mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4140 lines
158 KiB
4140 lines
158 KiB
/* |
|
* HEVC video Decoder |
|
* |
|
* Copyright (C) 2012 - 2013 Guillaume Martres |
|
* Copyright (C) 2012 - 2013 Mickael Raulet |
|
* Copyright (C) 2012 - 2013 Gildas Cocherel |
|
* Copyright (C) 2012 - 2013 Wassim Hamidouche |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "config_components.h" |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/avstring.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/film_grain_params.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/md5.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/pixdesc.h" |
|
#include "libavutil/stereo3d.h" |
|
#include "libavutil/timecode.h" |
|
|
|
#include "aom_film_grain.h" |
|
#include "bswapdsp.h" |
|
#include "cabac_functions.h" |
|
#include "codec_internal.h" |
|
#include "container_fifo.h" |
|
#include "decode.h" |
|
#include "golomb.h" |
|
#include "hevc.h" |
|
#include "parse.h" |
|
#include "hevcdec.h" |
|
#include "hwaccel_internal.h" |
|
#include "hwconfig.h" |
|
#include "internal.h" |
|
#include "profiles.h" |
|
#include "progressframe.h" |
|
#include "refstruct.h" |
|
#include "thread.h" |
|
#include "threadprogress.h" |
|
|
|
static const uint8_t hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 }; |
|
|
|
/** |
|
* NOTE: Each function hls_foo correspond to the function foo in the |
|
* specification (HLS stands for High Level Syntax). |
|
*/ |
|
|
|
/** |
|
* Section 5.7 |
|
*/ |
|
|
|
/* free everything allocated by pic_arrays_init() */ |
|
static void pic_arrays_free(HEVCLayerContext *l) |
|
{ |
|
av_freep(&l->sao); |
|
av_freep(&l->deblock); |
|
|
|
av_freep(&l->skip_flag); |
|
av_freep(&l->tab_ct_depth); |
|
|
|
av_freep(&l->tab_ipm); |
|
av_freep(&l->cbf_luma); |
|
av_freep(&l->is_pcm); |
|
|
|
av_freep(&l->qp_y_tab); |
|
av_freep(&l->tab_slice_address); |
|
av_freep(&l->filter_slice_edges); |
|
|
|
av_freep(&l->horizontal_bs); |
|
av_freep(&l->vertical_bs); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
av_freep(&l->sao_pixel_buffer_h[i]); |
|
av_freep(&l->sao_pixel_buffer_v[i]); |
|
} |
|
|
|
ff_refstruct_pool_uninit(&l->tab_mvf_pool); |
|
ff_refstruct_pool_uninit(&l->rpl_tab_pool); |
|
} |
|
|
|
/* allocate arrays that depend on frame dimensions */ |
|
static int pic_arrays_init(HEVCLayerContext *l, const HEVCSPS *sps) |
|
{ |
|
int log2_min_cb_size = sps->log2_min_cb_size; |
|
int width = sps->width; |
|
int height = sps->height; |
|
int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * |
|
((height >> log2_min_cb_size) + 1); |
|
int ctb_count = sps->ctb_width * sps->ctb_height; |
|
int min_pu_size = sps->min_pu_width * sps->min_pu_height; |
|
|
|
l->bs_width = (width >> 2) + 1; |
|
l->bs_height = (height >> 2) + 1; |
|
|
|
l->sao = av_calloc(ctb_count, sizeof(*l->sao)); |
|
l->deblock = av_calloc(ctb_count, sizeof(*l->deblock)); |
|
if (!l->sao || !l->deblock) |
|
goto fail; |
|
|
|
l->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width); |
|
l->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width); |
|
if (!l->skip_flag || !l->tab_ct_depth) |
|
goto fail; |
|
|
|
l->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height); |
|
l->tab_ipm = av_mallocz(min_pu_size); |
|
l->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1); |
|
if (!l->tab_ipm || !l->cbf_luma || !l->is_pcm) |
|
goto fail; |
|
|
|
l->filter_slice_edges = av_mallocz(ctb_count); |
|
l->tab_slice_address = av_malloc_array(pic_size_in_ctb, |
|
sizeof(*l->tab_slice_address)); |
|
l->qp_y_tab = av_malloc_array(pic_size_in_ctb, |
|
sizeof(*l->qp_y_tab)); |
|
if (!l->qp_y_tab || !l->filter_slice_edges || !l->tab_slice_address) |
|
goto fail; |
|
|
|
l->horizontal_bs = av_calloc(l->bs_width, l->bs_height); |
|
l->vertical_bs = av_calloc(l->bs_width, l->bs_height); |
|
if (!l->horizontal_bs || !l->vertical_bs) |
|
goto fail; |
|
|
|
l->tab_mvf_pool = ff_refstruct_pool_alloc(min_pu_size * sizeof(MvField), 0); |
|
l->rpl_tab_pool = ff_refstruct_pool_alloc(ctb_count * sizeof(RefPicListTab), 0); |
|
if (!l->tab_mvf_pool || !l->rpl_tab_pool) |
|
goto fail; |
|
|
|
if (sps->sao_enabled) { |
|
int c_count = (sps->chroma_format_idc != 0) ? 3 : 1; |
|
|
|
for (int c_idx = 0; c_idx < c_count; c_idx++) { |
|
int w = sps->width >> sps->hshift[c_idx]; |
|
int h = sps->height >> sps->vshift[c_idx]; |
|
l->sao_pixel_buffer_h[c_idx] = |
|
av_malloc((w * 2 * sps->ctb_height) << |
|
sps->pixel_shift); |
|
l->sao_pixel_buffer_v[c_idx] = |
|
av_malloc((h * 2 * sps->ctb_width) << |
|
sps->pixel_shift); |
|
if (!l->sao_pixel_buffer_h[c_idx] || |
|
!l->sao_pixel_buffer_v[c_idx]) |
|
goto fail; |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
pic_arrays_free(l); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
static int pred_weight_table(SliceHeader *sh, void *logctx, |
|
const HEVCSPS *sps, GetBitContext *gb) |
|
{ |
|
int i = 0; |
|
int j = 0; |
|
uint8_t luma_weight_l0_flag[16]; |
|
uint8_t chroma_weight_l0_flag[16]; |
|
uint8_t luma_weight_l1_flag[16]; |
|
uint8_t chroma_weight_l1_flag[16]; |
|
int luma_log2_weight_denom; |
|
|
|
luma_log2_weight_denom = get_ue_golomb_long(gb); |
|
if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) { |
|
av_log(logctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3); |
|
if (sps->chroma_format_idc != 0) { |
|
int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb); |
|
if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) { |
|
av_log(logctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->chroma_log2_weight_denom = chroma_log2_weight_denom; |
|
} |
|
|
|
for (i = 0; i < sh->nb_refs[L0]; i++) { |
|
luma_weight_l0_flag[i] = get_bits1(gb); |
|
if (!luma_weight_l0_flag[i]) { |
|
sh->luma_weight_l0[i] = 1 << sh->luma_log2_weight_denom; |
|
sh->luma_offset_l0[i] = 0; |
|
} |
|
} |
|
if (sps->chroma_format_idc != 0) { |
|
for (i = 0; i < sh->nb_refs[L0]; i++) |
|
chroma_weight_l0_flag[i] = get_bits1(gb); |
|
} else { |
|
for (i = 0; i < sh->nb_refs[L0]; i++) |
|
chroma_weight_l0_flag[i] = 0; |
|
} |
|
for (i = 0; i < sh->nb_refs[L0]; i++) { |
|
if (luma_weight_l0_flag[i]) { |
|
int delta_luma_weight_l0 = get_se_golomb(gb); |
|
if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0) |
|
return AVERROR_INVALIDDATA; |
|
sh->luma_weight_l0[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l0; |
|
sh->luma_offset_l0[i] = get_se_golomb(gb); |
|
} |
|
if (chroma_weight_l0_flag[i]) { |
|
for (j = 0; j < 2; j++) { |
|
int delta_chroma_weight_l0 = get_se_golomb(gb); |
|
int delta_chroma_offset_l0 = get_se_golomb(gb); |
|
|
|
if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0 |
|
|| delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) { |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->chroma_weight_l0[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l0; |
|
sh->chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * sh->chroma_weight_l0[i][j]) |
|
