mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1495 lines
43 KiB
1495 lines
43 KiB
/** |
|
* FLAC audio encoder |
|
* Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "crc.h" |
|
#include "dsputil.h" |
|
#include "golomb.h" |
|
#include "lls.h" |
|
|
|
#define FLAC_MAX_CH 8 |
|
#define FLAC_MIN_BLOCKSIZE 16 |
|
#define FLAC_MAX_BLOCKSIZE 65535 |
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0 |
|
#define FLAC_SUBFRAME_VERBATIM 1 |
|
#define FLAC_SUBFRAME_FIXED 8 |
|
#define FLAC_SUBFRAME_LPC 32 |
|
|
|
#define FLAC_CHMODE_NOT_STEREO 0 |
|
#define FLAC_CHMODE_LEFT_RIGHT 1 |
|
#define FLAC_CHMODE_LEFT_SIDE 8 |
|
#define FLAC_CHMODE_RIGHT_SIDE 9 |
|
#define FLAC_CHMODE_MID_SIDE 10 |
|
|
|
#define ORDER_METHOD_EST 0 |
|
#define ORDER_METHOD_2LEVEL 1 |
|
#define ORDER_METHOD_4LEVEL 2 |
|
#define ORDER_METHOD_8LEVEL 3 |
|
#define ORDER_METHOD_SEARCH 4 |
|
#define ORDER_METHOD_LOG 5 |
|
|
|
#define FLAC_STREAMINFO_SIZE 34 |
|
|
|
#define MIN_LPC_ORDER 1 |
|
#define MAX_LPC_ORDER 32 |
|
#define MAX_FIXED_ORDER 4 |
|
#define MAX_PARTITION_ORDER 8 |
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) |
|
#define MAX_LPC_PRECISION 15 |
|
#define MAX_LPC_SHIFT 15 |
|
#define MAX_RICE_PARAM 14 |
|
|
|
typedef struct CompressionOptions { |
|
int compression_level; |
|
int block_time_ms; |
|
int use_lpc; |
|
int lpc_coeff_precision; |
|
int min_prediction_order; |
|
int max_prediction_order; |
|
int prediction_order_method; |
|
int min_partition_order; |
|
int max_partition_order; |
|
} CompressionOptions; |
|
|
|
typedef struct RiceContext { |
|
int porder; |
|
int params[MAX_PARTITIONS]; |
|
} RiceContext; |
|
|
|
typedef struct FlacSubframe { |
|
int type; |
|
int type_code; |
|
int obits; |
|
int order; |
|
int32_t coefs[MAX_LPC_ORDER]; |
|
int shift; |
|
RiceContext rc; |
|
int32_t samples[FLAC_MAX_BLOCKSIZE]; |
|
int32_t residual[FLAC_MAX_BLOCKSIZE+1]; |
|
} FlacSubframe; |
|
|
|
typedef struct FlacFrame { |
|
FlacSubframe subframes[FLAC_MAX_CH]; |
|
int blocksize; |
|
int bs_code[2]; |
|
uint8_t crc8; |
|
int ch_mode; |
|
} FlacFrame; |
|
|
|
typedef struct FlacEncodeContext { |
|
PutBitContext pb; |
|
int channels; |
|
int ch_code; |
|
int samplerate; |
|
int sr_code[2]; |
|
int max_framesize; |
|
uint32_t frame_count; |
|
FlacFrame frame; |
|
CompressionOptions options; |
|
AVCodecContext *avctx; |
|
DSPContext dsp; |
|
} FlacEncodeContext; |
|
|
|
static const int flac_samplerates[16] = { |
|
0, 0, 0, 0, |
|
8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000, |
|
0, 0, 0, 0 |
|
}; |
|
|
|
static const int flac_blocksizes[16] = { |
|
0, |
|
192, |
|
576, 1152, 2304, 4608, |
|
0, 0, |
|
256, 512, 1024, 2048, 4096, 8192, 16384, 32768 |
|
}; |
|
|
|
/** |
|
* Writes streaminfo metadata block to byte array |
|
*/ |
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) |
|
{ |
|
PutBitContext pb; |
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE); |
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); |
|
|
|
/* streaminfo metadata block */ |
|
put_bits(&pb, 16, s->avctx->frame_size); |
|
put_bits(&pb, 16, s->avctx->frame_size); |
|
put_bits(&pb, 24, 0); |
|
put_bits(&pb, 24, s->max_framesize); |
|
put_bits(&pb, 20, s->samplerate); |
|
put_bits(&pb, 3, s->channels-1); |
|
put_bits(&pb, 5, 15); /* bits per sample - 1 */ |
|
flush_put_bits(&pb); |
|
/* total samples = 0 */ |
|
/* MD5 signature = 0 */ |
|
} |
|
|
|
/** |
|
* Sets blocksize based on samplerate |
|
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds |
|
*/ |
|
static int select_blocksize(int samplerate, int block_time_ms) |
|
{ |
|
int i; |
|
int target; |
|
int blocksize; |
|
|
|
assert(samplerate > 0); |
|
blocksize = flac_blocksizes[1]; |
|
target = (samplerate * block_time_ms) / 1000; |
|
for(i=0; i<16; i++) { |
|
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) { |
|
blocksize = flac_blocksizes[i]; |
|
} |
|
} |
|
return blocksize; |
|
} |
|
|
|
static av_cold int flac_encode_init(AVCodecContext *avctx) |
|
{ |
|
int freq = avctx->sample_rate; |
|
int channels = avctx->channels; |
|
FlacEncodeContext *s = avctx->priv_data; |
|
int i, level; |
|
uint8_t *streaminfo; |
|
|
|
s->avctx = avctx; |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
|
|
if(avctx->sample_fmt != SAMPLE_FMT_S16) { |
|
return -1; |
|
} |
|
|
|
if(channels < 1 || channels > FLAC_MAX_CH) { |
|
return -1; |
|
} |
