ctb = 0; |
|
int y_ctb = 0; |
|
int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; |
|
|
|
if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->sh.dependent_slice_segment_flag) { |
|
int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1]; |
|
if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
while (more_data && ctb_addr_ts < s->sps->ctb_size) { |
|
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
|
|
x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; |
|
y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size; |
|
hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts); |
|
|
|
ff_hevc_cabac_init(s, ctb_addr_ts); |
|
|
|
hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size); |
|
|
|
s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; |
|
s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; |
|
s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; |
|
|
|
more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0); |
|
if (more_data < 0) { |
|
s->tab_slice_address[ctb_addr_rs] = -1; |
|
return more_data; |
|
} |
|
|
|
|
|
ctb_addr_ts++; |
|
ff_hevc_save_states(s, ctb_addr_ts); |
|
ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size); |
|
} |
|
|
|
if (x_ctb + ctb_size >= s->sps->width && |
|
y_ctb + ctb_size >= s->sps->height) |
|
ff_hevc_hls_filter(s, x_ctb, y_ctb); |
|
|
|
return ctb_addr_ts; |
|
} |
|
|
|
static int hls_slice_data(HEVCContext *s) |
|
{ |
|
int arg[2]; |
|
int ret[2]; |
|
|
|
arg[0] = 0; |
|
arg[1] = 1; |
|
|
|
s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int)); |
|
return ret[0]; |
|
} |
|
static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id) |
|
{ |
|
HEVCContext *s1 = avctxt->priv_data, *s; |
|
HEVCLocalContext *lc; |
|
int ctb_size = 1<< s1->sps->log2_ctb_size; |
|
int more_data = 1; |
|
int *ctb_row_p = input_ctb_row; |
|
int ctb_row = ctb_row_p[job]; |
|
int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size); |
|
int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs]; |
|
int thread = ctb_row % s1->threads_number; |
|
int ret; |
|
|
|
s = s1->sList[self_id]; |
|
lc = s->HEVClc; |
|
|
|
if(ctb_row) { |
|
ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]); |
|
|
|
if (ret < 0) |
|
return ret; |
|
ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]); |
|
} |
|
|
|
while(more_data && ctb_addr_ts < s->sps->ctb_size) { |
|
int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size; |
|
int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size; |
|
|
|
hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts); |
|
|
|
ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP); |
|
|
|
if (avpriv_atomic_int_get(&s1->wpp_err)){ |
|
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); |
|
return 0; |
|
} |
|
|
|
ff_hevc_cabac_init(s, ctb_addr_ts); |
|
hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size); |
|
more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0); |
|
|
|
if (more_data < 0) { |
|
s->tab_slice_address[ctb_addr_rs] = -1; |
|
return more_data; |
|
} |
|
|
|
ctb_addr_ts++; |
|
|
|
ff_hevc_save_states(s, ctb_addr_ts); |
|
ff_thread_report_progress2(s->avctx, ctb_row, thread, 1); |
|
ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size); |
|
|
|
if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) { |
|
avpriv_atomic_int_set(&s1->wpp_err, 1); |
|
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); |
|
return 0; |
|
} |
|
|
|
if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) { |
|
ff_hevc_hls_filter(s, x_ctb, y_ctb); |
|
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); |
|
return ctb_addr_ts; |
|
} |
|
ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
x_ctb+=ctb_size; |
|
|
|
if(x_ctb >= s->sps->width) { |
|
break; |
|
} |
|
} |
|
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); |
|
|
|
return 0; |
|
} |
|
|
|