>> sh->chroma_log2_weight_denom) + 128), -128, 127); |
|
} |
|
} else { |
|
sh->chroma_weight_l0[i][0] = 1 << sh->chroma_log2_weight_denom; |
|
sh->chroma_offset_l0[i][0] = 0; |
|
sh->chroma_weight_l0[i][1] = 1 << sh->chroma_log2_weight_denom; |
|
sh->chroma_offset_l0[i][1] = 0; |
|
} |
|
} |
|
if (sh->slice_type == HEVC_SLICE_B) { |
|
for (i = 0; i < sh->nb_refs[L1]; i++) { |
|
luma_weight_l1_flag[i] = get_bits1(gb); |
|
if (!luma_weight_l1_flag[i]) { |
|
sh->luma_weight_l1[i] = 1 << sh->luma_log2_weight_denom; |
|
sh->luma_offset_l1[i] = 0; |
|
} |
|
} |
|
if (sps->chroma_format_idc != 0) { |
|
for (i = 0; i < sh->nb_refs[L1]; i++) |
|
chroma_weight_l1_flag[i] = get_bits1(gb); |
|
} else { |
|
for (i = 0; i < sh->nb_refs[L1]; i++) |
|
chroma_weight_l1_flag[i] = 0; |
|
} |
|
for (i = 0; i < sh->nb_refs[L1]; i++) { |
|
if (luma_weight_l1_flag[i]) { |
|
int delta_luma_weight_l1 = get_se_golomb(gb); |
|
if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1) |
|
return AVERROR_INVALIDDATA; |
|
sh->luma_weight_l1[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l1; |
|
sh->luma_offset_l1[i] = get_se_golomb(gb); |
|
} |
|
if (chroma_weight_l1_flag[i]) { |
|
for (j = 0; j < 2; j++) { |
|
int delta_chroma_weight_l1 = get_se_golomb(gb); |
|
int delta_chroma_offset_l1 = get_se_golomb(gb); |
|
|
|
if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1 |
|
|| delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) { |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->chroma_weight_l1[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l1; |
|
sh->chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * sh->chroma_weight_l1[i][j]) |
|
>> sh->chroma_log2_weight_denom) + 128), -128, 127); |
|
} |
|
} else { |
|
sh->chroma_weight_l1[i][0] = 1 << sh->chroma_log2_weight_denom; |
|
sh->chroma_offset_l1[i][0] = 0; |
|
sh->chroma_weight_l1[i][1] = 1 << sh->chroma_log2_weight_denom; |
|
sh->chroma_offset_l1[i][1] = 0; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int decode_lt_rps(const HEVCSPS *sps, LongTermRPS *rps, |
|
GetBitContext *gb, int cur_poc, int poc_lsb) |
|
{ |
|
int max_poc_lsb = 1 << sps->log2_max_poc_lsb; |
|
int prev_delta_msb = 0; |
|
unsigned int nb_sps = 0, nb_sh; |
|
int i; |
|
|
|
rps->nb_refs = 0; |
|
if (!sps->long_term_ref_pics_present) |
|
return 0; |
|
|
|
if (sps->num_long_term_ref_pics_sps > 0) |
|
nb_sps = get_ue_golomb_long(gb); |
|
nb_sh = get_ue_golomb_long(gb); |
|
|
|
if (nb_sps > sps->num_long_term_ref_pics_sps) |
|
return AVERROR_INVALIDDATA; |
|
if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
rps->nb_refs = nb_sh + nb_sps; |
|
|
|
for (i = 0; i < rps->nb_refs; i++) { |
|
|
|
if (i < nb_sps) { |
|
uint8_t lt_idx_sps = 0; |
|
|
|
if (sps->num_long_term_ref_pics_sps > 1) |
|
lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); |
|
|
|
rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; |
|
rps->used[i] = !!(sps->used_by_curr_pic_lt & (1U << lt_idx_sps)); |
|
} else { |
|
rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); |
|
rps->used[i] = get_bits1(gb); |
|
} |
|
|
|
rps->poc_msb_present[i] = get_bits1(gb); |
|
if (rps->poc_msb_present[i]) { |
|
int64_t delta = get_ue_golomb_long(gb); |
|
int64_t poc; |
|
|
|
if (i && i != nb_sps) |
|
delta += prev_delta_msb; |
|
|
|
poc = rps->poc[i] + cur_poc - delta * max_poc_lsb - poc_lsb; |
|
if (poc != (int32_t)poc) |
|
return AVERROR_INVALIDDATA; |
|
rps->poc[i] = poc; |
|
prev_delta_msb = delta; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void export_stream_params(HEVCContext *s, const HEVCSPS *sps) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
const HEVCVPS *vps = sps->vps; |
|
const HEVCWindow *ow = &sps->output_window; |
|
unsigned int num = 0, den = 0; |
|
|
|
avctx->pix_fmt = sps->pix_fmt; |
|
avctx->coded_width = sps->width; |
|
avctx->coded_height = sps->height; |
|
avctx->width = sps->width - ow->left_offset - ow->right_offset; |
|
avctx->height = sps->height - ow->top_offset - ow->bottom_offset; |
|
avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; |
|
avctx->profile = sps->ptl.general_ptl.profile_idc; |
|
avctx->level = sps->ptl.general_ptl.level_idc; |
|
|
|
ff_set_sar(avctx, sps->vui.common.sar); |
|
|
|
if (sps->vui.common.video_signal_type_present_flag) |
|
avctx->color_range = sps->vui.common.video_full_range_flag ? AVCOL_RANGE_JPEG |
|
: AVCOL_RANGE_MPEG; |
|
else |
|
avctx->color_range = AVCOL_RANGE_MPEG; |
|
|
|
if (sps->vui.common.colour_description_present_flag) { |
|
avctx->color_primaries = sps->vui.common.colour_primaries; |
|
avctx->color_trc = sps->vui.common.transfer_characteristics; |
|
avctx->colorspace = sps->vui.common.matrix_coeffs; |
|
} else { |
|
avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; |
|
avctx->color_trc = AVCOL_TRC_UNSPECIFIED; |
|
avctx->colorspace = AVCOL_SPC_UNSPECIFIED; |
|
} |
|
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_UNSPECIFIED; |
|
if (sps->chroma_format_idc == 1) { |
|
if (sps->vui.common.chroma_loc_info_present_flag) { |
|
if (sps->vui.common.chroma_sample_loc_type_top_field <= 5) |
|
avctx->chroma_sample_location = sps->vui.common.chroma_sample_loc_type_top_field + 1; |
|
} else |
|
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; |
|
} |
|
|
|
if (vps->vps_timing_info_present_flag) { |
|
num = vps->vps_num_units_in_tick; |
|
den = vps->vps_time_scale; |
|
} else if (sps->vui.vui_timing_info_present_flag) { |
|
num = sps->vui.vui_num_units_in_tick; |
|
den = sps->vui.vui_time_scale; |
|
} |
|
|
|
if (num > 0 && den > 0) |
|
av_reduce(&avctx->framerate.den, &avctx->framerate.num, |
|
num, den, 1 << 30); |
|
} |
|
|
|
static int export_stream_params_from_sei(HEVCContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
|
|
if (s->sei.common.a53_caption.buf_ref) |
|
s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS; |
|
|
|
if (s->sei.common.alternative_transfer.present && |
|
av_color_transfer_name(s->sei.common.alternative_transfer.preferred_transfer_characteristics) && |
|
s->sei.common.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) { |
|
avctx->color_trc = s->sei.common.alternative_transfer.preferred_transfer_characteristics; |
|
} |
|
|
|
if ((s->sei.common.film_grain_characteristics && s->sei.common.film_grain_characteristics->present) || |
|
s->sei.common.aom_film_grain.enable) |
|
avctx->properties |= FF_CODEC_PROPERTY_FILM_GRAIN; |
|
|
|
return 0; |
|
} |
|
|
|
static int export_multilayer(HEVCContext *s, const HEVCVPS *vps) |
|
{ |
|
const HEVCSEITDRDI *tdrdi = &s->sei.tdrdi; |
|
|
|
av_freep(&s->view_ids_available); |
|
s->nb_view_ids_available = 0; |
|
av_freep(&s->view_pos_available); |
|
s->nb_view_pos_available = 0; |
|
|
|
// don't export anything in the trivial case (1 layer, view id=0) |
|
if (vps->nb_layers < 2 && !vps->view_id[0]) |
|
return 0; |
|
|
|
s->view_ids_available = av_calloc(vps->nb_layers, sizeof(*s->view_ids_available)); |
|
if (!s->view_ids_available) |
|
return AVERROR(ENOMEM); |
|
|
|