|
s->channels = channels; |
|
s->ch_code = s->channels-1; |
|
|
|
/* find samplerate in table */ |
|
if(freq < 1) |
|
return -1; |
|
for(i=4; i<12; i++) { |
|
if(freq == flac_samplerates[i]) { |
|
s->samplerate = flac_samplerates[i]; |
|
s->sr_code[0] = i; |
|
s->sr_code[1] = 0; |
|
break; |
|
} |
|
} |
|
/* if not in table, samplerate is non-standard */ |
|
if(i == 12) { |
|
if(freq % 1000 == 0 && freq < 255000) { |
|
s->sr_code[0] = 12; |
|
s->sr_code[1] = freq / 1000; |
|
} else if(freq % 10 == 0 && freq < 655350) { |
|
s->sr_code[0] = 14; |
|
s->sr_code[1] = freq / 10; |
|
} else if(freq < 65535) { |
|
s->sr_code[0] = 13; |
|
s->sr_code[1] = freq; |
|
} else { |
|
return -1; |
|
} |
|
s->samplerate = freq; |
|
} |
|
|
|
/* set compression option defaults based on avctx->compression_level */ |
|
if(avctx->compression_level < 0) { |
|
s->options.compression_level = 5; |
|
} else { |
|
s->options.compression_level = avctx->compression_level; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level); |
|
|
|
level= s->options.compression_level; |
|
if(level > 12) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", |
|
s->options.compression_level); |
|
return -1; |
|
} |
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; |
|
s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
|
s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
|
s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; |
|
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
|
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, |
|
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, |
|
ORDER_METHOD_SEARCH})[level]; |
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; |
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; |
|
|
|
/* set compression option overrides from AVCodecContext */ |
|
if(avctx->use_lpc >= 0) { |
|
s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11); |
|
} |
|
if(s->options.use_lpc == 1) |
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n"); |
|
else if(s->options.use_lpc > 1) |
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n"); |
|
|
|
if(avctx->min_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->min_prediction_order < MIN_LPC_ORDER || |
|
avctx->min_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->min_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.min_prediction_order = avctx->min_prediction_order; |
|
} |
|
if(avctx->max_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->max_prediction_order < MIN_LPC_ORDER || |
|
avctx->max_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->max_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.max_prediction_order = avctx->max_prediction_order; |
|
} |
|
if(s->options.max_prediction_order < s->options.min_prediction_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
|
|
if(avctx->prediction_order_method >= 0) { |
|
if(avctx->prediction_order_method > ORDER_METHOD_LOG) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n", |
|
avctx->prediction_order_method); |
|
return -1; |
|
} |
|
s->options.prediction_order_method = avctx->prediction_order_method; |
|
} |
|
switch(s->options.prediction_order_method) { |
|
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"estimate"); break; |
|
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"2-level"); break; |
|
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"4-level"); break; |
|
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"8-level"); break; |
|
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"full search"); break; |
|
case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"log search"); break; |
|
} |
|
|
|
if(avctx->min_partition_order >= 0) { |
|
if(avctx->min_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n", |
|
avctx->min_partition_order); |
|
return -1; |
|
} |
|
s->options.min_partition_order = avctx->min_partition_order; |
|
} |
|
if(avctx->max_partition_order >= 0) { |
|
if(avctx->max_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n", |
|
avctx->max_partition_order); |
|
return -1; |
|
} |
|
s->options.max_partition_order = avctx->max_partition_order; |
|
} |
|
if(s->options.max_partition_order < s->options.min_partition_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
|
|
if(avctx->frame_size > 0) { |
|
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE || |
|