static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int *ret = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int)); |
|
int *arg = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int)); |
|
int offset; |
|
int startheader, cmpt = 0; |
|
int i, j, res = 0; |
|
|
|
|
|
if (!s->sList[1]) { |
|
ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1); |
|
|
|
|
|
for (i = 1; i < s->threads_number; i++) { |
|
s->sList[i] = av_malloc(sizeof(HEVCContext)); |
|
memcpy(s->sList[i], s, sizeof(HEVCContext)); |
|
s->HEVClcList[i] = av_malloc(sizeof(HEVCLocalContext)); |
|
s->sList[i]->HEVClc = s->HEVClcList[i]; |
|
} |
|
} |
|
|
|
offset = (lc->gb.index >> 3); |
|
|
|
for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) { |
|
if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) { |
|
startheader--; |
|
cmpt++; |
|
} |
|
} |
|
|
|
for (i = 1; i < s->sh.num_entry_point_offsets; i++) { |
|
offset += (s->sh.entry_point_offset[i - 1] - cmpt); |
|
for (j = 0, cmpt = 0, startheader = offset |
|
+ s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) { |
|
if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) { |
|
startheader--; |
|
cmpt++; |
|
} |
|
} |
|
s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt; |
|
s->sh.offset[i - 1] = offset; |
|
|
|
} |
|
if (s->sh.num_entry_point_offsets != 0) { |
|
offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt; |
|
s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset; |
|
s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset; |
|
|
|
} |
|
s->data = nal; |
|
|
|
for (i = 1; i < s->threads_number; i++) { |
|
s->sList[i]->HEVClc->first_qp_group = 1; |
|
s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y; |
|
memcpy(s->sList[i], s, sizeof(HEVCContext)); |
|
s->sList[i]->HEVClc = s->HEVClcList[i]; |
|
} |
|
|
|
avpriv_atomic_int_set(&s->wpp_err, 0); |
|
ff_reset_entries(s->avctx); |
|
|
|
for (i = 0; i <= s->sh.num_entry_point_offsets; i++) { |
|
arg[i] = i; |
|
ret[i] = 0; |
|
} |
|
|
|
if (s->pps->entropy_coding_sync_enabled_flag) |
|
s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1); |
|
|
|
for (i = 0; i <= s->sh.num_entry_point_offsets; i++) |
|
res += ret[i]; |
|
av_free(ret); |
|
av_free(arg); |
|
return res; |
|
} |
|
|
|
/** |
|
* @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit, |
|
* 0 if the unit should be skipped, 1 otherwise |
|
*/ |
|
static int hls_nal_unit(HEVCContext *s) |
|
{ |
|
GetBitContext *gb = &s->HEVClc->gb; |
|
int nuh_layer_id; |
|
|
|
if (get_bits1(gb) != 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
s->nal_unit_type = get_bits(gb, 6); |
|
|
|
nuh_layer_id = get_bits(gb, 6); |
|
s->temporal_id = get_bits(gb, 3) - 1; |
|
if (s->temporal_id < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n", |
|
s->nal_unit_type, nuh_layer_id, s->temporal_id); |
|
|
|
return nuh_layer_id == 0; |
|
} |
|
|
|
static void restore_tqb_pixels(HEVCContext *s) |
|
{ |
|
int min_pu_size = 1 << s->sps->log2_min_pu_size; |
|
int x, y, c_idx; |
|
|
|
for (c_idx = 0; c_idx < 3; c_idx++) { |
|
ptrdiff_t stride = s->frame->linesize[c_idx]; |
|
int hshift = s->sps->hshift[c_idx]; |
|
int vshift = s->sps->vshift[c_idx]; |
|
for (y = 0; y < s->sps->min_pu_height; y++) { |
|
for (x = 0; x < s->sps->min_pu_width; x++) { |
|
if (s->is_pcm[y * s->sps->min_pu_width + x]) { |
|
int n; |
|
int len = min_pu_size >> hshift; |
|
uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; |
|
uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; |
|
for (n = 0; n < (min_pu_size >> vshift); n++) { |
|
memcpy(dst, src, len); |
|
src += stride; |
|
dst += stride; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int set_side_data(HEVCContext *s) |
|
{ |
|
AVFrame *out = s->ref->frame; |
|
|
|
if (s->sei_frame_packing_present && |
|
s->frame_packing_arrangement_type >= 3 && |
|
s->frame_packing_arrangement_type <= 5 && |
|
s->content_interpretation_type > 0 && |
|
s->content_interpretation_type < 3) { |
|