if (tdrdi->num_ref_displays) { |
|
s->view_pos_available = av_calloc(vps->nb_layers, sizeof(*s->view_pos_available)); |
|
if (!s->view_pos_available) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (int i = 0; i < vps->nb_layers; i++) { |
|
s->view_ids_available[i] = vps->view_id[i]; |
|
|
|
if (s->view_pos_available) { |
|
s->view_pos_available[i] = vps->view_id[i] == tdrdi->left_view_id[0] ? |
|
AV_STEREO3D_VIEW_LEFT : |
|
vps->view_id[i] == tdrdi->right_view_id[0] ? |
|
AV_STEREO3D_VIEW_RIGHT : AV_STEREO3D_VIEW_UNSPEC; |
|
} |
|
} |
|
s->nb_view_ids_available = vps->nb_layers; |
|
s->nb_view_pos_available = s->view_pos_available ? vps->nb_layers : 0; |
|
|
|
return 0; |
|
} |
|
|
|
static int setup_multilayer(HEVCContext *s, const HEVCVPS *vps) |
|
{ |
|
unsigned layers_active_output = 0, highest_layer; |
|
|
|
s->layers_active_output = 1; |
|
s->layers_active_decode = 1; |
|
|
|
// nothing requested - decode base layer only |
|
if (!s->nb_view_ids) |
|
return 0; |
|
|
|
if (s->nb_view_ids == 1 && s->view_ids[0] == -1) { |
|
layers_active_output = (1 << vps->nb_layers) - 1; |
|
} else { |
|
for (int i = 0; i < s->nb_view_ids; i++) { |
|
int view_id = s->view_ids[i]; |
|
int layer_idx = -1; |
|
|
|
if (view_id < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid view ID requested: %d\n", view_id); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
for (int j = 0; j < vps->nb_layers; j++) { |
|
if (vps->view_id[j] == view_id) { |
|
layer_idx = j; |
|
break; |
|
} |
|
} |
|
if (layer_idx < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"View ID %d not present in VPS\n", view_id); |
|
return AVERROR(EINVAL); |
|
} |
|
layers_active_output |= 1 << layer_idx; |
|
} |
|
} |
|
|
|
if (!layers_active_output) { |
|
av_log(s->avctx, AV_LOG_ERROR, "No layers selected\n"); |
|
return AVERROR_BUG; |
|
} |
|
|
|
highest_layer = ff_log2(layers_active_output); |
|
if (highest_layer >= FF_ARRAY_ELEMS(s->layers)) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Too many layers requested: %u\n", layers_active_output); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
/* Assume a higher layer depends on all the lower ones. |
|
* This is enforced in VPS parsing currently, this logic will need |
|
* to be changed if we want to support more complex dependency structures. |
|
*/ |
|
s->layers_active_decode = (1 << (highest_layer + 1)) - 1; |
|
s->layers_active_output = layers_active_output; |
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "decode/output layers: %x/%x\n", |
|
s->layers_active_decode, s->layers_active_output); |
|
|
|
return 0; |
|
} |
|
|
|
static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps) |
|
{ |
|
#define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \ |
|
CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \ |
|
CONFIG_HEVC_D3D12VA_HWACCEL + \ |
|
CONFIG_HEVC_NVDEC_HWACCEL + \ |
|
CONFIG_HEVC_VAAPI_HWACCEL + \ |
|
CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \ |
|
CONFIG_HEVC_VDPAU_HWACCEL + \ |
|
CONFIG_HEVC_VULKAN_HWACCEL) |
|
enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts; |
|
int ret; |
|
|
|
switch (sps->pix_fmt) { |
|
case AV_PIX_FMT_YUV420P: |
|
case AV_PIX_FMT_YUVJ420P: |
|
#if CONFIG_HEVC_DXVA2_HWACCEL |
|
*fmt++ = AV_PIX_FMT_DXVA2_VLD; |
|
#endif |
|
#if CONFIG_HEVC_D3D11VA_HWACCEL |
|
*fmt++ = AV_PIX_FMT_D3D11VA_VLD; |
|
*fmt++ = AV_PIX_FMT_D3D11; |
|
#endif |
|
#if CONFIG_HEVC_D3D12VA_HWACCEL |
|
*fmt++ = AV_PIX_FMT_D3D12; |
|
#endif |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VDPAU_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VDPAU; |
|
#endif |
|
#if CONFIG_HEVC_NVDEC_HWACCEL |
|
*fmt++ = AV_PIX_FMT_CUDA; |
|
#endif |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
break; |
|
case AV_PIX_FMT_YUV420P10: |
|
#if CONFIG_HEVC_DXVA2_HWACCEL |
|
*fmt++ = AV_PIX_FMT_DXVA2_VLD; |
|
#endif |
|
#if CONFIG_HEVC_D3D11VA_HWACCEL |
|
*fmt++ = AV_PIX_FMT_D3D11VA_VLD; |
|
*fmt++ = AV_PIX_FMT_D3D11; |
|
#endif |
|
#if CONFIG_HEVC_D3D12VA_HWACCEL |
|
*fmt++ = AV_PIX_FMT_D3D12; |
|
#endif |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
#if CONFIG_HEVC_VDPAU_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VDPAU; |
|
#endif |
|
#if CONFIG_HEVC_NVDEC_HWACCEL |
|
*fmt++ = AV_PIX_FMT_CUDA; |
|
#endif |
|
break; |
|
case AV_PIX_FMT_YUV444P: |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VDPAU_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VDPAU; |
|
#endif |
|
#if CONFIG_HEVC_NVDEC_HWACCEL |
|
*fmt++ = AV_PIX_FMT_CUDA; |
|
#endif |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
break; |
|
case AV_PIX_FMT_YUV422P: |
|
case AV_PIX_FMT_YUV422P10LE: |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
break; |
|
case AV_PIX_FMT_YUV444P10: |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; |
|
#endif |
|
/* NOTE: fallthrough */ |
|
case AV_PIX_FMT_YUV420P12: |
|
case AV_PIX_FMT_YUV444P12: |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VDPAU_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VDPAU; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
#if CONFIG_HEVC_NVDEC_HWACCEL |
|
*fmt++ = AV_PIX_FMT_CUDA; |
|
#endif |
|
break; |
|
case AV_PIX_FMT_YUV422P12: |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VAAPI; |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
*fmt++ = AV_PIX_FMT_VULKAN; |
|
#endif |
|
break; |
|
} |
|
|
|
*fmt++ = sps->pix_fmt; |
|
*fmt = AV_PIX_FMT_NONE; |
|
|
|
// export multilayer information from active VPS to the caller, |
|
// so it is available in get_format() |
|
ret = export_multilayer(s, sps->vps); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = ff_get_format(s->avctx, pix_fmts); |
|
if (ret < 0) |
|
return ret; |
|
s->avctx->pix_fmt = ret; |
|
|
|
// set up multilayer decoding, if requested by caller |
|
ret = setup_multilayer(s, sps->vps); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
static int set_sps(HEVCContext *s, HEVCLayerContext *l, const HEVCSPS *sps) |
|
{ |
|
int ret; |
|
|
|
pic_arrays_free(l); |
|
ff_refstruct_unref(&l->sps); |
|
ff_refstruct_unref(&s->vps); |
|
|
|
if (!sps) |
|
return 0; |
|
|
|
ret = pic_arrays_init(l, sps); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
ff_hevc_pred_init(&s->hpc, sps->bit_depth); |
|
ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); |
|
ff_videodsp_init (&s->vdsp, sps->bit_depth); |
|
|
|
l->sps = ff_refstruct_ref_c(sps); |
|
s->vps = ff_refstruct_ref_c(sps->vps); |
|
|
|
return 0; |
|
|
|
fail: |
|
pic_arrays_free(l); |
|
ff_refstruct_unref(&l->sps); |
|
return ret; |
|
} |
|
|
|
static int hls_slice_header(SliceHeader *sh, const HEVCContext *s, GetBitContext *gb) |
|
{ |
|
const HEVCPPS *pps; |
|
const HEVCSPS *sps; |
|
const HEVCVPS *vps; |
|
unsigned pps_id, layer_idx; |
|
int i, ret; |
|
|
|
// Coded parameters |
|
sh->first_slice_in_pic_flag = get_bits1(gb); |
|
|
|
sh->no_output_of_prior_pics_flag = 0; |
|
if (IS_IRAP(s)) |
|
sh->no_output_of_prior_pics_flag = get_bits1(gb); |
|
|
|