avctx->frame_size > FLAC_MAX_BLOCKSIZE) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", |
|
avctx->frame_size); |
|
return -1; |
|
} |
|
} else { |
|
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size); |
|
|
|
/* set LPC precision */ |
|
if(avctx->lpc_coeff_precision > 0) { |
|
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n", |
|
avctx->lpc_coeff_precision); |
|
return -1; |
|
} |
|
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision; |
|
} else { |
|
/* default LPC precision */ |
|
s->options.lpc_coeff_precision = 15; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", |
|
s->options.lpc_coeff_precision); |
|
|
|
/* set maximum encoded frame size in verbatim mode */ |
|
if(s->channels == 2) { |
|
s->max_framesize = 14 + ((s->avctx->frame_size * 33 + 7) >> 3); |
|
} else { |
|
s->max_framesize = 14 + (s->avctx->frame_size * s->channels * 2); |
|
} |
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); |
|
write_streaminfo(s, streaminfo); |
|
avctx->extradata = streaminfo; |
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE; |
|
|
|
s->frame_count = 0; |
|
|
|
avctx->coded_frame = avcodec_alloc_frame(); |
|
avctx->coded_frame->key_frame = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static void init_frame(FlacEncodeContext *s) |
|
{ |
|
int i, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
|
|
for(i=0; i<16; i++) { |
|
if(s->avctx->frame_size == flac_blocksizes[i]) { |
|
frame->blocksize = flac_blocksizes[i]; |
|
frame->bs_code[0] = i; |
|
frame->bs_code[1] = 0; |
|
break; |
|
} |
|
} |
|
if(i == 16) { |
|
frame->blocksize = s->avctx->frame_size; |
|
if(frame->blocksize <= 256) { |
|
frame->bs_code[0] = 6; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} else { |
|
frame->bs_code[0] = 7; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} |
|
} |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
frame->subframes[ch].obits = 16; |
|
} |
|
} |
|
|
|
/** |
|
* Copy channel-interleaved input samples into separate subframes |
|
*/ |
|
static void copy_samples(FlacEncodeContext *s, int16_t *samples) |
|
{ |
|
int i, j, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
for(i=0,j=0; i<frame->blocksize; i++) { |
|
for(ch=0; ch<s->channels; ch++,j++) { |
|
frame->subframes[ch].samples[i] = samples[j]; |
|
} |
|
} |
|
} |
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) |
|
|
|
/** |
|
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0 |
|
*/ |
|
static int find_optimal_param(uint32_t sum, int n) |
|
{ |
|
int k; |
|
uint32_t sum2; |
|
|
|
if(sum <= n>>1) |
|
return 0; |
|
sum2 = sum-(n>>1); |
|
k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n); |
|
return FFMIN(k, MAX_RICE_PARAM); |
|
} |
|
|
|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, |
|
uint32_t *sums, int n, int pred_order) |
|
{ |
|
int i; |
|
int k, cnt, part; |
|
uint32_t all_bits; |
|
|
|
part = (1 << porder); |
|
all_bits = 4 * part; |
|
|
|
cnt = (n >> porder) - pred_order; |
|
for(i=0; i<part; i++) { |
|
k = find_optimal_param(sums[i], cnt); |
|
rc->params[i] = k; |
|
all_bits += rice_encode_count(sums[i], cnt, k); |
|
cnt = n >> porder; |
|
} |
|
|
|
rc->porder = porder; |
|
|
|
return all_bits; |
|
} |
|
|
|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order, |
|
uint32_t sums[][MAX_PARTITIONS]) |
|
{ |
|
int i, j; |
|
int parts; |
|
uint32_t *res, *res_end; |
|
|
|
/* sums for highest level */ |
|
parts = (1 << pmax); |
|
res = &data[pred_order]; |
|
res_end = &data[n >> pmax]; |
|
for(i=0; i<parts; i++) { |
|
uint32_t sum = 0; |
|
while(res < res_end){ |
|
sum += *(res++); |
|
} |
|
sums[pmax][i] = sum; |
|
res_end+= n >> pmax; |
|
} |
|
/* sums for lower levels */ |
|
for(i=pmax-1; i>=pmin; i--) { |
|
parts = (1 << i); |
|
for(j=0; j<parts; j++) { |
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1]; |
|
} |
|
} |
|
} |
|
|
|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order) |
|
{ |
|
int i; |
|
uint32_t bits[MAX_PARTITION_ORDER+1]; |
|
int opt_porder; |
|
RiceContext tmp_rc; |
|
uint32_t *udata; |
|
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS]; |
|
|
|
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); |
|
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); |
|
assert(pmin <= pmax); |
|
|
|
udata = av_malloc(n * sizeof(uint32_t)); |
|
for(i=0; i<n; i++) { |
|
udata[i] = (2*data[i]) ^ (data[i]>>31); |
|
} |
|
|
|
