mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
626 lines
22 KiB
626 lines
22 KiB
/* |
|
* AAC encoder psychoacoustic model |
|
* Copyright (C) 2008 Konstantin Shishkov |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC encoder psychoacoustic model |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "aactab.h" |
|
#include "psymodel.h" |
|
|
|
/*********************************** |
|
* TODOs: |
|
* thresholds linearization after their modifications for attaining given bitrate |
|
* try other bitrate controlling mechanism (maybe use ratecontrol.c?) |
|
* control quality for quality-based output |
|
**********************************/ |
|
|
|
/** |
|
* constants for 3GPP AAC psychoacoustic model |
|
* @{ |
|
*/ |
|
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) |
|
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) |
|
|
|
#define PSY_3GPP_RPEMIN 0.01f |
|
#define PSY_3GPP_RPELEV 2.0f |
|
|
|
/* LAME psy model constants */ |
|
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order |
|
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size |
|
#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size |
|
#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence |
|
#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* information for single band used by 3GPP TS26.403-inspired psychoacoustic model |
|
*/ |
|
typedef struct AacPsyBand{ |
|
float energy; ///< band energy |
|
float thr; ///< energy threshold |
|
float thr_quiet; ///< threshold in quiet |
|
}AacPsyBand; |
|
|
|
/** |
|
* single/pair channel context for psychoacoustic model |
|
*/ |
|
typedef struct AacPsyChannel{ |
|
AacPsyBand band[128]; ///< bands information |
|
AacPsyBand prev_band[128]; ///< bands information from the previous frame |
|
|
|
float win_energy; ///< sliding average of channel energy |
|
float iir_state[2]; ///< hi-pass IIR filter state |
|
uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) |
|
enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame |
|
/* LAME psy model specific members */ |
|
float attack_threshold; ///< attack threshold for this channel |
|
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; |
|
int prev_attack; ///< attack value for the last short block in the previous sequence |
|
}AacPsyChannel; |
|
|
|
/** |
|
* psychoacoustic model frame type-dependent coefficients |
|
*/ |
|
typedef struct AacPsyCoeffs{ |
|
float ath; ///< absolute threshold of hearing per bands |
|
float barks; ///< Bark value for each spectral band in long frame |
|
float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame |
|
float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame |
|
float min_snr; ///< minimal SNR |
|
}AacPsyCoeffs; |
|
|
|
/** |
|
* 3GPP TS26.403-inspired psychoacoustic model specific data |
|
*/ |
|
typedef struct AacPsyContext{ |
|
AacPsyCoeffs psy_coef[2][64]; |
|
AacPsyChannel *ch; |
|
}AacPsyContext; |
|
|
|
/** |
|
* LAME psy model preset struct |
|
*/ |
|
typedef struct { |
|
int quality; ///< Quality to map the rest of the vaules to. |
|
/* This is overloaded to be both kbps per channel in ABR mode, and |
|
* requested quality in constant quality mode. |
|
*/ |
|
float st_lrm; ///< short threshold for L, R, and M channels |
|
} PsyLamePreset; |
|
|
|
/** |
|
* LAME psy model preset table for ABR |
|
*/ |
|
static const PsyLamePreset psy_abr_map[] = { |
|
/* TODO: Tuning. These were taken from LAME. */ |
|
/* kbps/ch st_lrm */ |
|
{ 8, 6.60}, |
|
{ 16, 6.60}, |
|
{ 24, 6.60}, |
|
{ 32, 6.60}, |
|
{ 40, 6.60}, |
|
{ 48, 6.60}, |
|
{ 56, 6.60}, |
|
{ 64, 6.40}, |
|
{ 80, 6.00}, |
|
{ 96, 5.60}, |
|
{112, 5.20}, |
|
{128, 5.20}, |
|
{160, 5.20} |
|
}; |
|
|
|
/** |
|
* LAME psy model preset table for constant quality |
|
*/ |
|
static const PsyLamePreset psy_vbr_map[] = { |
|
/* vbr_q st_lrm */ |
|
{ 0, 4.20}, |
|
{ 1, 4.20}, |
|
{ 2, 4.20}, |
|
{ 3, 4.20}, |
|
{ 4, 4.20}, |
|
{ 5, 4.20}, |
|
{ 6, 4.20}, |
|
{ 7, 4.20}, |
|
{ 8, 4.20}, |
|
{ 9, 4.20}, |
|
{10, 4.20} |
|
}; |
|
|
|
/** |
|
* LAME psy model FIR coefficient table |
|
*/ |
|
static const float psy_fir_coeffs[] = { |
|
-8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, |
|
-3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, |
|
-5.52212e-17 * 2, -0.313819 * 2 |
|
}; |
|
|
|
/** |
|
* calculates the attack threshold for ABR from the above table for the LAME psy model |
|
*/ |
|
static float lame_calc_attack_threshold(int bitrate) |
|
{ |
|
/* Assume max bitrate to start with */ |
|
int lower_range = 12, upper_range = 12; |
|
int lower_range_kbps = psy_abr_map[12].quality; |
|
int upper_range_kbps = psy_abr_map[12].quality; |
|
int i; |
|
|
|
