You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1049 lines
41 KiB

/*
* Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/avutil.h"
#include "libavutil/bswap.h"
#include "libavutil/cpu.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mathematics.h"
#include "libavutil/pixdesc.h"
#include "config.h"
#include "rgb2rgb.h"
#include "swscale_internal.h"
#include "swscale.h"
DECLARE_ALIGNED(8, const uint8_t, dither_8x8_128)[8][8] = {
{ 36, 68, 60, 92, 34, 66, 58, 90, },
{ 100, 4, 124, 28, 98, 2, 122, 26, },
{ 52, 84, 44, 76, 50, 82, 42, 74, },
{ 116, 20, 108, 12, 114, 18, 106, 10, },
{ 32, 64, 56, 88, 38, 70, 62, 94, },
{ 96, 0, 120, 24, 102, 6, 126, 30, },
{ 48, 80, 40, 72, 54, 86, 46, 78, },
{ 112, 16, 104, 8, 118, 22, 110, 14, },
};
DECLARE_ALIGNED(8, const uint8_t, ff_sws_pb_64)[8] = {
64, 64, 64, 64, 64, 64, 64, 64
};
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
int height, int y, uint8_t val)
{
int i;
uint8_t *ptr = plane + stride * y;
for (i = 0; i < height; i++) {
memset(ptr, val, width);
ptr += stride;
}
}
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
const uint8_t *_src, const int16_t *filter,
const int32_t *filterPos, int filterSize)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
int i;
int32_t *dst = (int32_t *) _dst;
const uint16_t *src = (const uint16_t *) _src;
int bits = desc->comp[0].depth_minus1;
int sh = bits - 4;
if((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth_minus1<15)
sh= 9;
for (i = 0; i < dstW; i++) {
int j;
int srcPos = filterPos[i];
int val = 0;
for (j = 0; j < filterSize; j++) {
val += src[srcPos + j] * filter[filterSize * i + j];
}
// filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
}
}
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
const uint8_t *_src, const int16_t *filter,
const int32_t *filterPos, int filterSize)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
int i;
const uint16_t *src = (const uint16_t *) _src;
int sh = desc->comp[0].depth_minus1;
if(sh<15)
sh= isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : desc->comp[0].depth_minus1;
for (i = 0; i < dstW; i++) {
int j;
int srcPos = filterPos[i];
int val = 0;
for (j = 0; j < filterSize; j++) {
val += src[srcPos + j] * filter[filterSize * i + j];
}
// filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
}
}
// bilinear / bicubic scaling
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize)
{
int i;
for (i = 0; i < dstW; i++) {
int j;
int srcPos = filterPos[i];
int val = 0;
for (j = 0; j < filterSize; j++) {
val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
}
dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
}
}
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize)
{
int i;
int32_t *dst = (int32_t *) _dst;
for (i = 0; i < dstW; i++) {
int j;
int srcPos = filterPos[i];
int val = 0;
for (j = 0; j < filterSize; j++) {
val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
}
dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
}
}
// FIXME all pal and rgb srcFormats could do this conversion as well
// FIXME all scalers more complex than bilinear could do half of this transform
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
{
int i;
for (i = 0; i < width; i++) {
dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
}
}
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
{
int i;
for (i = 0; i < width; i++) {
dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
}
}
static void lumRangeToJpeg_c(int16_t *dst, int width)
{
int i;
for (i = 0; i < width; i++)
dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
}
static void lumRangeFromJpeg_c(int16_t *dst, int width)
{
int i;
for (i = 0; i < width; i++)
dst[i] = (dst[i] * 14071 + 33561947) >> 14;
}
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
{
int i;
int32_t *dstU = (int32_t *) _dstU;
int32_t *dstV = (int32_t *) _dstV;
for (i = 0; i < width; i++) {
dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
}
}
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
{
int i;
int32_t *dstU = (int32_t *) _dstU;
int32_t *dstV = (int32_t *) _dstV;
for (i = 0; i < width; i++) {
dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
}
}
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
{
int i;
int32_t *dst = (int32_t *) _dst;
for (i = 0; i < width; i++)
dst[i] = (FFMIN(dst[i], 30189 << 4) * 4769 - (39057361 << 2)) >> 12;
}
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
{
int i;
int32_t *dst = (int32_t *) _dst;
for (i = 0; i < width; i++)
dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
}
static void hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
const uint8_t *src, int srcW, int xInc)
{
int i;
unsigned int xpos = 0;
for (i = 0; i < dstWidth; i++) {
register unsigned int xx = xpos >> 16;
register unsigned int xalpha = (xpos & 0xFFFF) >> 9;
dst[i] = (src[xx] << 7) + (src[xx + 1] - src[xx]) * xalpha;
xpos += xInc;
}
for (i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--)
dst[i] = src[srcW-1]*128;
}
// *** horizontal scale Y line to temp buffer
static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
const uint8_t *src_in[4],
int srcW, int xInc,
const int16_t *hLumFilter,
const int32_t *hLumFilterPos,
int hLumFilterSize,
uint8_t *formatConvBuffer,
uint32_t *pal, int isAlpha)
{
void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =
isAlpha ? c->alpToYV12 : c->lumToYV12;
void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;
const uint8_t *src = src_in[isAlpha ? 3 : 0];
if (toYV12) {
toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);
src = formatConvBuffer;
} else if (c->readLumPlanar && !isAlpha) {
c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);
src = formatConvBuffer;
}
if (!c->hyscale_fast) {
c->hyScale(c, dst, dstWidth, src, hLumFilter,
hLumFilterPos, hLumFilterSize);
} else { // fast bilinear upscale / crap downscale
c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
}
if (convertRange)
convertRange(dst, dstWidth);
}
static void hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
int dstWidth, const uint8_t *src1,
const uint8_t *src2, int srcW, int xInc)
{
int i;
unsigned int xpos = 0;
for (i = 0; i < dstWidth; i++) {
register unsigned int xx = xpos >> 16;
register unsigned int xalpha = (xpos & 0xFFFF) >> 9;
dst1[i] = (src1[xx] * (xalpha ^ 127) + src1[xx + 1] * xalpha);
dst2[i] = (src2[xx] * (xalpha ^ 127) + src2[xx + 1] * xalpha);
xpos += xInc;
}
for (i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--) {
dst1[i] = src1[srcW-1]*128;
dst2[i] = src2[srcW-1]*128;
}
}
static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,
int16_t *dst2, int dstWidth,
const uint8_t *src_in[4],
int srcW, int xInc,
const int16_t *hChrFilter,
const int32_t *hChrFilterPos,
int hChrFilterSize,
uint8_t *formatConvBuffer, uint32_t *pal)
{
const uint8_t *src1 = src_in[1], *src2 = src_in[2];
if (c->chrToYV12) {
uint8_t *buf2 = formatConvBuffer +
FFALIGN(srcW*2+78, 16);
c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);
src1= formatConvBuffer;
src2= buf2;
} else if (c->readChrPlanar) {
uint8_t *buf2 = formatConvBuffer +
FFALIGN(srcW*2+78, 16);
c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);
src1 = formatConvBuffer;
src2 = buf2;
}
if (!c->hcscale_fast) {
c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
} else { // fast bilinear upscale / crap downscale
c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
}
if (c->chrConvertRange)
c->chrConvertRange(dst1, dst2, dstWidth);
}
#define DEBUG_SWSCALE_BUFFERS 0
#define DEBUG_BUFFERS(...) \
if (DEBUG_SWSCALE_BUFFERS) \
av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
static int swScale(SwsContext *c, const uint8_t *src[],
int srcStride[], int srcSliceY,
int srcSliceH, uint8_t *dst[], int dstStride[])
{
/* load a few things into local vars to make the code more readable?