calc_sums(pmin, pmax, udata, n, pred_order, sums); |
|
|
|
opt_porder = pmin; |
|
bits[pmin] = UINT32_MAX; |
|
for(i=pmin; i<=pmax; i++) { |
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); |
|
if(bits[i] <= bits[opt_porder]) { |
|
opt_porder = i; |
|
*rc= tmp_rc; |
|
} |
|
} |
|
|
|
av_freep(&udata); |
|
return bits[opt_porder]; |
|
} |
|
|
|
static int get_max_p_order(int max_porder, int n, int order) |
|
{ |
|
int porder = FFMIN(max_porder, av_log2(n^(n-1))); |
|
if(order > 0) |
|
porder = FFMIN(porder, av_log2(n/order)); |
|
return porder; |
|
} |
|
|
|
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps) |
|
{ |
|
uint32_t bits; |
|
pmin = get_max_p_order(pmin, n, pred_order); |
|
pmax = get_max_p_order(pmax, n, pred_order); |
|
bits = pred_order*bps + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps, int precision) |
|
{ |
|
uint32_t bits; |
|
pmin = get_max_p_order(pmin, n, pred_order); |
|
pmax = get_max_p_order(pmax, n, pred_order); |
|
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
/** |
|
* Apply Welch window function to audio block |
|
*/ |
|
static void apply_welch_window(const int32_t *data, int len, double *w_data) |
|
{ |
|
int i, n2; |
|
double w; |
|
double c; |
|
|
|
assert(!(len&1)); //the optimization in r11881 does not support odd len |
|
//if someone wants odd len extend the change in r11881 |
|
|
|
n2 = (len >> 1); |
|
c = 2.0 / (len - 1.0); |
|
|
|
w_data+=n2; |
|
data+=n2; |
|
for(i=0; i<n2; i++) { |
|
w = c - n2 + i; |
|
w = 1.0 - (w * w); |
|
w_data[-i-1] = data[-i-1] * w; |
|
w_data[+i ] = data[+i ] * w; |
|
} |
|
} |
|
|
|
/** |
|
* Calculates autocorrelation data from audio samples |
|
* A Welch window function is applied before calculation. |
|
*/ |
|
void ff_flac_compute_autocorr(const int32_t *data, int len, int lag, |
|
double *autoc) |
|
{ |
|
int i, j; |
|
double tmp[len + lag + 1]; |
|
double *data1= tmp + lag; |
|
|
|
apply_welch_window(data, len, data1); |
|
|
|
for(j=0; j<lag; j++) |
|
data1[j-lag]= 0.0; |
|
data1[len] = 0.0; |
|
|
|
for(j=0; j<lag; j+=2){ |
|
double sum0 = 1.0, sum1 = 1.0; |
|
for(i=0; i<len; i++){ |
|
sum0 += data1[i] * data1[i-j]; |
|
sum1 += data1[i] * data1[i-j-1]; |
|
} |
|
autoc[j ] = sum0; |
|
autoc[j+1] = sum1; |
|
} |
|
|
|
if(j==lag){ |
|
double sum = 1.0; |
|
for(i=0; i<len; i+=2){ |
|
sum += data1[i ] * data1[i-j ] |
|
+ data1[i+1] * data1[i-j+1]; |
|
} |
|
autoc[j] = sum; |
|
} |
|
} |
|
|
|
/** |
|
* Levinson-Durbin recursion. |
|
* Produces LPC coefficients from autocorrelation data. |
|
*/ |
|
static void compute_lpc_coefs(const double *autoc, int max_order, |
|
double lpc[][MAX_LPC_ORDER], double *ref) |
|
{ |
|
int i, j, i2; |
|
double r, err, tmp; |
|
double lpc_tmp[MAX_LPC_ORDER]; |
|
|
|
for(i=0; i<max_order; i++) lpc_tmp[i] = 0; |
|
err = autoc[0]; |
|
|
|
for(i=0; i<max_order; i++) { |
|
r = -autoc[i+1]; |
|
for(j=0; j<i; j++) { |
|
r -= lpc_tmp[j] * autoc[i-j]; |
|
} |
|
r /= err; |
|
ref[i] = fabs(r); |
|
|
|
err *= 1.0 - (r * r); |
|
|
|
i2 = (i >> 1); |
|
lpc_tmp[i] = r; |
|
for(j=0; j<i2; j++) { |
|
tmp = lpc_tmp[j]; |
|
lpc_tmp[j] += r * lpc_tmp[i-1-j]; |
|
lpc_tmp[i-1-j] += r * tmp; |
|
} |
|
if(i & 1) { |
|
lpc_tmp[j] += lpc_tmp[j] * r; |
|
} |
|
|
|
for(j=0; j<=i; j++) { |
|
lpc[i][j] = -lpc_tmp[j]; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Quantize LPC coefficients |
|
*/ |
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
|
int32_t *lpc_out, int *shift) |
|
{ |
|
int i; |
|
double cmax, error; |
|
int32_t qmax; |
|
int sh; |
|
|
|
/* define maximum levels */ |
|
qmax = (1 << (precision - 1)) - 1; |
|
|
|
/* find maximum coefficient value */ |
|
cmax = 0.0; |
|
for(i=0; i<order; i++) { |
|
cmax= FFMAX(cmax, fabs(lpc_in[i])); |
|
} |
|
|
|
/* if maximum value quantizes to zero, return all zeros */ |
|
if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) { |
|
*shift = 0; |
|
memset(lpc_out, 0, sizeof(int32_t) * order); |
|
return; |
|
} |
|
|
|
/* calculate level shift which scales max coeff to available bits */ |
|
sh = MAX_LPC_SHIFT; |
|
while((cmax * (1 << sh) > qmax) && (sh > 0)) { |
|
sh--; |
|
} |
|
|
|
/* since negative shift values are unsupported in decoder, scale down |
|
coefficients instead */ |
|
if(sh == 0 && cmax > qmax) { |
|
double scale = ((double)qmax) / cmax; |
|
for(i=0; i<order; i++) { |
|
lpc_in[i] *= scale; |
|
} |
|
} |
|
|
|