/* Determine which bitrates the value specified falls between. |
|
* If the loop ends without breaking our above assumption of 320kbps was correct. |
|
*/ |
|
for (i = 1; i < 13; i++) { |
|
if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
|
upper_range = i; |
|
upper_range_kbps = psy_abr_map[i ].quality; |
|
lower_range = i - 1; |
|
lower_range_kbps = psy_abr_map[i - 1].quality; |
|
break; /* Upper range found */ |
|
} |
|
} |
|
|
|
/* Determine which range the value specified is closer to */ |
|
if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
|
return psy_abr_map[lower_range].st_lrm; |
|
return psy_abr_map[upper_range].st_lrm; |
|
} |
|
|
|
/** |
|
* LAME psy model specific initialization |
|
*/ |
|
static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) { |
|
int i, j; |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
AacPsyChannel *pch = &ctx->ch[i]; |
|
|
|
if (avctx->flags & CODEC_FLAG_QSCALE) |
|
pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; |
|
else |
|
pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); |
|
|
|
for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
|
pch->prev_energy_subshort[j] = 10.0f; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate Bark value for given line. |
|
*/ |
|
static av_cold float calc_bark(float f) |
|
{ |
|
return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); |
|
} |
|
|
|
#define ATH_ADD 4 |
|
/** |
|
* Calculate ATH value for given frequency. |
|
* Borrowed from Lame. |
|
*/ |
|
static av_cold float ath(float f, float add) |
|
{ |
|
f /= 1000.0f; |
|
return 3.64 * pow(f, -0.8) |
|
- 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) |
|
+ 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) |
|
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f; |
|
} |
|
|
|
static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
|
AacPsyContext *pctx; |
|
float bark; |
|
int i, j, g, start; |
|
float prev, minscale, minath; |
|
|
|
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); |
|
pctx = (AacPsyContext*) ctx->model_priv_data; |
|
|
|
minath = ath(3410, ATH_ADD); |
|
for (j = 0; j < 2; j++) { |
|
AacPsyCoeffs *coeffs = pctx->psy_coef[j]; |
|
const uint8_t *band_sizes = ctx->bands[j]; |
|
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
|
i = 0; |
|
prev = 0.0; |
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
i += band_sizes[g]; |
|
bark = calc_bark((i-1) * line_to_frequency); |
|
coeffs[g].barks = (bark + prev) / 2.0; |
|
prev = bark; |
|
} |
|
for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
|
AacPsyCoeffs *coeff = &coeffs[g]; |
|
float bark_width = coeffs[g+1].barks - coeffs->barks; |
|
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW); |
|
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI); |
|
} |
|
start = 0; |
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
minscale = ath(start * line_to_frequency, ATH_ADD); |
|
for (i = 1; i < band_sizes[g]; i++) |
|
minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
|
coeffs[g].ath = minscale - minath; |
|
start += band_sizes[g]; |
|
} |
|
} |
|
|
|
pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels); |
|
|
|
lame_window_init(pctx, ctx->avctx); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* IIR filter used in block switching decision |
|
*/ |
|
static float iir_filter(int in, float state[2]) |
|
{ |
|
float ret; |
|
|
|
ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; |
|
state[0] = in; |
|
state[1] = ret; |
|
return ret; |
|
} |
|
|
|
/** |
|
* window grouping information stored as bits (0 - new group, 1 - group continues) |
|
*/ |
|
static const uint8_t window_grouping[9] = { |
|
0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 |
|
}; |
|
|
|
/** |
|
* Tell encoder which window types to use. |
|
* @see 3GPP TS26.403 5.4.1 "Blockswitching" |
|
*/ |
|
static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, |
|
const int16_t *audio, const int16_t *la, |
|
int channel, int prev_type) |
|
{ |
|
int i, j; |
|
int br = ctx->avctx->bit_rate / ctx->avctx->channels; |
|
int attack_ratio = br <= 16000 ? 18 : 10; |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
uint8_t grouping = 0; |
|
int next_type = pch->next_window_seq; |
|
FFPsyWindowInfo wi; |
|
|
|
memset(&wi, 0, sizeof(wi)); |
|
if (la) { |
|
float s[8], v; |
|
int switch_to_eight = 0; |
|
float sum = 0.0, sum2 = 0.0; |
|
int attack_n = 0; |
|
int stay_short = 0; |
|
for (i = 0; i < 8; i++) { |
|
for (j = 0; j < 128; j++) { |
|
v = iir_filter(la[(i*128+j)*ctx->avctx->channels], pch->iir_state); |
|
sum += v*v; |
|
} |
|
s[i] = sum; |
|
sum2 += sum; |
|
} |
|
for (i = 0; i < 8; i++) { |
|
if (s[i] > pch->win_energy * attack_ratio) { |