AVStereo3D *stereo = av_stereo3d_create_side_data(out); |
|
if (!stereo) |
|
return AVERROR(ENOMEM); |
|
|
|
switch (s->frame_packing_arrangement_type) { |
|
case 3: |
|
if (s->quincunx_subsampling) |
|
stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; |
|
else |
|
stereo->type = AV_STEREO3D_SIDEBYSIDE; |
|
break; |
|
case 4: |
|
stereo->type = AV_STEREO3D_TOPBOTTOM; |
|
break; |
|
case 5: |
|
stereo->type = AV_STEREO3D_FRAMESEQUENCE; |
|
break; |
|
} |
|
|
|
if (s->content_interpretation_type == 2) |
|
stereo->flags = AV_STEREO3D_FLAG_INVERT; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int hevc_frame_start(HEVCContext *s) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int pic_size_in_ctb = ((s->sps->width >> s->sps->log2_min_cb_size) + 1) * |
|
((s->sps->height >> s->sps->log2_min_cb_size) + 1); |
|
int ret; |
|
AVFrame *cur_frame; |
|
|
|
memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); |
|
memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1)); |
|
memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height); |
|
memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height); |
|
memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address)); |
|
|
|
s->is_decoded = 0; |
|
s->first_nal_type = s->nal_unit_type; |
|
|
|
if (s->pps->tiles_enabled_flag) |
|
lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size; |
|
|
|
ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame, |
|
s->poc); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
ret = ff_hevc_frame_rps(s); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n"); |
|
goto fail; |
|
} |
|
|
|
ret = set_side_data(s); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
cur_frame = s->sps->sao_enabled ? s->sao_frame : s->frame; |
|
cur_frame->pict_type = 3 - s->sh.slice_type; |
|
|
|
av_frame_unref(s->output_frame); |
|
ret = ff_hevc_output_frame(s, s->output_frame, 0); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
ff_thread_finish_setup(s->avctx); |
|
|
|
return 0; |
|
|
|
fail: |
|
if (s->ref && s->threads_type == FF_THREAD_FRAME) |
|
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); |
|
s->ref = NULL; |
|
return ret; |
|
} |
|
|
|
static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length) |
|
{ |
|
HEVCLocalContext *lc = s->HEVClc; |
|
GetBitContext *gb = &lc->gb; |
|
int ctb_addr_ts, ret; |
|
|
|
ret = init_get_bits8(gb, nal, length); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = hls_nal_unit(s); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n", |
|
s->nal_unit_type); |
|
goto fail; |
|
} else if (!ret) |
|
return 0; |
|
|
|
switch (s->nal_unit_type) { |
|
case NAL_VPS: |
|
ret = ff_hevc_decode_nal_vps(s); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case NAL_SPS: |
|
ret = ff_hevc_decode_nal_sps(s); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case NAL_PPS: |
|
ret = ff_hevc_decode_nal_pps(s); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case NAL_SEI_PREFIX: |
|
case NAL_SEI_SUFFIX: |
|
ret = ff_hevc_decode_nal_sei(s); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case NAL_TRAIL_R: |
|
case NAL_TRAIL_N: |
|
case NAL_TSA_N: |
|
case NAL_TSA_R: |
|
case NAL_STSA_N: |
|
case NAL_STSA_R: |
|
case NAL_BLA_W_LP: |
|
case NAL_BLA_W_RADL: |
|
case NAL_BLA_N_LP: |
|
case NAL_IDR_W_RADL: |
|
case NAL_IDR_N_LP: |
|
case NAL_CRA_NUT: |
|
case NAL_RADL_N: |
|
case NAL_RADL_R: |
|
case NAL_RASL_N: |
|
case NAL_RASL_R: |
|
ret = hls_slice_header(s); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (s->max_ra == INT_MAX) { |
|
if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) { |
|
s->max_ra = s->poc; |
|
} else { |
|
if (IS_IDR(s)) |
|
s->max_ra = INT_MIN; |
|
} |
|
} |
|
|
|
if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) && |
|
s->poc <= s->max_ra) { |
|
s->is_decoded = 0; |
|
break; |
|
} else { |
|
if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra) |
|
s->max_ra = INT_MIN; |