pps_id = get_ue_golomb_long(gb); |
|
if (pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[pps_id]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", pps_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (!sh->first_slice_in_pic_flag && s->ps.pps_list[pps_id] != s->pps) { |
|
av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->pps_id = pps_id; |
|
|
|
pps = s->ps.pps_list[pps_id]; |
|
sps = pps->sps; |
|
vps = sps->vps; |
|
layer_idx = vps->layer_idx[s->nuh_layer_id]; |
|
|
|
if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1) |
|
sh->no_output_of_prior_pics_flag = 1; |
|
|
|
sh->dependent_slice_segment_flag = 0; |
|
if (!sh->first_slice_in_pic_flag) { |
|
int slice_address_length; |
|
|
|
if (pps->dependent_slice_segments_enabled_flag) |
|
sh->dependent_slice_segment_flag = get_bits1(gb); |
|
if (sh->dependent_slice_segment_flag && !s->slice_initialized) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
slice_address_length = av_ceil_log2(sps->ctb_width * |
|
sps->ctb_height); |
|
sh->slice_segment_addr = get_bitsz(gb, slice_address_length); |
|
if (sh->slice_segment_addr >= sps->ctb_width * sps->ctb_height) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid slice segment address: %u.\n", |
|
sh->slice_segment_addr); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!sh->dependent_slice_segment_flag) { |
|
sh->slice_addr = sh->slice_segment_addr; |
|
} |
|
} else { |
|
sh->slice_segment_addr = sh->slice_addr = 0; |
|
} |
|
|
|
if (!sh->dependent_slice_segment_flag) { |
|
for (i = 0; i < pps->num_extra_slice_header_bits; i++) |
|
skip_bits(gb, 1); // slice_reserved_undetermined_flag[] |
|
|
|
sh->slice_type = get_ue_golomb_long(gb); |
|
if (!(sh->slice_type == HEVC_SLICE_I || |
|
sh->slice_type == HEVC_SLICE_P || |
|
sh->slice_type == HEVC_SLICE_B)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", |
|
sh->slice_type); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I && |
|
!pps->pps_curr_pic_ref_enabled_flag && |
|
s->nuh_layer_id == 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// when flag is not present, picture is inferred to be output |
|
sh->pic_output_flag = 1; |
|
if (pps->output_flag_present_flag) |
|
sh->pic_output_flag = get_bits1(gb); |
|
|
|
if (sps->separate_colour_plane) |
|
sh->colour_plane_id = get_bits(gb, 2); |
|
|
|
if (!IS_IDR(s) || |
|
(s->nuh_layer_id > 0 && |
|
!(vps->poc_lsb_not_present & (1 << layer_idx)))) { |
|
int poc; |
|
|
|
sh->pic_order_cnt_lsb = get_bits(gb, sps->log2_max_poc_lsb); |
|
poc = ff_hevc_compute_poc(sps, s->poc_tid0, sh->pic_order_cnt_lsb, s->nal_unit_type); |
|
if (!sh->first_slice_in_pic_flag && poc != sh->poc) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Ignoring POC change between slices: %d -> %d\n", poc, sh->poc); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
poc = sh->poc; |
|
} |
|
sh->poc = poc; |
|
} |
|
|
|
if (!IS_IDR(s)) { |
|
int pos; |
|
|
|
sh->short_term_ref_pic_set_sps_flag = get_bits1(gb); |
|
pos = get_bits_left(gb); |
|
if (!sh->short_term_ref_pic_set_sps_flag) { |
|
ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, sps, 1); |
|
if (ret < 0) |
|
return ret; |
|
|
|
sh->short_term_rps = &sh->slice_rps; |
|
} else { |
|
int numbits, rps_idx; |
|
|
|
if (!sps->nb_st_rps) { |
|
av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
numbits = av_ceil_log2(sps->nb_st_rps); |
|
rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; |
|
sh->short_term_rps = &sps->st_rps[rps_idx]; |
|
} |
|
sh->short_term_ref_pic_set_size = pos - get_bits_left(gb); |
|
|
|
pos = get_bits_left(gb); |
|
ret = decode_lt_rps(sps, &sh->long_term_rps, gb, sh->poc, sh->pic_order_cnt_lsb); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->long_term_ref_pic_set_size = pos - get_bits_left(gb); |
|
|
|
if (sps->temporal_mvp_enabled) |
|
sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); |
|
else |
|
sh->slice_temporal_mvp_enabled_flag = 0; |
|
} else { |
|
sh->poc = 0; |
|
sh->pic_order_cnt_lsb = 0; |
|
sh->short_term_ref_pic_set_sps_flag = 0; |
|
sh->short_term_ref_pic_set_size = 0; |
|
sh->short_term_rps = NULL; |
|
sh->long_term_ref_pic_set_size = 0; |
|
sh->slice_temporal_mvp_enabled_flag = 0; |
|
} |
|
|
|
sh->inter_layer_pred = 0; |
|
if (s->nuh_layer_id > 0) { |
|
int num_direct_ref_layers = vps->num_direct_ref_layers[layer_idx]; |
|
|
|
if (vps->default_ref_layers_active) |
|
sh->inter_layer_pred = !!num_direct_ref_layers; |
|
else if (num_direct_ref_layers) { |
|
sh->inter_layer_pred = get_bits1(gb); |
|
|
|
if (sh->inter_layer_pred && num_direct_ref_layers > 1) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"NumDirectRefLayers>1 not supported\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
} |
|
|
|
if (sps->sao_enabled) { |
|
sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); |
|
if (sps->chroma_format_idc) { |
|
sh->slice_sample_adaptive_offset_flag[1] = |
|
sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); |
|
} |
|
} else { |
|
sh->slice_sample_adaptive_offset_flag[0] = 0; |
|
sh->slice_sample_adaptive_offset_flag[1] = 0; |
|
sh->slice_sample_adaptive_offset_flag[2] = 0; |
|
} |
|
|
|
sh->nb_refs[L0] = sh->nb_refs[L1] = 0; |
|
if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) { |
|
int nb_refs; |
|
|
|
sh->nb_refs[L0] = pps->num_ref_idx_l0_default_active; |
|
if (sh->slice_type == HEVC_SLICE_B) |
|
sh->nb_refs[L1] = pps->num_ref_idx_l1_default_active; |
|
|
|
if (get_bits1(gb)) { // num_ref_idx_active_override_flag |
|
sh->nb_refs[L0] = get_ue_golomb_31(gb) + 1; |
|
if (sh->slice_type == HEVC_SLICE_B) |
|
sh->nb_refs[L1] = get_ue_golomb_31(gb) + 1; |
|
} |
|
if (sh->nb_refs[L0] >= HEVC_MAX_REFS || sh->nb_refs[L1] >= HEVC_MAX_REFS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", |
|
sh->nb_refs[L0], sh->nb_refs[L1]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->rpl_modification_flag[0] = 0; |
|
sh->rpl_modification_flag[1] = 0; |
|
nb_refs = ff_hevc_frame_nb_refs(sh, pps, layer_idx); |
|
if (!nb_refs) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (pps->lists_modification_present_flag && nb_refs > 1) { |
|
sh->rpl_modification_flag[0] = get_bits1(gb); |
|
if (sh->rpl_modification_flag[0]) { |
|
for (i = 0; i < sh->nb_refs[L0]; i++) |
|
sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
|
} |
|
|
|
if (sh->slice_type == HEVC_SLICE_B) { |
|
sh->rpl_modification_flag[1] = get_bits1(gb); |
|
if (sh->rpl_modification_flag[1] == 1) |
|
for (i = 0; i < sh->nb_refs[L1]; i++) |
|
sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
|
} |
|
} |
|
|
|
if (sh->slice_type == HEVC_SLICE_B) |
|
sh->mvd_l1_zero_flag = get_bits1(gb); |
|
|
|
if (pps->cabac_init_present_flag) |
|
sh->cabac_init_flag = get_bits1(gb); |
|
else |
|
sh->cabac_init_flag = 0; |
|
|
|
sh->collocated_ref_idx = 0; |
|
if (sh->slice_temporal_mvp_enabled_flag) { |
|
sh->collocated_list = L0; |
|
if (sh->slice_type == HEVC_SLICE_B) |
|
sh->collocated_list = !get_bits1(gb); |
|
|
|
if (sh->nb_refs[sh->collocated_list] > 1) { |