|
attack_n = i + 1; |
|
switch_to_eight = 1; |
|
break; |
|
} |
|
} |
|
pch->win_energy = pch->win_energy*7/8 + sum2/64; |
|
|
|
wi.window_type[1] = prev_type; |
|
switch (prev_type) { |
|
case ONLY_LONG_SEQUENCE: |
|
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
break; |
|
case LONG_START_SEQUENCE: |
|
wi.window_type[0] = EIGHT_SHORT_SEQUENCE; |
|
grouping = pch->next_grouping; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
break; |
|
case LONG_STOP_SEQUENCE: |
|
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
|
break; |
|
case EIGHT_SHORT_SEQUENCE: |
|
stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; |
|
wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; |
|
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
|
break; |
|
} |
|
|
|
pch->next_grouping = window_grouping[attack_n]; |
|
pch->next_window_seq = next_type; |
|
} else { |
|
for (i = 0; i < 3; i++) |
|
wi.window_type[i] = prev_type; |
|
grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; |
|
} |
|
|
|
wi.window_shape = 1; |
|
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
|
wi.num_windows = 1; |
|
wi.grouping[0] = 1; |
|
} else { |
|
int lastgrp = 0; |
|
wi.num_windows = 8; |
|
for (i = 0; i < 8; i++) { |
|
if (!((grouping >> i) & 1)) |
|
lastgrp = i; |
|
wi.grouping[lastgrp]++; |
|
} |
|
} |
|
|
|
return wi; |
|
} |
|
|
|
/** |
|
* Calculate band thresholds as suggested in 3GPP TS26.403 |
|
*/ |
|
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
const float *coefs, const FFPsyWindowInfo *wi) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
int start = 0; |
|
int i, w, g; |
|
const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
|
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
|
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; |
|
|
|
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
band->energy = 0.0f; |
|
for (i = 0; i < band_sizes[g]; i++) |
|
band->energy += coefs[start+i] * coefs[start+i]; |
|
band->thr = band->energy * 0.001258925f; |
|
start += band_sizes[g]; |
|
} |
|
} |
|
//modify thresholds and energies - spread, threshold in quiet, pre-echo control |
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
AacPsyBand *bands = &pch->band[w]; |
|
//5.4.2.3 "Spreading" & 5.4.3 "Spreaded Energy Calculation" |
|
for (g = 1; g < num_bands; g++) |
|
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
|
for (g = num_bands - 2; g >= 0; g--) |
|
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
|
//5.4.2.4 "Threshold in quiet" |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &bands[g]; |
|
band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
|
//5.4.2.5 "Pre-echo control" |
|
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) |
|
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
|
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); |
|
} |
|
} |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
for (g = 0; g < num_bands; g++) { |
|
AacPsyBand *band = &pch->band[w+g]; |
|
FFPsyBand *psy_band = &ctx->psy_bands[channel*PSY_MAX_BANDS+w+g]; |
|
|
|
psy_band->threshold = band->thr; |
|
psy_band->energy = band->energy; |
|
} |
|
} |
|
|
|
memcpy(pch->prev_band, pch->band, sizeof(pch->band)); |
|
} |
|
|
|
static av_cold void psy_3gpp_end(FFPsyContext *apc) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; |
|
av_freep(&pctx->ch); |
|
av_freep(&apc->model_priv_data); |
|
} |
|
|
|
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) |
|
{ |
|
int blocktype = ONLY_LONG_SEQUENCE; |
|
if (uselongblock) { |
|
if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
|
blocktype = LONG_STOP_SEQUENCE; |
|
} else { |
|
blocktype = EIGHT_SHORT_SEQUENCE; |
|
if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
|
ctx->next_window_seq = LONG_START_SEQUENCE; |
|
if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
|
ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; |
|
} |
|
|
|
wi->window_type[0] = ctx->next_window_seq; |
|
ctx->next_window_seq = blocktype; |
|
} |
|
|
|
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, |
|
const int16_t *audio, const int16_t *la, |
|
int channel, int prev_type) |
|
{ |
|
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
int grouping = 0; |
|
int uselongblock = 1; |
|
int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
int i; |
|
FFPsyWindowInfo wi; |
|
|
|
memset(&wi, 0, sizeof(wi)); |
|
if (la) { |
|
float hpfsmpl[AAC_BLOCK_SIZE_LONG]; |
|
float const *pf = hpfsmpl; |
|
float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
|
float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
|
float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