|
} |
|
|
|
if (s->sh.first_slice_in_pic_flag) { |
|
ret = hevc_frame_start(s); |
|
if (ret < 0) |
|
return ret; |
|
} else if (!s->ref) { |
|
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n"); |
|
goto fail; |
|
} |
|
|
|
if (s->nal_unit_type != s->first_nal_type) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Non-matching NAL types of the VCL NALUs: %d %d\n", |
|
s->first_nal_type, s->nal_unit_type); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!s->sh.dependent_slice_segment_flag && |
|
s->sh.slice_type != I_SLICE) { |
|
ret = ff_hevc_slice_rpl(s); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Error constructing the reference lists for the current slice.\n"); |
|
goto fail; |
|
} |
|
} |
|
|
|
if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0) |
|
ctb_addr_ts = hls_slice_data_wpp(s, nal, length); |
|
else |
|
ctb_addr_ts = hls_slice_data(s); |
|
if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) { |
|
s->is_decoded = 1; |
|
if ((s->pps->transquant_bypass_enable_flag || |
|
(s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) && |
|
s->sps->sao_enabled) |
|
restore_tqb_pixels(s); |
|
} |
|
|
|
if (ctb_addr_ts < 0) { |
|
ret = ctb_addr_ts; |
|
goto fail; |
|
} |
|
break; |
|
case NAL_EOS_NUT: |
|
case NAL_EOB_NUT: |
|
s->seq_decode = (s->seq_decode + 1) & 0xff; |
|
s->max_ra = INT_MAX; |
|
break; |
|
case NAL_AUD: |
|
case NAL_FD_NUT: |
|
break; |
|
default: |
|
av_log(s->avctx, AV_LOG_INFO, |
|
"Skipping NAL unit %d\n", s->nal_unit_type); |
|
} |
|
|
|
return 0; |
|
fail: |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return ret; |
|
return 0; |
|
} |
|
|
|
/* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication |
|
* between these functions would be nice. */ |
|
int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length, |
|
HEVCNAL *nal) |
|
{ |
|
int i, si, di; |
|
uint8_t *dst; |
|
|
|
s->skipped_bytes = 0; |
|
#define STARTCODE_TEST \ |
|
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ |
|
if (src[i + 2] != 3) { \ |
|
/* startcode, so we must be past the end */ \ |
|
length = i; \ |
|
} \ |
|
break; \ |
|
} |
|
#if HAVE_FAST_UNALIGNED |
|
#define FIND_FIRST_ZERO \ |
|
if (i > 0 && !src[i]) \ |
|
i--; \ |
|
while (src[i]) \ |
|
i++ |
|
#if HAVE_FAST_64BIT |
|
for (i = 0; i + 1 < length; i += 9) { |
|
if (!((~AV_RN64A(src + i) & |
|
(AV_RN64A(src + i) - 0x0100010001000101ULL)) & |
|
0x8000800080008080ULL)) |
|
continue; |
|
FIND_FIRST_ZERO; |
|
STARTCODE_TEST; |
|
i -= 7; |
|
} |
|
#else |
|
for (i = 0; i + 1 < length; i += 5) { |
|
if (!((~AV_RN32A(src + i) & |
|
(AV_RN32A(src + i) - 0x01000101U)) & |
|
0x80008080U)) |
|
continue; |
|
FIND_FIRST_ZERO; |
|
STARTCODE_TEST; |
|
i -= 3; |
|
} |
|
#endif /* HAVE_FAST_64BIT */ |
|
#else |
|
for (i = 0; i + 1 < length; i += 2) { |
|
if (src[i]) |
|
continue; |
|
if (i > 0 && src[i - 1] == 0) |
|
i--; |
|
STARTCODE_TEST; |
|
} |
|
#endif /* HAVE_FAST_UNALIGNED */ |
|
|
|
if (i >= length - 1) { // no escaped 0 |
|
nal->data = src; |
|
nal->size = length; |
|
return length; |
|
} |
|
|
|
av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size, |
|
length + FF_INPUT_BUFFER_PADDING_SIZE); |
|
if (!nal->rbsp_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
dst = nal->rbsp_buffer; |
|
|
|
memcpy(dst, src, i); |
|
si = di = i; |
|
while (si + 2 < length) { |
|
// remove escapes (very rare 1:2^22) |
|
if (src[si + 2] > 3) { |
|
dst[di++] = src[si++]; |
|
dst[di++] = src[si++]; |
|
} else if (src[si] == 0 && src[si + 1] == 0) { |
|
if (src[si + 2] == 3) { // escape |
|
dst[di++] = 0; |
|
dst[di++] = 0; |
|
si += 3; |
|
|
|
s->skipped_bytes++; |
|
if (s->skipped_bytes_pos_size < s->skipped_bytes) { |
|
s->skipped_bytes_pos_size *= 2; |
|
av_reallocp_array(&s->skipped_bytes_pos, |
|
s->skipped_bytes_pos_size, |
|
sizeof(*s->skipped_bytes_pos)); |
|
if (!s->skipped_bytes_pos) |
|
return AVERROR(ENOMEM); |
|
} |
|