* and faster */
const int srcW = c->srcW;
const int dstW = c->dstW;
const int dstH = c->dstH;
const int chrDstW = c->chrDstW;
const int chrSrcW = c->chrSrcW;
const int lumXInc = c->lumXInc;
const int chrXInc = c->chrXInc;
const enum AVPixelFormat dstFormat = c->dstFormat;
const int flags = c->flags;
int32_t *vLumFilterPos = c->vLumFilterPos;
int32_t *vChrFilterPos = c->vChrFilterPos;
int32_t *hLumFilterPos = c->hLumFilterPos;
int32_t *hChrFilterPos = c->hChrFilterPos;
int16_t *hLumFilter = c->hLumFilter;
int16_t *hChrFilter = c->hChrFilter;
int32_t *lumMmxFilter = c->lumMmxFilter;
int32_t *chrMmxFilter = c->chrMmxFilter;
const int vLumFilterSize = c->vLumFilterSize;
const int vChrFilterSize = c->vChrFilterSize;
const int hLumFilterSize = c->hLumFilterSize;
const int hChrFilterSize = c->hChrFilterSize;
int16_t **lumPixBuf = c->lumPixBuf;
int16_t **chrUPixBuf = c->chrUPixBuf;
int16_t **chrVPixBuf = c->chrVPixBuf;
int16_t **alpPixBuf = c->alpPixBuf;
const int vLumBufSize = c->vLumBufSize;
const int vChrBufSize = c->vChrBufSize;
uint8_t *formatConvBuffer = c->formatConvBuffer;
uint32_t *pal = c->pal_yuv;
yuv2planar1_fn yuv2plane1 = c->yuv2plane1;
yuv2planarX_fn yuv2planeX = c->yuv2planeX;
yuv2interleavedX_fn yuv2nv12cX = c->yuv2nv12cX;
yuv2packed1_fn yuv2packed1 = c->yuv2packed1;
yuv2packed2_fn yuv2packed2 = c->yuv2packed2;
yuv2packedX_fn yuv2packedX = c->yuv2packedX;
yuv2anyX_fn yuv2anyX = c->yuv2anyX;
const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
const int chrSrcSliceH = -((-srcSliceH) >> c->chrSrcVSubSample);
int should_dither = is9_OR_10BPS(c->srcFormat) ||
is16BPS(c->srcFormat);
int lastDstY;
/* vars which will change and which we need to store back in the context */
int dstY = c->dstY;
int lumBufIndex = c->lumBufIndex;
int chrBufIndex = c->chrBufIndex;
int lastInLumBuf = c->lastInLumBuf;
int lastInChrBuf = c->lastInChrBuf;
if (!usePal(c->srcFormat)) {
pal = c->input_rgb2yuv_table;
}
if (isPacked(c->srcFormat)) {
src[0] =
src[1] =
src[2] =
src[3] = src[0];
srcStride[0] =
srcStride[1] =
srcStride[2] =
srcStride[3] = srcStride[0];
}
srcStride[1] <<= c->vChrDrop;
srcStride[2] <<= c->vChrDrop;
DEBUG_BUFFERS("swScale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
src[0], srcStride[0], src[1], srcStride[1],
src[2], srcStride[2], src[3], srcStride[3],
dst[0], dstStride[0], dst[1], dstStride[1],
dst[2], dstStride[2], dst[3], dstStride[3]);
DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
srcSliceY, srcSliceH, dstY, dstH);
DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);
if (dstStride[0]%16 !=0 || dstStride[1]%16 !=0 ||
dstStride[2]%16 !=0 || dstStride[3]%16 != 0) {
static int warnedAlready = 0; // FIXME maybe move this into the context
if (flags & SWS_PRINT_INFO && !warnedAlready) {
av_log(c, AV_LOG_WARNING,
"Warning: dstStride is not aligned!\n"
" ->cannot do aligned memory accesses anymore\n");
warnedAlready = 1;
}
}
if ( (uintptr_t)dst[0]%16 || (uintptr_t)dst[1]%16 || (uintptr_t)dst[2]%16
|| (uintptr_t)src[0]%16 || (uintptr_t)src[1]%16 || (uintptr_t)src[2]%16
|| dstStride[0]%16 || dstStride[1]%16 || dstStride[2]%16 || dstStride[3]%16
|| srcStride[0]%16 || srcStride[1]%16 || srcStride[2]%16 || srcStride[3]%16
) {
static int warnedAlready=0;
int cpu_flags = av_get_cpu_flags();
if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
warnedAlready=1;
}
}
/* Note the user might start scaling the picture in the middle so this