/* output quantized coefficients and level shift */ |
|
error=0; |
|
for(i=0; i<order; i++) { |
|
error += lpc_in[i] * (1 << sh); |
|
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); |
|
error -= lpc_out[i]; |
|
} |
|
*shift = sh; |
|
} |
|
|
|
static int estimate_best_order(double *ref, int max_order) |
|
{ |
|
int i, est; |
|
|
|
est = 1; |
|
for(i=max_order-1; i>=0; i--) { |
|
if(ref[i] > 0.10) { |
|
est = i+1; |
|
break; |
|
} |
|
} |
|
return est; |
|
} |
|
|
|
/** |
|
* Calculate LPC coefficients for multiple orders |
|
*/ |
|
static int lpc_calc_coefs(FlacEncodeContext *s, |
|
const int32_t *samples, int blocksize, int max_order, |
|
int precision, int32_t coefs[][MAX_LPC_ORDER], |
|
int *shift, int use_lpc, int omethod) |
|
{ |
|
double autoc[MAX_LPC_ORDER+1]; |
|
double ref[MAX_LPC_ORDER]; |
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int i, j, pass; |
|
int opt_order; |
|
|
|
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER); |
|
|
|
if(use_lpc == 1){ |
|
s->dsp.flac_compute_autocorr(samples, blocksize, max_order, autoc); |
|
|
|
compute_lpc_coefs(autoc, max_order, lpc, ref); |
|
}else{ |
|
LLSModel m[2]; |
|
double var[MAX_LPC_ORDER+1], weight; |
|
|
|
for(pass=0; pass<use_lpc-1; pass++){ |
|
av_init_lls(&m[pass&1], max_order); |
|
|
|
weight=0; |
|
for(i=max_order; i<blocksize; i++){ |
|
for(j=0; j<=max_order; j++) |
|
var[j]= samples[i-j]; |
|
|
|
if(pass){ |
|
double eval, inv, rinv; |
|
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); |
|
eval= (512>>pass) + fabs(eval - var[0]); |
|
inv = 1/eval; |
|
rinv = sqrt(inv); |
|
for(j=0; j<=max_order; j++) |
|
var[j] *= rinv; |
|
weight += inv; |
|
}else |
|
weight++; |
|
|
|
av_update_lls(&m[pass&1], var, 1.0); |
|
} |
|
av_solve_lls(&m[pass&1], 0.001, 0); |
|
} |
|
|
|
for(i=0; i<max_order; i++){ |
|
for(j=0; j<max_order; j++) |
|
lpc[i][j]= m[(pass-1)&1].coeff[i][j]; |
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; |
|
} |
|
for(i=max_order-1; i>0; i--) |
|
ref[i] = ref[i-1] - ref[i]; |
|
} |
|
opt_order = max_order; |
|
|
|
if(omethod == ORDER_METHOD_EST) { |
|
opt_order = estimate_best_order(ref, max_order); |
|
i = opt_order-1; |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]); |
|
} else { |
|
for(i=0; i<max_order; i++) { |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]); |
|
} |
|
} |
|
|
|
return opt_order; |
|
} |
|
|
|
|
|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n) |
|
{ |
|
assert(n > 0); |
|
memcpy(res, smp, n * sizeof(int32_t)); |
|
} |
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, |
|
int order) |
|
{ |
|
int i; |
|
|
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
|
|
if(order==0){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i]; |
|
}else if(order==1){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - smp[i-1]; |
|
}else if(order==2){ |
|
int a = smp[order-1] - smp[order-2]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
res[i]= b - a; |
|
a = smp[i+1] - smp[i]; |
|
res[i+1]= a - b; |
|
} |
|
}else if(order==3){ |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
int d = b - a; |
|
res[i]= d - c; |
|
a = smp[i+1] - smp[i]; |
|
c = a - b; |
|
res[i+1]= c - d; |
|
} |
|
}else{ |
|
int a = smp[order-1] - smp[order-2]; |
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
|
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4]; |
|
for(i=order; i<n; i+=2) { |
|
int b = smp[i] - smp[i-1]; |
|
int d = b - a; |
|
int f = d - c; |
|
res[i]= f - e; |
|
a = smp[i+1] - smp[i]; |
|
c = a - b; |
|
e = c - d; |
|
res[i+1]= e - f; |
|
} |
|
} |
|
} |
|
|
|
#define LPC1(x) {\ |
|
int c = coefs[(x)-1];\ |
|
p0 += c*s;\ |
|
s = smp[i-(x)+1];\ |
|
p1 += c*s;\ |
|
} |
|
|
|
static av_always_inline void encode_residual_lpc_unrolled( |
|
int32_t *res, const int32_t *smp, int n, |
|
int order, const int32_t *coefs, int shift, int big) |
|
{ |
|
int i; |
|
for(i=order; i<n; i+=2) { |
|
int s = smp[i-order]; |
|
int p0 = 0, p1 = 0; |
|
if(big) { |
|
switch(order) { |
|
case 32: LPC1(32) |
|
case 31: LPC1(31) |
|
case 30: LPC1(30) |
|
case 29: LPC1(29) |
|
case 28: LPC1(28) |
|
case 27: LPC1(27) |
|
case 26: LPC1(26) |
|
case 25: LPC1(25) |
|
case 24: LPC1(24) |
|
case 23: LPC1(23) |
|
case 22: LPC1(22) |
|
case 21: LPC1(21) |
|
case 20: LPC1(20) |
|
case 19: LPC1(19) |
|
case 18: LPC1(18) |
|
case 17: LPC1(17) |
|
case 16: LPC1(16) |
|