if (s->skipped_bytes_pos) |
|
s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1; |
|
continue; |
|
} else // next start code |
|
goto nsc; |
|
} |
|
|
|
dst[di++] = src[si++]; |
|
} |
|
while (si < length) |
|
dst[di++] = src[si++]; |
|
|
|
nsc: |
|
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
nal->data = dst; |
|
nal->size = di; |
|
return si; |
|
} |
|
|
|
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length) |
|
{ |
|
int i, consumed, ret = 0; |
|
|
|
s->ref = NULL; |
|
s->last_eos = s->eos; |
|
s->eos = 0; |
|
|
|
/* split the input packet into NAL units, so we know the upper bound on the |
|
* number of slices in the frame */ |
|
s->nb_nals = 0; |
|
while (length >= 4) { |
|
HEVCNAL *nal; |
|
int extract_length = 0; |
|
|
|
if (s->is_nalff) { |
|
int i; |
|
for (i = 0; i < s->nal_length_size; i++) |
|
extract_length = (extract_length << 8) | buf[i]; |
|
buf += s->nal_length_size; |
|
length -= s->nal_length_size; |
|
|
|
if (extract_length > length) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} else { |
|
/* search start code */ |
|
while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) { |
|
++buf; |
|
--length; |
|
if (length < 4) { |
|
av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
} |
|
|
|
buf += 3; |
|
length -= 3; |
|
} |
|
|
|
if (!s->is_nalff) |
|
extract_length = length; |
|
|
|
if (s->nals_allocated < s->nb_nals + 1) { |
|
int new_size = s->nals_allocated + 1; |
|
HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp)); |
|
if (!tmp) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
s->nals = tmp; |
|
memset(s->nals + s->nals_allocated, 0, |
|
(new_size - s->nals_allocated) * sizeof(*tmp)); |
|
av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal)); |
|
av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal)); |
|
av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal)); |
|
s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size |
|
s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos)); |
|
s->nals_allocated = new_size; |
|
} |
|
s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals]; |
|
s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals]; |
|
nal = &s->nals[s->nb_nals]; |
|
|
|
consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal); |
|
|
|
s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes; |
|
s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size; |
|
s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos; |
|
|
|
|
|
if (consumed < 0) { |
|
ret = consumed; |
|
goto fail; |
|
} |
|
|
|
ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size); |
|
if (ret < 0) |
|
goto fail; |
|
hls_nal_unit(s); |
|
|
|
if (s->nal_unit_type == NAL_EOB_NUT || |
|
s->nal_unit_type == NAL_EOS_NUT) |
|
s->eos = 1; |
|
|
|
buf += consumed; |
|
length -= consumed; |
|
} |
|
|
|
/* parse the NAL units */ |
|
for (i = 0; i < s->nb_nals; i++) { |
|
int ret; |
|
s->skipped_bytes = s->skipped_bytes_nal[i]; |
|
s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i]; |
|
|
|
ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Error parsing NAL unit #%d.\n", i); |
|
goto fail; |
|
} |
|
} |
|
|
|
fail: |
|
if (s->ref && s->threads_type == FF_THREAD_FRAME) |
|
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0); |
|
|
|
return ret; |
|
} |
|
|
|
static void print_md5(void *log_ctx, int level, uint8_t md5[16]) |
|
{ |
|
int i; |
|
for (i = 0; i < 16; i++) |
|
av_log(log_ctx, level, "%02"PRIx8, md5[i]); |
|
} |
|
|
|
static int verify_md5(HEVCContext *s, AVFrame *frame) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format); |
|
int pixel_shift; |
|
int i, j; |
|
|
|
if (!desc) |
|
return AVERROR(EINVAL); |
|
|
|
pixel_shift = desc->comp[0].depth_minus1 > 7; |
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ", |
|
s->poc); |
|
|
|
/* the checksums are LE, so we have to byteswap for >8bpp formats |
|
* on BE arches */ |
|
#if HAVE_BIGENDIAN |