|
sh->collocated_ref_idx = get_ue_golomb_long(gb); |
|
if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid collocated_ref_idx: %d.\n", |
|
sh->collocated_ref_idx); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
if ((pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) || |
|
(pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) { |
|
int ret = pred_weight_table(sh, s->avctx, sps, gb); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); |
|
if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid number of merging MVP candidates: %d.\n", |
|
sh->max_num_merge_cand); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Syntax in 7.3.6.1 |
|
if (sps->motion_vector_resolution_control_idc == 2) |
|
sh->use_integer_mv_flag = get_bits1(gb); |
|
else |
|
// Inferred to be equal to motion_vector_resolution_control_idc if not present |
|
sh->use_integer_mv_flag = sps->motion_vector_resolution_control_idc; |
|
|
|
} |
|
|
|
sh->slice_qp_delta = get_se_golomb(gb); |
|
|
|
if (pps->pic_slice_level_chroma_qp_offsets_present_flag) { |
|
sh->slice_cb_qp_offset = get_se_golomb(gb); |
|
sh->slice_cr_qp_offset = get_se_golomb(gb); |
|
if (sh->slice_cb_qp_offset < -12 || sh->slice_cb_qp_offset > 12 || |
|
sh->slice_cr_qp_offset < -12 || sh->slice_cr_qp_offset > 12) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid slice cx qp offset.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
sh->slice_cb_qp_offset = 0; |
|
sh->slice_cr_qp_offset = 0; |
|
} |
|
|
|
if (pps->pps_slice_act_qp_offsets_present_flag) { |
|
sh->slice_act_y_qp_offset = get_se_golomb(gb); |
|
sh->slice_act_cb_qp_offset = get_se_golomb(gb); |
|
sh->slice_act_cr_qp_offset = get_se_golomb(gb); |
|
} |
|
|
|
if (pps->chroma_qp_offset_list_enabled_flag) |
|
sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb); |
|
else |
|
sh->cu_chroma_qp_offset_enabled_flag = 0; |
|
|
|
if (pps->deblocking_filter_control_present_flag) { |
|
int deblocking_filter_override_flag = 0; |
|
|
|
if (pps->deblocking_filter_override_enabled_flag) |
|
deblocking_filter_override_flag = get_bits1(gb); |
|
|
|
if (deblocking_filter_override_flag) { |
|
sh->disable_deblocking_filter_flag = get_bits1(gb); |
|
if (!sh->disable_deblocking_filter_flag) { |
|
int beta_offset_div2 = get_se_golomb(gb); |
|
int tc_offset_div2 = get_se_golomb(gb) ; |
|
if (beta_offset_div2 < -6 || beta_offset_div2 > 6 || |
|
tc_offset_div2 < -6 || tc_offset_div2 > 6) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid deblock filter offsets: %d, %d\n", |
|
beta_offset_div2, tc_offset_div2); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->beta_offset = beta_offset_div2 * 2; |
|
sh->tc_offset = tc_offset_div2 * 2; |
|
} |
|
} else { |
|
sh->disable_deblocking_filter_flag = pps->disable_dbf; |
|
sh->beta_offset = pps->beta_offset; |
|
sh->tc_offset = pps->tc_offset; |
|
} |
|
} else { |
|
sh->disable_deblocking_filter_flag = 0; |
|
sh->beta_offset = 0; |
|
sh->tc_offset = 0; |
|
} |
|
|
|
if (pps->seq_loop_filter_across_slices_enabled_flag && |
|
(sh->slice_sample_adaptive_offset_flag[0] || |
|
sh->slice_sample_adaptive_offset_flag[1] || |
|
!sh->disable_deblocking_filter_flag)) { |
|
sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); |
|
} else { |
|
sh->slice_loop_filter_across_slices_enabled_flag = pps->seq_loop_filter_across_slices_enabled_flag; |
|
} |
|
} |
|
|
|
sh->num_entry_point_offsets = 0; |
|
if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) { |
|
unsigned num_entry_point_offsets = get_ue_golomb_long(gb); |
|
// It would be possible to bound this tighter but this here is simpler |
|
if (num_entry_point_offsets > get_bits_left(gb)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->num_entry_point_offsets = num_entry_point_offsets; |
|
if (sh->num_entry_point_offsets > 0) { |
|
int offset_len = get_ue_golomb_long(gb) + 1; |
|
|
|
if (offset_len < 1 || offset_len > 32) { |
|
sh->num_entry_point_offsets = 0; |
|
av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
av_freep(&sh->entry_point_offset); |
|
av_freep(&sh->offset); |
|
av_freep(&sh->size); |
|
sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned)); |
|
sh->offset = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int)); |
|
sh->size = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int)); |
|
if (!sh->entry_point_offset || !sh->offset || !sh->size) { |
|
sh->num_entry_point_offsets = 0; |
|
av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
for (i = 0; i < sh->num_entry_point_offsets; i++) { |
|
unsigned val = get_bits_long(gb, offset_len); |
|
sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size |
|
} |
|
} |
|
} |
|
|
|
if (pps->slice_header_extension_present_flag) { |
|
unsigned int length = get_ue_golomb_long(gb); |
|
if (length*8LL > get_bits_left(gb)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
for (i = 0; i < length; i++) |
|
skip_bits(gb, 8); // slice_header_extension_data_byte |
|
} |
|
|
|
ret = get_bits1(gb); |
|
if (!ret) { |
|
av_log(s->avctx, AV_LOG_ERROR, "alignment_bit_equal_to_one=0\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
sh->data_offset = align_get_bits(gb) - gb->buffer; |
|
|
|
// Inferred parameters |
|
sh->slice_qp = 26U + pps->pic_init_qp_minus26 + sh->slice_qp_delta; |
|
if (sh->slice_qp > 51 || |
|
sh->slice_qp < -sps->qp_bd_offset) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"The slice_qp %d is outside the valid range " |
|
"[%d, 51].\n", |
|
sh->slice_qp, |
|
-sps->qp_bd_offset); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sh->slice_ctb_addr_rs = sh->slice_segment_addr; |
|
|
|
if (sh->dependent_slice_segment_flag && |
|
(!sh->slice_ctb_addr_rs || !pps->ctb_addr_rs_to_ts[sh->slice_ctb_addr_rs])) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (get_bits_left(gb) < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Overread slice header by %d bits\n", -get_bits_left(gb)); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)]) |
|
|
|
#define SET_SAO(elem, value) \ |
|
do { \ |
|
if (!sao_merge_up_flag && !sao_merge_left_flag) \ |
|
sao->elem = value; \ |
|
else if (sao_merge_left_flag) \ |
|
sao->elem = CTB(l->sao, rx-1, ry).elem; \ |
|
else if (sao_merge_up_flag) \ |
|
sao->elem = CTB(l->sao, rx, ry-1).elem; \ |
|
else \ |
|
sao->elem = 0; \ |
|
} while (0) |
|
|
|
static void hls_sao_param(HEVCLocalContext *lc, const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int rx, int ry) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
int sao_merge_left_flag = 0; |
|
int sao_merge_up_flag = 0; |
|
SAOParams *sao = &CTB(l->sao, rx, ry); |
|
int c_idx, i; |
|
|
|
if (s->sh.slice_sample_adaptive_offset_flag[0] || |
|
s->sh.slice_sample_adaptive_offset_flag[1]) { |
|
if (rx > 0) { |
|
if (lc->ctb_left_flag) |
|
sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(lc); |
|
} |
|
if (ry > 0 && !sao_merge_left_flag) { |
|
if (lc->ctb_up_flag) |
|
sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(lc); |