int chans = ctx->avctx->channels; |
|
const int16_t *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN) * chans; |
|
int j, att_sum = 0; |
|
|
|
/* LAME comment: apply high pass filter of fs/4 */ |
|
for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
|
float sum1, sum2; |
|
sum1 = firbuf[(i + ((PSY_LAME_FIR_LEN - 1) / 2)) * chans]; |
|
sum2 = 0.0; |
|
for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
|
sum1 += psy_fir_coeffs[j] * (firbuf[(i + j) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j) * chans]); |
|
sum2 += psy_fir_coeffs[j + 1] * (firbuf[(i + j + 1) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j - 1) * chans]); |
|
} |
|
hpfsmpl[i] = sum1 + sum2; |
|
} |
|
|
|
/* Calculate the energies of each sub-shortblock */ |
|
for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
|
energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; |
|
assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); |
|
attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; |
|
energy_short[0] += energy_subshort[i]; |
|
} |
|
|
|
for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
|
float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); |
|
float p = 1.0f; |
|
for (; pf < pfe; pf++) |
|
if (p < fabsf(*pf)) |
|
p = fabsf(*pf); |
|
pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; |
|
/* FIXME: The indexes below are [i + 3 - 2] in the LAME source. |
|
* Obviously the 3 and 2 have some significance, or this would be just [i + 1] |
|
* (which is what we use here). What the 3 stands for is ambigious, as it is both |
|
* number of short blocks, and the number of sub-short blocks. |
|
* It seems that LAME is comparing each sub-block to sub-block + 1 in the |
|
* previous block. |
|
*/ |
|
if (p > energy_subshort[i + 1]) |
|
p = p / energy_subshort[i + 1]; |
|
else if (energy_subshort[i + 1] > p * 10.0f) |
|
p = energy_subshort[i + 1] / (p * 10.0f); |
|
else |
|
p = 0.0; |
|
attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
} |
|
|
|
/* compare energy between sub-short blocks */ |
|
for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
|
if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
|
if (attack_intensity[i] > pch->attack_threshold) |
|
attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; |
|
|
|
/* should have energy change between short blocks, in order to avoid periodic signals */ |
|
/* Good samples to show the effect are Trumpet test songs */ |
|
/* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ |
|
/* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ |
|
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
|
float const u = energy_short[i - 1]; |
|
float const v = energy_short[i]; |
|
float const m = FFMAX(u, v); |
|
if (m < 40000) { /* (2) */ |
|
if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
|
if (i == 1 && attacks[0] < attacks[i]) |
|
attacks[0] = 0; |
|
attacks[i] = 0; |
|
} |
|
} |
|
att_sum += attacks[i]; |
|
} |
|
|
|
if (attacks[0] <= pch->prev_attack) |
|
attacks[0] = 0; |
|
|
|
att_sum += attacks[0]; |
|
/* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ |
|
if (pch->prev_attack == 3 || att_sum) { |
|
uselongblock = 0; |
|
|
|
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
|
if (attacks[i] && attacks[i-1]) |
|
attacks[i] = 0; |
|
} |
|
} else { |
|
/* We have no lookahead info, so just use same type as the previous sequence. */ |
|
uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); |
|
} |
|
|
|
lame_apply_block_type(pch, &wi, uselongblock); |
|
|
|
wi.window_type[1] = prev_type; |
|
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
|
wi.num_windows = 1; |
|
wi.grouping[0] = 1; |
|
if (wi.window_type[0] == LONG_START_SEQUENCE) |
|
wi.window_shape = 0; |
|
else |
|
wi.window_shape = 1; |
|
} else { |
|
int lastgrp = 0; |
|
|
|
wi.num_windows = 8; |
|
wi.window_shape = 0; |
|
for (i = 0; i < 8; i++) { |
|
if (!((pch->next_grouping >> i) & 1)) |
|
lastgrp = i; |
|
wi.grouping[lastgrp]++; |
|
} |
|
} |
|
|
|
/* Determine grouping, based on the location of the first attack, and save for |
|
* the next frame. |
|
* FIXME: Move this to analysis. |
|
* TODO: Tune groupings depending on attack location |
|
* TODO: Handle more than one attack in a group |
|
*/ |
|
for (i = 0; i < 9; i++) { |
|
if (attacks[i]) { |
|
grouping = i; |
|
break; |
|
} |
|
} |
|
pch->next_grouping = window_grouping[grouping]; |
|
|
|
pch->prev_attack = attacks[8]; |
|
|
|
return wi; |
|
} |
|
|
|
const FFPsyModel ff_aac_psy_model = |
|
{ |
|
.name = "3GPP TS 26.403-inspired model", |
|
.init = psy_3gpp_init, |
|
.window = psy_lame_window, |
|
.analyze = psy_3gpp_analyze, |
|
.end = psy_3gpp_end, |
|
};
|
|
|