|
if (pixel_shift && !s->checksum_buf) { |
|
av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size, |
|
FFMAX3(frame->linesize[0], frame->linesize[1], |
|
frame->linesize[2])); |
|
if (!s->checksum_buf) |
|
return AVERROR(ENOMEM); |
|
} |
|
#endif |
|
|
|
for (i = 0; frame->data[i]; i++) { |
|
int width = s->avctx->coded_width; |
|
int height = s->avctx->coded_height; |
|
int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width; |
|
int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height; |
|
uint8_t md5[16]; |
|
|
|
av_md5_init(s->md5_ctx); |
|
for (j = 0; j < h; j++) { |
|
const uint8_t *src = frame->data[i] + j * frame->linesize[i]; |
|
#if HAVE_BIGENDIAN |
|
if (pixel_shift) { |
|
s->dsp.bswap16_buf((uint16_t*)s->checksum_buf, |
|
(const uint16_t*)src, w); |
|
src = s->checksum_buf; |
|
} |
|
#endif |
|
av_md5_update(s->md5_ctx, src, w << pixel_shift); |
|
} |
|
av_md5_final(s->md5_ctx, md5); |
|
|
|
if (!memcmp(md5, s->md5[i], 16)) { |
|
av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i); |
|
print_md5(s->avctx, AV_LOG_DEBUG, md5); |
|
av_log (s->avctx, AV_LOG_DEBUG, "; "); |
|
} else { |
|
av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i); |
|
print_md5(s->avctx, AV_LOG_ERROR, md5); |
|
av_log (s->avctx, AV_LOG_ERROR, " != "); |
|
print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]); |
|
av_log (s->avctx, AV_LOG_ERROR, "\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
|
|
return 0; |
|
} |
|
|
|
static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output, |
|
AVPacket *avpkt) |
|
{ |
|
int ret; |
|
HEVCContext *s = avctx->priv_data; |
|
|
|
if (!avpkt->size) { |
|
ret = ff_hevc_output_frame(s, data, 1); |
|
if (ret < 0) |
|
return ret; |
|
|
|
*got_output = ret; |
|
return 0; |
|
} |
|
|
|
s->ref = NULL; |
|
ret = decode_nal_units(s, avpkt->data, avpkt->size); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* verify the SEI checksum */ |
|
if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded && |
|
s->is_md5) { |
|
ret = verify_md5(s, s->ref->frame); |
|
if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) { |
|
ff_hevc_unref_frame(s, s->ref, ~0); |
|
return ret; |
|
} |
|
} |
|
s->is_md5 = 0; |
|
|
|
if (s->is_decoded) { |
|
av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc); |
|
s->is_decoded = 0; |
|
} |
|
|
|
if (s->output_frame->buf[0]) { |
|
av_frame_move_ref(data, s->output_frame); |
|
*got_output = 1; |
|
} |
|
|
|
return avpkt->size; |
|
} |
|
|
|
static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src) |
|
{ |
|
int ret; |
|
|
|
ret = ff_thread_ref_frame(&dst->tf, &src->tf); |
|
if (ret < 0) |
|
return ret; |
|
|
|
dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf); |
|
if (!dst->tab_mvf_buf) |
|
goto fail; |
|
dst->tab_mvf = src->tab_mvf; |
|
|
|
dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf); |
|
if (!dst->rpl_tab_buf) |
|
goto fail; |
|
dst->rpl_tab = src->rpl_tab; |
|
|
|
dst->rpl_buf = av_buffer_ref(src->rpl_buf); |
|
if (!dst->rpl_buf) |
|
goto fail; |
|
|
|
dst->poc = src->poc; |
|
dst->ctb_count = src->ctb_count; |
|
dst->window = src->window; |
|
dst->flags = src->flags; |
|
dst->sequence = src->sequence; |
|
|
|
return 0; |
|
fail: |
|
ff_hevc_unref_frame(s, dst, ~0); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static av_cold int hevc_decode_free(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
HEVCLocalContext *lc = s->HEVClc; |
|
int i; |
|
|
|
pic_arrays_free(s); |
|
|
|
av_freep(&s->md5_ctx); |
|
|
|
for(i=0; i < s->nals_allocated; i++) { |
|
av_freep(&s->skipped_bytes_pos_nal[i]); |
|
} |
|
av_freep(&s->skipped_bytes_pos_size_nal); |
|
av_freep(&s->skipped_bytes_nal); |
|
av_freep(&s->skipped_bytes_pos_nal); |
|
|
|
av_freep(&s->cabac_state); |
|
|
|
av_frame_free(&s->tmp_frame); |
|
av_frame_free(&s->output_frame); |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { |
|
ff_hevc_unref_frame(s, &s->DPB[i], ~0); |