case 15: LPC1(15) |
|
case 14: LPC1(14) |
|
case 13: LPC1(13) |
|
case 12: LPC1(12) |
|
case 11: LPC1(11) |
|
case 10: LPC1(10) |
|
case 9: LPC1( 9) |
|
LPC1( 8) |
|
LPC1( 7) |
|
LPC1( 6) |
|
LPC1( 5) |
|
LPC1( 4) |
|
LPC1( 3) |
|
LPC1( 2) |
|
LPC1( 1) |
|
} |
|
} else { |
|
switch(order) { |
|
case 8: LPC1( 8) |
|
case 7: LPC1( 7) |
|
case 6: LPC1( 6) |
|
case 5: LPC1( 5) |
|
case 4: LPC1( 4) |
|
case 3: LPC1( 3) |
|
case 2: LPC1( 2) |
|
case 1: LPC1( 1) |
|
} |
|
} |
|
res[i ] = smp[i ] - (p0 >> shift); |
|
res[i+1] = smp[i+1] - (p1 >> shift); |
|
} |
|
} |
|
|
|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n, |
|
int order, const int32_t *coefs, int shift) |
|
{ |
|
int i; |
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
#ifdef CONFIG_SMALL |
|
for(i=order; i<n; i+=2) { |
|
int j; |
|
int s = smp[i]; |
|
int p0 = 0, p1 = 0; |
|
for(j=0; j<order; j++) { |
|
int c = coefs[j]; |
|
p1 += c*s; |
|
s = smp[i-j-1]; |
|
p0 += c*s; |
|
} |
|
res[i ] = smp[i ] - (p0 >> shift); |
|
res[i+1] = smp[i+1] - (p1 >> shift); |
|
} |
|
#else |
|
switch(order) { |
|
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break; |
|
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break; |
|
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break; |
|
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break; |
|
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break; |
|
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break; |
|
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break; |
|
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break; |
|
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break; |
|
} |
|
#endif |
|
} |
|
|
|
static int encode_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
int min_order, max_order, opt_order, precision, omethod; |
|
int min_porder, max_porder; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int shift[MAX_LPC_ORDER]; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
if(n < 5) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
min_order = ctx->options.min_prediction_order; |
|
max_order = ctx->options.max_prediction_order; |
|
min_porder = ctx->options.min_partition_order; |
|
max_porder = ctx->options.max_partition_order; |
|
precision = ctx->options.lpc_coeff_precision; |
|
omethod = ctx->options.prediction_order_method; |
|
|
|
/* FIXED */ |
|
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) { |
|
uint32_t bits[MAX_FIXED_ORDER+1]; |
|
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for(i=min_order; i<=max_order; i++) { |
|
encode_residual_fixed(res, smp, n, i); |
|
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, |
|
n, i, sub->obits); |
|
if(bits[i] < bits[opt_order]) { |
|
opt_order = i; |
|
} |
|
} |
|
sub->order = opt_order; |
|
sub->type = FLAC_SUBFRAME_FIXED; |
|
sub->type_code = sub->type | sub->order; |
|
if(sub->order != max_order) { |
|
encode_residual_fixed(res, smp, n, sub->order); |
|
return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n, |
|
sub->order, sub->obits); |
|
} |
|
return bits[sub->order]; |
|
} |
|
|
|
/* LPC */ |
|
opt_order = lpc_calc_coefs(ctx, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod); |
|
|
|
if(omethod == ORDER_METHOD_2LEVEL || |
|
omethod == ORDER_METHOD_4LEVEL || |
|
omethod == ORDER_METHOD_8LEVEL) { |
|
int levels = 1 << omethod; |
|
uint32_t bits[levels]; |
|
int order; |
|
int opt_index = levels-1; |
|
opt_order = max_order-1; |
|
bits[opt_index] = UINT32_MAX; |
|
for(i=levels-1; i>=0; i--) { |
|
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; |
|
if(order < 0) order = 0; |
|
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, order+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_index]) { |
|
opt_index = i; |
|
opt_order = order; |
|
} |
|
} |
|
opt_order++; |
|
} else if(omethod == ORDER_METHOD_SEARCH) { |
|
// brute-force optimal order search |
|
uint32_t bits[MAX_LPC_ORDER]; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for(i=min_order-1; i<max_order; i++) { |
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, i+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_order]) { |
|
opt_order = i; |
|
} |
|
} |
|
opt_order++; |
|
} else if(omethod == ORDER_METHOD_LOG) { |
|
uint32_t bits[MAX_LPC_ORDER]; |
|
int step; |
|
|
|
opt_order= min_order - 1 + (max_order-min_order)/3; |
|
memset(bits, -1, sizeof(bits)); |
|