|
} |
|
} |
|
|
|
for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) { |
|
int log2_sao_offset_scale = c_idx == 0 ? pps->log2_sao_offset_scale_luma : |
|
pps->log2_sao_offset_scale_chroma; |
|
|
|
if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { |
|
sao->type_idx[c_idx] = SAO_NOT_APPLIED; |
|
continue; |
|
} |
|
|
|
if (c_idx == 2) { |
|
sao->type_idx[2] = sao->type_idx[1]; |
|
sao->eo_class[2] = sao->eo_class[1]; |
|
} else { |
|
SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(lc)); |
|
} |
|
|
|
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) |
|
continue; |
|
|
|
for (i = 0; i < 4; i++) |
|
SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(lc, sps->bit_depth)); |
|
|
|
if (sao->type_idx[c_idx] == SAO_BAND) { |
|
for (i = 0; i < 4; i++) { |
|
if (sao->offset_abs[c_idx][i]) { |
|
SET_SAO(offset_sign[c_idx][i], |
|
ff_hevc_sao_offset_sign_decode(lc)); |
|
} else { |
|
sao->offset_sign[c_idx][i] = 0; |
|
} |
|
} |
|
SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(lc)); |
|
} else if (c_idx != 2) { |
|
SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(lc)); |
|
} |
|
|
|
// Inferred parameters |
|
sao->offset_val[c_idx][0] = 0; |
|
for (i = 0; i < 4; i++) { |
|
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i]; |
|
if (sao->type_idx[c_idx] == SAO_EDGE) { |
|
if (i > 1) |
|
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
|
} else if (sao->offset_sign[c_idx][i]) { |
|
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
|
} |
|
sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale; |
|
} |
|
} |
|
} |
|
|
|
#undef SET_SAO |
|
#undef CTB |
|
|
|
static int hls_cross_component_pred(HEVCLocalContext *lc, int idx) |
|
{ |
|
int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(lc, idx); |
|
|
|
if (log2_res_scale_abs_plus1 != 0) { |
|
int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(lc, idx); |
|
lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) * |
|
(1 - 2 * res_scale_sign_flag); |
|
} else { |
|
lc->tu.res_scale_val = 0; |
|
} |
|
|
|
|
|
return 0; |
|
} |
|
|
|
static int hls_transform_unit(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, |
|
int xBase, int yBase, int cb_xBase, int cb_yBase, |
|
int log2_cb_size, int log2_trafo_size, |
|
int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
const int log2_trafo_size_c = log2_trafo_size - sps->hshift[1]; |
|
int i; |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
int trafo_size = 1 << log2_trafo_size; |
|
ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size, trafo_size, sps->log2_ctb_size); |
|
|
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, x0, y0, 0); |
|
} |
|
|
|
if (cbf_luma || cbf_cb[0] || cbf_cr[0] || |
|
(sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { |
|
int scan_idx = SCAN_DIAG; |
|
int scan_idx_c = SCAN_DIAG; |
|
int cbf_chroma = cbf_cb[0] || cbf_cr[0] || |
|
(sps->chroma_format_idc == 2 && |
|
(cbf_cb[1] || cbf_cr[1])); |
|
|
|
if (pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { |
|
lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(lc); |
|
if (lc->tu.cu_qp_delta != 0) |
|
if (ff_hevc_cu_qp_delta_sign_flag(lc) == 1) |
|
lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; |
|
lc->tu.is_cu_qp_delta_coded = 1; |
|
|
|
if (lc->tu.cu_qp_delta < -(26 + sps->qp_bd_offset / 2) || |
|
lc->tu.cu_qp_delta > (25 + sps->qp_bd_offset / 2)) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"The cu_qp_delta %d is outside the valid range " |
|
"[%d, %d].\n", |
|
lc->tu.cu_qp_delta, |
|
-(26 + sps->qp_bd_offset / 2), |
|
(25 + sps->qp_bd_offset / 2)); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ff_hevc_set_qPy(lc, l, pps, cb_xBase, cb_yBase, log2_cb_size); |
|
} |
|
|
|
if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma && |
|
!lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) { |
|
int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(lc); |
|
if (cu_chroma_qp_offset_flag) { |
|
int cu_chroma_qp_offset_idx = 0; |
|
if (pps->chroma_qp_offset_list_len_minus1 > 0) { |
|
cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(lc, pps->chroma_qp_offset_list_len_minus1); |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"cu_chroma_qp_offset_idx not yet tested.\n"); |
|
} |
|
lc->tu.cu_qp_offset_cb = pps->cb_qp_offset_list[cu_chroma_qp_offset_idx]; |
|
lc->tu.cu_qp_offset_cr = pps->cr_qp_offset_list[cu_chroma_qp_offset_idx]; |
|
} else { |
|
lc->tu.cu_qp_offset_cb = 0; |
|
lc->tu.cu_qp_offset_cr = 0; |
|
} |
|
lc->tu.is_cu_chroma_qp_offset_coded = 1; |
|
} |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { |
|
if (lc->tu.intra_pred_mode >= 6 && |
|
lc->tu.intra_pred_mode <= 14) { |
|
scan_idx = SCAN_VERT; |
|
} else if (lc->tu.intra_pred_mode >= 22 && |
|
lc->tu.intra_pred_mode <= 30) { |
|
scan_idx = SCAN_HORIZ; |
|
} |
|
|
|
if (lc->tu.intra_pred_mode_c >= 6 && |
|
lc->tu.intra_pred_mode_c <= 14) { |
|
scan_idx_c = SCAN_VERT; |
|
} else if (lc->tu.intra_pred_mode_c >= 22 && |
|
lc->tu.intra_pred_mode_c <= 30) { |
|
scan_idx_c = SCAN_HORIZ; |
|
} |
|
} |
|
|
|
lc->tu.cross_pf = 0; |
|
|
|
if (cbf_luma) |
|
ff_hevc_hls_residual_coding(lc, pps, x0, y0, log2_trafo_size, scan_idx, 0); |
|
if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) { |
|
int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]); |
|
int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]); |
|
lc->tu.cross_pf = (pps->cross_component_prediction_enabled_flag && cbf_luma && |
|
(lc->cu.pred_mode == MODE_INTER || |
|
(lc->tu.chroma_mode_c == 4))); |
|
|
|
if (lc->tu.cross_pf) { |
|
hls_cross_component_pred(lc, 0); |
|
} |
|
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 1); |
|
} |
|
if (cbf_cb[i]) |
|
ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c), |
|
log2_trafo_size_c, scan_idx_c, 1); |
|
else |
|
if (lc->tu.cross_pf) { |
|
ptrdiff_t stride = s->cur_frame->f->linesize[1]; |
|
int hshift = sps->hshift[1]; |
|
int vshift = sps->vshift[1]; |
|
const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; |
|
int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; |
|
int size = 1 << log2_trafo_size_c; |
|
|
|
uint8_t *dst = &s->cur_frame->f->data[1][(y0 >> vshift) * stride + |
|
((x0 >> hshift) << sps->pixel_shift)]; |
|
for (i = 0; i < (size * size); i++) { |
|
coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); |
|
} |
|
s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride); |
|
} |
|
} |
|
|
|
if (lc->tu.cross_pf) { |
|
hls_cross_component_pred(lc, 1); |
|
} |
|
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 2); |
|
} |
|
if (cbf_cr[i]) |
|
ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c), |
|
log2_trafo_size_c, scan_idx_c, 2); |
|
else |
|
if (lc->tu.cross_pf) { |
|
ptrdiff_t stride = s->cur_frame->f->linesize[2]; |
|
int hshift = sps->hshift[2]; |
|
int vshift = sps->vshift[2]; |
|
const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; |
|
int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; |