|
av_frame_free(&s->DPB[i].frame); |
|
} |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) |
|
av_buffer_unref(&s->vps_list[i]); |
|
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) |
|
av_buffer_unref(&s->sps_list[i]); |
|
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) |
|
av_buffer_unref(&s->pps_list[i]); |
|
|
|
av_freep(&s->sh.entry_point_offset); |
|
av_freep(&s->sh.offset); |
|
av_freep(&s->sh.size); |
|
|
|
for (i = 1; i < s->threads_number; i++) { |
|
lc = s->HEVClcList[i]; |
|
if (lc) { |
|
av_freep(&s->HEVClcList[i]); |
|
av_freep(&s->sList[i]); |
|
} |
|
} |
|
if (s->HEVClc == s->HEVClcList[0]) |
|
s->HEVClc = NULL; |
|
av_freep(&s->HEVClcList[0]); |
|
|
|
for (i = 0; i < s->nals_allocated; i++) |
|
av_freep(&s->nals[i].rbsp_buffer); |
|
av_freep(&s->nals); |
|
s->nals_allocated = 0; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int hevc_init_context(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
int i; |
|
|
|
s->avctx = avctx; |
|
|
|
s->HEVClc = av_mallocz(sizeof(HEVCLocalContext)); |
|
if (!s->HEVClc) |
|
goto fail; |
|
s->HEVClcList[0] = s->HEVClc; |
|
s->sList[0] = s; |
|
|
|
s->cabac_state = av_malloc(HEVC_CONTEXTS); |
|
if (!s->cabac_state) |
|
goto fail; |
|
|
|
s->tmp_frame = av_frame_alloc(); |
|
if (!s->tmp_frame) |
|
goto fail; |
|
|
|
s->output_frame = av_frame_alloc(); |
|
if (!s->output_frame) |
|
goto fail; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { |
|
s->DPB[i].frame = av_frame_alloc(); |
|
if (!s->DPB[i].frame) |
|
goto fail; |
|
s->DPB[i].tf.f = s->DPB[i].frame; |
|
} |
|
|
|
s->max_ra = INT_MAX; |
|
|
|
s->md5_ctx = av_md5_alloc(); |
|
if (!s->md5_ctx) |
|
goto fail; |
|
|
|
ff_dsputil_init(&s->dsp, avctx); |
|
|
|
s->context_initialized = 1; |
|
s->eos = 0; |
|
|
|
return 0; |
|
|
|
fail: |
|
hevc_decode_free(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static int hevc_update_thread_context(AVCodecContext *dst, |
|
const AVCodecContext *src) |
|
{ |
|
HEVCContext *s = dst->priv_data; |
|
HEVCContext *s0 = src->priv_data; |
|
int i, ret; |
|
|
|
if (!s->context_initialized) { |
|
ret = hevc_init_context(dst); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { |
|
ff_hevc_unref_frame(s, &s->DPB[i], ~0); |
|
if (s0->DPB[i].frame->buf[0]) { |
|
ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) { |
|
av_buffer_unref(&s->vps_list[i]); |
|
if (s0->vps_list[i]) { |
|
s->vps_list[i] = av_buffer_ref(s0->vps_list[i]); |
|
if (!s->vps_list[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) { |
|
av_buffer_unref(&s->sps_list[i]); |
|
if (s0->sps_list[i]) { |
|
s->sps_list[i] = av_buffer_ref(s0->sps_list[i]); |
|
if (!s->sps_list[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) { |
|
av_buffer_unref(&s->pps_list[i]); |
|
if (s0->pps_list[i]) { |
|
s->pps_list[i] = av_buffer_ref(s0->pps_list[i]); |
|
if (!s->pps_list[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
if (s->sps != s0->sps) |
|
ret = set_sps(s, s0->sps); |
|
|
|
s->seq_decode = s0->seq_decode; |
|
s->seq_output = s0->seq_output; |
|
s->pocTid0 = s0->pocTid0; |
|
s->max_ra = s0->max_ra; |
|
s->eos = s0->eos; |
|
|
|
s->is_nalff = s0->is_nalff; |
|
s->nal_length_size = s0->nal_length_size; |
|
|
|
s->threads_number = s0->threads_number; |
|
s->threads_type = s0->threads_type; |
|
|
|
if (s0->eos) { |
|
s->seq_decode = (s->seq_decode + 1) & 0xff; |
|
s->max_ra = INT_MAX; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int hevc_decode_extradata(HEVCContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
GetByteContext gb; |
|
int ret; |
|
|
|
bytestream2_init(&gb, avctx->extradata, avctx->extradata_size); |
|
|
|
if (avctx->extradata_size > 3 && |
|
(avctx->extradata[0] || avctx->extradata[1] || |
|
avctx->extradata[2] > 1)) { |
|
/* It seems the extradata is encoded as hvcC format. |
|
* Temporarily, we support configurationVersion==0 until 14496-15 3rd |
|