* will not get executed. This is not really intended but works
* currently, so people might do it. */
if (srcSliceY == 0) {
lumBufIndex = -1;
chrBufIndex = -1;
dstY = 0;
lastInLumBuf = -1;
lastInChrBuf = -1;
}
if (!should_dither) {
c->chrDither8 = c->lumDither8 = ff_sws_pb_64;
}
lastDstY = dstY;
for (; dstY < dstH; dstY++) {
const int chrDstY = dstY >> c->chrDstVSubSample;
uint8_t *dest[4] = {
dst[0] + dstStride[0] * dstY,
dst[1] + dstStride[1] * chrDstY,
dst[2] + dstStride[2] * chrDstY,
(CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
};
int use_mmx_vfilter= c->use_mmx_vfilter;
// First line needed as input
const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
// First line needed as input
const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
// Last line needed as input
int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
int enough_lines;
// handle holes (FAST_BILINEAR & weird filters)
if (firstLumSrcY > lastInLumBuf)
lastInLumBuf = firstLumSrcY - 1;
if (firstChrSrcY > lastInChrBuf)
lastInChrBuf = firstChrSrcY - 1;
av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);
DEBUG_BUFFERS("dstY: %d\n", dstY);
DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
firstLumSrcY, lastLumSrcY, lastInLumBuf);
DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
firstChrSrcY, lastChrSrcY, lastInChrBuf);
// Do we have enough lines in this slice to output the dstY line
enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
lastChrSrcY < -((-srcSliceY - srcSliceH) >> c->chrSrcVSubSample);
if (!enough_lines) {
lastLumSrcY = srcSliceY + srcSliceH - 1;
lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
lastLumSrcY, lastChrSrcY);
}
// Do horizontal scaling
while (lastInLumBuf < lastLumSrcY) {
const uint8_t *src1[4] = {
src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
};
lumBufIndex++;
av_assert0(lumBufIndex < 2 * vLumBufSize);
av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);
hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
hLumFilter, hLumFilterPos, hLumFilterSize,
formatConvBuffer, pal, 0);
if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
formatConvBuffer, pal, 1);
lastInLumBuf++;
DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
lumBufIndex, lastInLumBuf);
}
while (lastInChrBuf < lastChrSrcY) {
const uint8_t *src1[4] = {
src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
};
chrBufIndex++;
av_assert0(chrBufIndex < 2 * vChrBufSize);
av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
// FIXME replace parameters through context struct (some at least)
if (c->needs_hcscale)
hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
chrDstW, src1, chrSrcW, chrXInc,
hChrFilter, hChrFilterPos, hChrFilterSize,
formatConvBuffer, pal);
lastInChrBuf++;
DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
chrBufIndex, lastInChrBuf);
}
// wrap buf index around to stay inside the ring buffer
if (lumBufIndex >= vLumBufSize)
lumBufIndex -= vLumBufSize;
if (chrBufIndex >= vChrBufSize)
chrBufIndex -= vChrBufSize;
if (!enough_lines)
break; // we can't output a dstY line so let's try with the next slice
#if HAVE_MMX_INLINE
updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
lastInLumBuf, lastInChrBuf);
#endif
if (should_dither) {
c->chrDither8 = dither_8x8_128[chrDstY & 7];
c->lumDither8 = dither_8x8_128[dstY & 7];
}
if (dstY >= dstH - 2) {
/* hmm looks like we can't use MMX here without overwriting
* this array's tail */
ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
&yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
use_mmx_vfilter= 0;
}
{
const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
(const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
int16_t *vLumFilter = c->vLumFilter;
int16_t *vChrFilter = c->vChrFilter;
if (isPlanarYUV(dstFormat) ||
(isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;
vLumFilter += dstY * vLumFilterSize;
vChrFilter += chrDstY * vChrFilterSize;
// av_assert0(use_mmx_vfilter != (
// yuv2planeX == yuv2planeX_10BE_c
// || yuv2planeX == yuv2planeX_10LE_c
// || yuv2planeX == yuv2planeX_9BE_c
// || yuv2planeX == yuv2planeX_9LE_c
// || yuv2planeX == yuv2planeX_16BE_c
// || yuv2planeX == yuv2planeX_16LE_c
// || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);
if(use_mmx_vfilter){
vLumFilter= (int16_t *)c->lumMmxFilter;
vChrFilter= (int16_t *)c->chrMmxFilter;
}
if (vLumFilterSize == 1) {
yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
} else {
yuv2planeX(vLumFilter, vLumFilterSize,
lumSrcPtr, dest[0],
dstW, c->lumDither8, 0);
}
if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
if (yuv2nv12cX) {
yuv2nv12cX(c, vChrFilter,
vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
dest[1], chrDstW);
} else if (vChrFilterSize == 1) {
yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
} else {
yuv2planeX(vChrFilter,
vChrFilterSize, chrUSrcPtr, dest[1],
chrDstW, c->chrDither8, 0);
yuv2planeX(vChrFilter,
vChrFilterSize, chrVSrcPtr, dest[2],
chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
}
}
if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
if(use_mmx_vfilter){
vLumFilter= (int16_t *)c->alpMmxFilter;
}
if (vLumFilterSize == 1) {
yuv2plane1(alpSrcPtr[0], dest[3], dstW,
c->lumDither8, 0);
} else {
yuv2planeX(vLumFilter,
vLumFilterSize, alpSrcPtr, dest[3],
dstW, c->lumDither8, 0);
}
}
} else if (yuv2packedX) {
av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2);
av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
if (c->yuv2packed1 && vLumFilterSize == 1 &&
vChrFilterSize <= 2) { // unscaled RGB
int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
alpPixBuf ? *alpSrcPtr : NULL,
dest[0], dstW, chrAlpha, dstY);
} else if (c->yuv2packed2 && vLumFilterSize == 2 &&
vChrFilterSize == 2) { // bilinear upscale RGB
int lumAlpha = vLumFilter[2 * dstY + 1];
int chrAlpha = vChrFilter[2 * dstY + 1];
lumMmxFilter[2] =
lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001;
chrMmxFilter[2] =
chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
alpPixBuf ? alpSrcPtr : NULL,
dest[0], dstW, lumAlpha, chrAlpha, dstY);
} else { // general RGB
yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
lumSrcPtr, vLumFilterSize,
vChrFilter + dstY * vChrFilterSize,
chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
alpSrcPtr, dest[0], dstW, dstY);
}
} else {
av_assert1(!yuv2packed1 && !yuv2packed2);
yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
lumSrcPtr, vLumFilterSize,
vChrFilter + dstY * vChrFilterSize,
chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
alpSrcPtr, dest, dstW, dstY);
}
}
}
if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {
int length = dstW;
int height = dstY - lastDstY;
if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
1, desc->comp[3].depth_minus1,
isBE(dstFormat));
} else
fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
}
#if HAVE_MMXEXT_INLINE