|
|
for(step=16 ;step; step>>=1){ |
|
int last= opt_order; |
|
for(i=last-step; i<=last+step; i+= step){ |
|
if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX) |
|
continue; |
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); |
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, |
|
res, n, i+1, sub->obits, precision); |
|
if(bits[i] < bits[opt_order]) |
|
opt_order= i; |
|
} |
|
} |
|
opt_order++; |
|
} |
|
|
|
sub->order = opt_order; |
|
sub->type = FLAC_SUBFRAME_LPC; |
|
sub->type_code = sub->type | (sub->order-1); |
|
sub->shift = shift[sub->order-1]; |
|
for(i=0; i<sub->order; i++) { |
|
sub->coefs[i] = coefs[sub->order-1][i]; |
|
} |
|
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); |
|
return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order, |
|
sub->obits, precision); |
|
} |
|
|
|
static int encode_residual_v(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) |
|
{ |
|
int i, best; |
|
int32_t lt, rt; |
|
uint64_t sum[4]; |
|
uint64_t score[4]; |
|
int k; |
|
|
|
/* calculate sum of 2nd order residual for each channel */ |
|
sum[0] = sum[1] = sum[2] = sum[3] = 0; |
|
for(i=2; i<n; i++) { |
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; |
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; |
|
sum[2] += FFABS((lt + rt) >> 1); |
|
sum[3] += FFABS(lt - rt); |
|
sum[0] += FFABS(lt); |
|
sum[1] += FFABS(rt); |
|
} |
|
/* estimate bit counts */ |
|
for(i=0; i<4; i++) { |
|
k = find_optimal_param(2*sum[i], n); |
|
sum[i] = rice_encode_count(2*sum[i], n, k); |
|
} |
|
|
|
/* calculate score for each mode */ |
|
score[0] = sum[0] + sum[1]; |
|
score[1] = sum[0] + sum[3]; |
|
score[2] = sum[1] + sum[3]; |
|
score[3] = sum[2] + sum[3]; |
|
|
|
/* return mode with lowest score */ |
|
best = 0; |
|
for(i=1; i<4; i++) { |
|
if(score[i] < score[best]) { |
|
best = i; |
|
} |
|
} |
|
if(best == 0) { |
|
return FLAC_CHMODE_LEFT_RIGHT; |
|
} else if(best == 1) { |
|
return FLAC_CHMODE_LEFT_SIDE; |
|
} else if(best == 2) { |
|
return FLAC_CHMODE_RIGHT_SIDE; |
|
} else { |
|
return FLAC_CHMODE_MID_SIDE; |
|
} |
|
} |
|
|
|
/** |
|
* Perform stereo channel decorrelation |
|
*/ |
|
static void channel_decorrelation(FlacEncodeContext *ctx) |
|
{ |
|
FlacFrame *frame; |
|
int32_t *left, *right; |
|
int i, n; |
|
|
|
frame = &ctx->frame; |
|
n = frame->blocksize; |
|
left = frame->subframes[0].samples; |
|
right = frame->subframes[1].samples; |
|
|
|
if(ctx->channels != 2) { |
|
frame->ch_mode = FLAC_CHMODE_NOT_STEREO; |
|
return; |
|
} |
|
|
|
frame->ch_mode = estimate_stereo_mode(left, right, n); |
|
|
|
/* perform decorrelation and adjust bits-per-sample */ |
|
if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) { |
|
return; |
|
} |
|
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) { |
|
int32_t tmp; |
|
for(i=0; i<n; i++) { |
|
tmp = left[i]; |
|
left[i] = (tmp + right[i]) >> 1; |
|
right[i] = tmp - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
|
for(i=0; i<n; i++) { |
|
right[i] = left[i] - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else { |
|
for(i=0; i<n; i++) { |
|
left[i] -= right[i]; |
|
} |
|
frame->subframes[0].obits++; |
|
} |
|
} |
|
|
|
static void put_sbits(PutBitContext *pb, int bits, int32_t val) |
|
{ |
|
assert(bits >= 0 && bits <= 31); |
|
|
|
put_bits(pb, bits, val & ((1<<bits)-1)); |
|
} |
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val) |
|
{ |
|
uint8_t tmp; |
|
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);) |
|
} |
|
|
|
static void output_frame_header(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
int crc; |
|
|
|
frame = &s->frame; |
|
|
|
put_bits(&s->pb, 16, 0xFFF8); |
|
put_bits(&s->pb, 4, frame->bs_code[0]); |
|
put_bits(&s->pb, 4, s->sr_code[0]); |
|
if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) { |
|
put_bits(&s->pb, 4, s->ch_code); |
|
} else { |
|
put_bits(&s->pb, 4, frame->ch_mode); |
|
} |
|
put_bits(&s->pb, 3, 4); /* bits-per-sample code */ |
|
put_bits(&s->pb, 1, 0); |
|
write_utf8(&s->pb, s->frame_count); |
|
if(frame->bs_code[0] == 6) { |
|
put_bits(&s->pb, 8, frame->bs_code[1]); |
|
} else if(frame->bs_code[0] == 7) { |
|
put_bits(&s->pb, 16, frame->bs_code[1]); |
|
} |
|
if(s->sr_code[0] == 12) { |
|
put_bits(&s->pb, 8, s->sr_code[1]); |
|
} else if(s->sr_code[0] > 12) { |
|
put_bits(&s->pb, 16, s->sr_code[1]); |
|
} |
|
flush_put_bits(&s->pb); |