* is finalized. When finalized, configurationVersion will be 1 and we |
|
* can recognize hvcC by checking if avctx->extradata[0]==1 or not. */ |
|
int i, j, num_arrays, nal_len_size; |
|
|
|
s->is_nalff = 1; |
|
|
|
bytestream2_skip(&gb, 21); |
|
nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1; |
|
num_arrays = bytestream2_get_byte(&gb); |
|
|
|
/* nal units in the hvcC always have length coded with 2 bytes, |
|
* so put a fake nal_length_size = 2 while parsing them */ |
|
s->nal_length_size = 2; |
|
|
|
/* Decode nal units from hvcC. */ |
|
for (i = 0; i < num_arrays; i++) { |
|
int type = bytestream2_get_byte(&gb) & 0x3f; |
|
int cnt = bytestream2_get_be16(&gb); |
|
|
|
for (j = 0; j < cnt; j++) { |
|
// +2 for the nal size field |
|
int nalsize = bytestream2_peek_be16(&gb) + 2; |
|
if (bytestream2_get_bytes_left(&gb) < nalsize) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid NAL unit size in extradata.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ret = decode_nal_units(s, gb.buffer, nalsize); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Decoding nal unit %d %d from hvcC failed\n", |
|
type, i); |
|
return ret; |
|
} |
|
bytestream2_skip(&gb, nalsize); |
|
} |
|
} |
|
|
|
/* Now store right nal length size, that will be used to parse |
|
* all other nals */ |
|
s->nal_length_size = nal_len_size; |
|
} else { |
|
s->is_nalff = 0; |
|
ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
return 0; |
|
} |
|
|
|
static av_cold int hevc_decode_init(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
int ret; |
|
|
|
ff_init_cabac_states(); |
|
|
|
avctx->internal->allocate_progress = 1; |
|
|
|
ret = hevc_init_context(avctx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->enable_parallel_tiles = 0; |
|
s->picture_struct = 0; |
|
|
|
if(avctx->active_thread_type & FF_THREAD_SLICE) |
|
s->threads_number = avctx->thread_count; |
|
else |
|
s->threads_number = 1; |
|
|
|
if (avctx->extradata_size > 0 && avctx->extradata) { |
|
ret = hevc_decode_extradata(s); |
|
if (ret < 0) { |
|
hevc_decode_free(avctx); |
|
return ret; |
|
} |
|
} |
|
|
|
if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1) |
|
s->threads_type = FF_THREAD_FRAME; |
|
else |
|
s->threads_type = FF_THREAD_SLICE; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
int ret; |
|
|
|
memset(s, 0, sizeof(*s)); |
|
|
|
ret = hevc_init_context(avctx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
static void hevc_decode_flush(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
ff_hevc_flush_dpb(s); |
|
s->max_ra = INT_MAX; |
|
} |
|
|
|
#define OFFSET(x) offsetof(HEVCContext, x) |
|
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) |
|
|
|
static const AVProfile profiles[] = { |
|
{ FF_PROFILE_HEVC_MAIN, "Main" }, |
|
{ FF_PROFILE_HEVC_MAIN_10, "Main 10" }, |
|
{ FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" }, |
|
{ FF_PROFILE_UNKNOWN }, |
|
}; |
|
|
|
static const AVOption options[] = { |
|
{ "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin), |
|
AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR }, |
|
{ "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin), |
|
AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass hevc_decoder_class = { |
|
.class_name = "HEVC decoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_hevc_decoder = { |
|
.name = "hevc", |
|
.long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_HEVC, |
|
.priv_data_size = sizeof(HEVCContext), |
|
.priv_class = &hevc_decoder_class, |
|
.init = hevc_decode_init, |
|
.close = hevc_decode_free, |
|
.decode = hevc_decode_frame, |
|
.flush = hevc_decode_flush, |
|
.update_thread_context = hevc_update_thread_context, |
|
.init_thread_copy = hevc_init_thread_copy, |
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | |
|
CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS, |
|
.profiles = NULL_IF_CONFIG_SMALL(profiles), |
|
};
|
|
|