|
int size = 1 << log2_trafo_size_c; |
|
|
|
uint8_t *dst = &s->cur_frame->f->data[2][(y0 >> vshift) * stride + |
|
((x0 >> hshift) << sps->pixel_shift)]; |
|
for (i = 0; i < (size * size); i++) { |
|
coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); |
|
} |
|
s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride); |
|
} |
|
} |
|
} else if (sps->chroma_format_idc && blk_idx == 3) { |
|
int trafo_size_h = 1 << (log2_trafo_size + 1); |
|
int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]); |
|
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 1); |
|
} |
|
if (cbf_cb[i]) |
|
ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size), |
|
log2_trafo_size, scan_idx_c, 1); |
|
} |
|
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 2); |
|
} |
|
if (cbf_cr[i]) |
|
ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size), |
|
log2_trafo_size, scan_idx_c, 2); |
|
} |
|
} |
|
} else if (sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) { |
|
if (log2_trafo_size > 2 || sps->chroma_format_idc == 3) { |
|
int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]); |
|
int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]); |
|
ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size_h, trafo_size_v, |
|
sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 1); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 2); |
|
if (sps->chroma_format_idc == 2) { |
|
ff_hevc_set_neighbour_available(lc, x0, y0 + (1 << log2_trafo_size_c), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 1); |
|
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 2); |
|
} |
|
} else if (blk_idx == 3) { |
|
int trafo_size_h = 1 << (log2_trafo_size + 1); |
|
int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]); |
|
ff_hevc_set_neighbour_available(lc, xBase, yBase, |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 1); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 2); |
|
if (sps->chroma_format_idc == 2) { |
|
ff_hevc_set_neighbour_available(lc, xBase, yBase + (1 << log2_trafo_size), |
|
trafo_size_h, trafo_size_v, sps->log2_ctb_size); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 1); |
|
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 2); |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void set_deblocking_bypass(uint8_t *is_pcm, const HEVCSPS *sps, |
|
int x0, int y0, int log2_cb_size) |
|
{ |
|
int cb_size = 1 << log2_cb_size; |
|
int log2_min_pu_size = sps->log2_min_pu_size; |
|
|
|
int min_pu_width = sps->min_pu_width; |
|
int x_end = FFMIN(x0 + cb_size, sps->width); |
|
int y_end = FFMIN(y0 + cb_size, sps->height); |
|
int i, j; |
|
|
|
for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) |
|
for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) |
|
is_pcm[i + j * min_pu_width] = 2; |
|
} |
|
|
|
static int hls_transform_tree(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, |
|
int xBase, int yBase, int cb_xBase, int cb_yBase, |
|
int log2_cb_size, int log2_trafo_size, |
|
int trafo_depth, int blk_idx, |
|
const int *base_cbf_cb, const int *base_cbf_cr) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
uint8_t split_transform_flag; |
|
int cbf_cb[2]; |
|
int cbf_cr[2]; |
|
int ret; |
|
|
|
cbf_cb[0] = base_cbf_cb[0]; |
|
cbf_cb[1] = base_cbf_cb[1]; |
|
cbf_cr[0] = base_cbf_cr[0]; |
|
cbf_cr[1] = base_cbf_cr[1]; |
|
|
|
if (lc->cu.intra_split_flag) { |
|
if (trafo_depth == 1) { |
|
lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; |
|
if (sps->chroma_format_idc == 3) { |
|
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx]; |
|
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx]; |
|
} else { |
|
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; |
|
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; |
|
} |
|
} |
|
} else { |
|
lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0]; |
|
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; |
|
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; |
|
} |
|
|
|
if (log2_trafo_size <= sps->log2_max_trafo_size && |
|
log2_trafo_size > sps->log2_min_tb_size && |
|
trafo_depth < lc->cu.max_trafo_depth && |
|
!(lc->cu.intra_split_flag && trafo_depth == 0)) { |
|
split_transform_flag = ff_hevc_split_transform_flag_decode(lc, log2_trafo_size); |
|
} else { |
|
int inter_split = sps->max_transform_hierarchy_depth_inter == 0 && |
|
lc->cu.pred_mode == MODE_INTER && |
|
lc->cu.part_mode != PART_2Nx2N && |
|
trafo_depth == 0; |
|
|
|
split_transform_flag = log2_trafo_size > sps->log2_max_trafo_size || |
|
(lc->cu.intra_split_flag && trafo_depth == 0) || |
|
inter_split; |
|
} |
|
|
|
if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) { |
|
if (trafo_depth == 0 || cbf_cb[0]) { |
|
cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); |
|
if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { |
|
cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); |
|
} |
|
} |
|
|
|
if (trafo_depth == 0 || cbf_cr[0]) { |
|
cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); |
|
if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { |
|
cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); |
|
} |
|
} |
|
} |
|
|
|
if (split_transform_flag) { |
|
const int trafo_size_split = 1 << (log2_trafo_size - 1); |
|
const int x1 = x0 + trafo_size_split; |
|
const int y1 = y0 + trafo_size_split; |
|
|
|
#define SUBDIVIDE(x, y, idx) \ |
|
do { \ |
|
ret = hls_transform_tree(lc, l, pps, sps, \ |
|
x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \ |
|
log2_trafo_size - 1, trafo_depth + 1, idx, \ |
|
cbf_cb, cbf_cr); \ |
|
if (ret < 0) \ |
|
return ret; \ |
|
} while (0) |
|
|
|
SUBDIVIDE(x0, y0, 0); |
|
SUBDIVIDE(x1, y0, 1); |
|
SUBDIVIDE(x0, y1, 2); |
|
SUBDIVIDE(x1, y1, 3); |
|
|
|
#undef SUBDIVIDE |
|
} else { |
|
int min_tu_size = 1 << sps->log2_min_tb_size; |
|
int log2_min_tu_size = sps->log2_min_tb_size; |
|
int min_tu_width = sps->min_tb_width; |
|
int cbf_luma = 1; |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || |
|
cbf_cb[0] || cbf_cr[0] || |
|
(sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { |
|
cbf_luma = ff_hevc_cbf_luma_decode(lc, trafo_depth); |
|
} |
|
|
|
ret = hls_transform_unit(lc, l, pps, sps, |
|
x0, y0, xBase, yBase, cb_xBase, cb_yBase, |
|
log2_cb_size, log2_trafo_size, |
|
blk_idx, cbf_luma, cbf_cb, cbf_cr); |
|
if (ret < 0) |
|
return ret; |
|
// TODO: store cbf_luma somewhere else |
|
if (cbf_luma) { |
|
int i, j; |
|
for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) |
|
for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { |
|
int x_tu = (x0 + j) >> log2_min_tu_size; |
|
int y_tu = (y0 + i) >> log2_min_tu_size; |
|
l->cbf_luma[y_tu * min_tu_width + x_tu] = 1; |
|
} |
|
} |
|
if (!s->sh.disable_deblocking_filter_flag) { |
|
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_trafo_size); |
|
if (pps->transquant_bypass_enable_flag && |
|
lc->cu.cu_transquant_bypass_flag) |
|