if (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT)
__asm__ volatile ("sfence" ::: "memory");
#endif
emms_c();
/* store changed local vars back in the context */
c->dstY = dstY;
c->lumBufIndex = lumBufIndex;
c->chrBufIndex = chrBufIndex;
c->lastInLumBuf = lastInLumBuf;
c->lastInChrBuf = lastInChrBuf;
return dstY - lastDstY;
}
static av_cold void sws_init_swScale_c(SwsContext *c)
{
enum AVPixelFormat srcFormat = c->srcFormat;
ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX,
&c->yuv2nv12cX, &c->yuv2packed1,
&c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
ff_sws_init_input_funcs(c);
if (c->srcBpc == 8) {
if (c->dstBpc <= 14) {
c->hyScale = c->hcScale = hScale8To15_c;
if (c->flags & SWS_FAST_BILINEAR) {
c->hyscale_fast = hyscale_fast_c;
c->hcscale_fast = hcscale_fast_c;
}
} else {
c->hyScale = c->hcScale = hScale8To19_c;
}
} else {
c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
: hScale16To15_c;
}
if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
if (c->dstBpc <= 14) {
if (c->srcRange) {
c->lumConvertRange = lumRangeFromJpeg_c;
c->chrConvertRange = chrRangeFromJpeg_c;
} else {
c->lumConvertRange = lumRangeToJpeg_c;
c->chrConvertRange = chrRangeToJpeg_c;
}
} else {
if (c->srcRange) {
c->lumConvertRange = lumRangeFromJpeg16_c;
c->chrConvertRange = chrRangeFromJpeg16_c;
} else {
c->lumConvertRange = lumRangeToJpeg16_c;
c->chrConvertRange = chrRangeToJpeg16_c;
}
}
}
if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
c->needs_hcscale = 1;
}
SwsFunc ff_getSwsFunc(SwsContext *c)
{
sws_init_swScale_c(c);
if (HAVE_MMX)
ff_sws_init_swScale_mmx(c);
if (HAVE_ALTIVEC)
ff_sws_init_swScale_altivec(c);
return swScale;
}
static void reset_ptr(const uint8_t *src[], int format)
{
if (!isALPHA(format))
src[3] = NULL;
if (!isPlanar(format)) {
src[3] = src[2] = NULL;
if (!usePal(format))
src[1] = NULL;
}
}
static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
const int linesizes[4])
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
int i;
for (i = 0; i < 4; i++) {
int plane = desc->comp[i].plane;
if (!data[plane] || !linesizes[plane])
return 0;
}
return 1;
}
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
const uint16_t *src, int stride, int h)
{
int xp,yp;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
for (yp=0; yp<h; yp++) {
for (xp=0; xp+2<stride; xp+=3) {
int x, y, z, r, g, b;
if (desc->flags & PIX_FMT_BE) {
x = AV_RB16(src + xp + 0);
y = AV_RB16(src + xp + 1);
z = AV_RB16(src + xp + 2);
} else {
x = AV_RL16(src + xp + 0);
y = AV_RL16(src + xp + 1);
z = AV_RL16(src + xp + 2);
}
x = c->xyzgamma[x>>4];
y = c->xyzgamma[y>>4];
z = c->xyzgamma[z>>4];
// convert from XYZlinear to sRGBlinear
r = c->xyz2rgb_matrix[0][0] * x +
c->xyz2rgb_matrix[0][1] * y +
c->xyz2rgb_matrix[0][2] * z >> 12;
g = c->xyz2rgb_matrix[1][0] * x +
c->xyz2rgb_matrix[1][1] * y +
c->xyz2rgb_matrix[1][2] * z >> 12;
b = c->xyz2rgb_matrix[2][0] * x +
c->xyz2rgb_matrix[2][1] * y +
c->xyz2rgb_matrix[2][2] * z >> 12;
// limit values to 12-bit depth
r = av_clip_c(r,0,4095);
g = av_clip_c(g,0,4095);
b = av_clip_c(b,0,4095);
// convert from sRGBlinear to RGB and scale from 12bit to 16bit
if (desc->flags & PIX_FMT_BE) {
AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
} else {
AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
}
}
src += stride;
dst += stride;
}
}
/**
* swscale wrapper, so we don't need to export the SwsContext.
* Assumes planar YUV to be in YUV order instead of YVU.