|
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, |
|
s->pb.buf, put_bits_count(&s->pb)>>3); |
|
put_bits(&s->pb, 8, crc); |
|
} |
|
|
|
static void output_subframe_constant(FlacEncodeContext *s, int ch) |
|
{ |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
sub = &s->frame.subframes[ch]; |
|
res = sub->residual[0]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
|
|
static void output_subframe_verbatim(FlacEncodeContext *s, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
frame = &s->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
for(i=0; i<frame->blocksize; i++) { |
|
res = sub->residual[i]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
} |
|
|
|
static void output_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, j, p, n, parts; |
|
int k, porder, psize, res_cnt; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
n = frame->blocksize; |
|
|
|
/* rice-encoded block */ |
|
put_bits(&ctx->pb, 2, 0); |
|
|
|
/* partition order */ |
|
porder = sub->rc.porder; |
|
psize = n >> porder; |
|
parts = (1 << porder); |
|
put_bits(&ctx->pb, 4, porder); |
|
res_cnt = psize - sub->order; |
|
|
|
/* residual */ |
|
j = sub->order; |
|
for(p=0; p<parts; p++) { |
|
k = sub->rc.params[p]; |
|
put_bits(&ctx->pb, 4, k); |
|
if(p == 1) res_cnt = psize; |
|
for(i=0; i<res_cnt && j<n; i++, j++) { |
|
set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0); |
|
} |
|
} |
|
} |
|
|
|
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, cbits; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* LPC coefficients */ |
|
cbits = ctx->options.lpc_coeff_precision; |
|
put_bits(&ctx->pb, 4, cbits-1); |
|
put_sbits(&ctx->pb, 5, sub->shift); |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, cbits, sub->coefs[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframes(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int ch; |
|
|
|
frame = &s->frame; |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
sub = &frame->subframes[ch]; |
|
|
|
/* subframe header */ |
|
put_bits(&s->pb, 1, 0); |
|
put_bits(&s->pb, 6, sub->type_code); |
|
put_bits(&s->pb, 1, 0); /* no wasted bits */ |
|
|
|
/* subframe */ |
|
if(sub->type == FLAC_SUBFRAME_CONSTANT) { |
|
output_subframe_constant(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_VERBATIM) { |
|
output_subframe_verbatim(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_FIXED) { |
|
output_subframe_fixed(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_LPC) { |
|
output_subframe_lpc(s, ch); |
|
} |
|
} |
|
} |
|
|
|
static void output_frame_footer(FlacEncodeContext *s) |
|
{ |
|
int crc; |
|
flush_put_bits(&s->pb); |
|
crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, |
|
s->pb.buf, put_bits_count(&s->pb)>>3)); |
|
put_bits(&s->pb, 16, crc); |
|
flush_put_bits(&s->pb); |
|
} |
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
|
int buf_size, void *data) |
|
{ |
|
int ch; |
|
FlacEncodeContext *s; |
|
int16_t *samples = data; |
|
int out_bytes; |
|
|
|
s = avctx->priv_data; |
|
|
|
init_frame(s); |
|
|
|
copy_samples(s, samples); |
|
|
|
channel_decorrelation(s); |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual(s, ch); |
|
} |
|
init_put_bits(&s->pb, frame, buf_size); |
|
output_frame_header(s); |
|
output_subframes(s); |
|
output_frame_footer(s); |
|
out_bytes = put_bits_count(&s->pb) >> 3; |
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) { |
|
/* frame too large. use verbatim mode */ |
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual_v(s, ch); |
|
} |
|
init_put_bits(&s->pb, frame, buf_size); |
|
output_frame_header(s); |
|
output_subframes(s); |
|
output_frame_footer(s); |
|
out_bytes = put_bits_count(&s->pb) >> 3; |
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) { |
|
/* still too large. must be an error. */ |
|
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
s->frame_count++; |
|
return out_bytes; |
|
} |
|
|
|
static av_cold int flac_encode_close(AVCodecContext *avctx) |
|
{ |
|
av_freep(&avctx->extradata); |
|
avctx->extradata_size = 0; |
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
AVCodec flac_encoder = { |
|
"flac", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_FLAC, |
|
sizeof(FlacEncodeContext), |
|
flac_encode_init, |
|
flac_encode_frame, |
|
flac_encode_close, |
|
NULL, |
|
.capabilities = CODEC_CAP_SMALL_LAST_FRAME, |
|
};
|
|
|