*/
int attribute_align_arg sws_scale(struct SwsContext *c,
const uint8_t * const srcSlice[],
const int srcStride[], int srcSliceY,
int srcSliceH, uint8_t *const dst[],
const int dstStride[])
{
int i, ret;
const uint8_t *src2[4];
uint8_t *dst2[4];
uint8_t *rgb0_tmp = NULL;
if (!srcSlice || !dstStride || !dst || !srcSlice) {
av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
return 0;
}
memcpy(src2, srcSlice, sizeof(src2));
memcpy(dst2, dst, sizeof(dst2));
// do not mess up sliceDir if we have a "trailing" 0-size slice
if (srcSliceH == 0)
return 0;
if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
return 0;
}
if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
return 0;
}
if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
return 0;
}
if (c->sliceDir == 0) {
if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
}
if (usePal(c->srcFormat)) {
for (i = 0; i < 256; i++) {
int p, r, g, b, y, u, v, a = 0xff;
if (c->srcFormat == AV_PIX_FMT_PAL8) {
p = ((const uint32_t *)(srcSlice[1]))[i];
a = (p >> 24) & 0xFF;
r = (p >> 16) & 0xFF;
g = (p >> 8) & 0xFF;
b = p & 0xFF;
} else if (c->srcFormat == AV_PIX_FMT_RGB8) {
r = ( i >> 5 ) * 36;
g = ((i >> 2) & 7) * 36;
b = ( i & 3) * 85;
} else if (c->srcFormat == AV_PIX_FMT_BGR8) {
b = ( i >> 6 ) * 85;
g = ((i >> 3) & 7) * 36;
r = ( i & 7) * 36;
} else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
r = ( i >> 3 ) * 255;
g = ((i >> 1) & 3) * 85;
b = ( i & 1) * 255;
} else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
r = g = b = i;
} else {
av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);
b = ( i >> 3 ) * 255;
g = ((i >> 1) & 3) * 85;
r = ( i & 1) * 255;
}
#define RGB2YUV_SHIFT 15
#define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
#define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
switch (c->dstFormat) {
case AV_PIX_FMT_BGR32:
#if !HAVE_BIGENDIAN
case AV_PIX_FMT_RGB24:
#endif
c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
break;
case AV_PIX_FMT_BGR32_1:
#if HAVE_BIGENDIAN
case AV_PIX_FMT_BGR24:
#endif
c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
break;
case AV_PIX_FMT_RGB32_1:
#if HAVE_BIGENDIAN
case AV_PIX_FMT_RGB24:
#endif
c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
break;
case AV_PIX_FMT_RGB32:
#if !HAVE_BIGENDIAN
case AV_PIX_FMT_BGR24:
#endif
default:
c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
}
}
}
if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
uint8_t *base;
int x,y;
rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
if (!rgb0_tmp)
return AVERROR(ENOMEM);
base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
for (y=0; y<srcSliceH; y++){
memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
base[ srcStride[0]*y + x] = 0xFF;
}
}
src2[0] = base;
}
if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
uint8_t *base;
rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
if (!rgb0_tmp)
return AVERROR(ENOMEM);
base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
xyz12Torgb48(c, base, src2[0], srcStride[0]/2, srcSliceH);
src2[0] = base;
}
if (!srcSliceY && (c->flags & SWS_BITEXACT) && (c->flags & SWS_ERROR_DIFFUSION) && c->dither_error[0])
for (i = 0; i < 4; i++)
memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
// copy strides, so they can safely be modified
if (c->sliceDir == 1) {
// slices go from top to bottom
int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
srcStride[3] };
int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
dstStride[3] };
reset_ptr(src2, c->srcFormat);
reset_ptr((void*)dst2, c->dstFormat);
/* reset slice direction at end of frame */
if (srcSliceY + srcSliceH == c->srcH)
c->sliceDir = 0;
ret = c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
dstStride2);
} else {
// slices go from bottom to top => we flip the image internally
int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
-srcStride[3] };
int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
-dstStride[3] };
src2[0] += (srcSliceH - 1) * srcStride[0];
if (!usePal(c->srcFormat))
src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
src2[3] += (srcSliceH - 1) * srcStride[3];
dst2[0] += ( c->dstH - 1) * dstStride[0];
dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
dst2[3] += ( c->dstH - 1) * dstStride[3];
reset_ptr(src2, c->srcFormat);
reset_ptr((void*)dst2, c->dstFormat);
/* reset slice direction at end of frame */
if (!srcSliceY)
c->sliceDir = 0;
ret = c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
srcSliceH, dst2, dstStride2);
}
av_free(rgb0_tmp);
return ret;
}