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_trafo_size); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int hls_pcm_sample(HEVCLocalContext *lc, const HEVCLayerContext *l, |
|
const HEVCPPS *pps, int x0, int y0, int log2_cb_size) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
const HEVCSPS *const sps = pps->sps; |
|
GetBitContext gb; |
|
int cb_size = 1 << log2_cb_size; |
|
ptrdiff_t stride0 = s->cur_frame->f->linesize[0]; |
|
ptrdiff_t stride1 = s->cur_frame->f->linesize[1]; |
|
ptrdiff_t stride2 = s->cur_frame->f->linesize[2]; |
|
uint8_t *dst0 = &s->cur_frame->f->data[0][y0 * stride0 + (x0 << sps->pixel_shift)]; |
|
uint8_t *dst1 = &s->cur_frame->f->data[1][(y0 >> sps->vshift[1]) * stride1 + ((x0 >> sps->hshift[1]) << sps->pixel_shift)]; |
|
uint8_t *dst2 = &s->cur_frame->f->data[2][(y0 >> sps->vshift[2]) * stride2 + ((x0 >> sps->hshift[2]) << sps->pixel_shift)]; |
|
|
|
int length = cb_size * cb_size * sps->pcm.bit_depth + |
|
(((cb_size >> sps->hshift[1]) * (cb_size >> sps->vshift[1])) + |
|
((cb_size >> sps->hshift[2]) * (cb_size >> sps->vshift[2]))) * |
|
sps->pcm.bit_depth_chroma; |
|
const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3); |
|
int ret; |
|
|
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size); |
|
|
|
ret = init_get_bits(&gb, pcm, length); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, sps->pcm.bit_depth); |
|
if (sps->chroma_format_idc) { |
|
s->hevcdsp.put_pcm(dst1, stride1, |
|
cb_size >> sps->hshift[1], |
|
cb_size >> sps->vshift[1], |
|
&gb, sps->pcm.bit_depth_chroma); |
|
s->hevcdsp.put_pcm(dst2, stride2, |
|
cb_size >> sps->hshift[2], |
|
cb_size >> sps->vshift[2], |
|
&gb, sps->pcm.bit_depth_chroma); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.1 Luma sample unidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref reference picture buffer at origin (0, 0) |
|
* @param mv motion vector (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param luma_weight weighting factor applied to the luma prediction |
|
* @param luma_offset additive offset applied to the luma prediction value |
|
*/ |
|
|
|
static void luma_mc_uni(HEVCLocalContext *lc, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
uint8_t *dst, ptrdiff_t dststride, |
|
const AVFrame *ref, const Mv *mv, int x_off, int y_off, |
|
int block_w, int block_h, int luma_weight, int luma_offset) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
const uint8_t *src = ref->data[0]; |
|
ptrdiff_t srcstride = ref->linesize[0]; |
|
int pic_width = sps->width; |
|
int pic_height = sps->height; |
|
int mx = mv->x & 3; |
|
int my = mv->y & 3; |
|
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || |
|
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); |
|
int idx = hevc_pel_weight[block_w]; |
|
|
|
x_off += mv->x >> 2; |
|
y_off += mv->y >> 2; |
|
src += y_off * srcstride + (x_off * (1 << sps->pixel_shift)); |
|
|
|
if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER || |
|
x_off >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off >= pic_height - block_h - QPEL_EXTRA_AFTER || |
|
ref == s->cur_frame->f) { |
|
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, |
|
edge_emu_stride, srcstride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src = lc->edge_emu_buffer + buf_offset; |
|
srcstride = edge_emu_stride; |
|
} |
|
|
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride, |
|
block_h, mx, my, block_w); |
|
else |
|
s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride, |
|
block_h, s->sh.luma_log2_weight_denom, |
|
luma_weight, luma_offset, mx, my, block_w); |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.1 Luma sample bidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref0 reference picture0 buffer at origin (0, 0) |
|
* @param mv0 motion vector0 (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param ref1 reference picture1 buffer at origin (0, 0) |
|
* @param mv1 motion vector1 (relative to block position) to get pixel data from |
|
* @param current_mv current motion vector structure |
|
*/ |
|
static void luma_mc_bi(HEVCLocalContext *lc, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
uint8_t *dst, ptrdiff_t dststride, |
|
const AVFrame *ref0, const Mv *mv0, int x_off, int y_off, |
|
int block_w, int block_h, const AVFrame *ref1, |
|
const Mv *mv1, struct MvField *current_mv) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
ptrdiff_t src0stride = ref0->linesize[0]; |
|
ptrdiff_t src1stride = ref1->linesize[0]; |
|
int pic_width = sps->width; |
|
int pic_height = sps->height; |
|
int mx0 = mv0->x & 3; |
|
int my0 = mv0->y & 3; |
|
int mx1 = mv1->x & 3; |
|
int my1 = mv1->y & 3; |
|
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || |
|
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); |
|
int x_off0 = x_off + (mv0->x >> 2); |
|
int y_off0 = y_off + (mv0->y >> 2); |
|
int x_off1 = x_off + (mv1->x >> 2); |
|
int y_off1 = y_off + (mv1->y >> 2); |
|
int idx = hevc_pel_weight[block_w]; |
|
|
|
const uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << sps->pixel_shift); |
|
const uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << sps->pixel_shift); |
|
|
|
if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER || |
|
x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
|
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset, |
|
edge_emu_stride, src0stride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src0 = lc->edge_emu_buffer + buf_offset; |
|
src0stride = edge_emu_stride; |
|
} |
|
|
|
if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER || |
|
x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
|
y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
|
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset, |
|
edge_emu_stride, src1stride, |
|
block_w + QPEL_EXTRA, |
|
block_h + QPEL_EXTRA, |
|
x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
src1 = lc->edge_emu_buffer2 + buf_offset; |
|
src1stride = edge_emu_stride; |
|
} |
|
|
|
s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride, |
|
block_h, mx0, my0, block_w); |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, |
|
block_h, mx1, my1, block_w); |
|
else |
|
s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, |
|
block_h, s->sh.luma_log2_weight_denom, |
|
s->sh.luma_weight_l0[current_mv->ref_idx[0]], |
|
s->sh.luma_weight_l1[current_mv->ref_idx[1]], |
|
s->sh.luma_offset_l0[current_mv->ref_idx[0]], |
|
s->sh.luma_offset_l1[current_mv->ref_idx[1]], |
|
mx1, my1, block_w); |
|
|
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.2 Chroma sample uniprediction interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst1 target buffer for block data at block position (U plane) |
|
* @param dst2 target buffer for block data at block position (V plane) |
|
* @param dststride stride of the dst1 and dst2 buffers |
|
* @param ref reference picture buffer at origin (0, 0) |
|
* @param mv motion vector (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param chroma_weight weighting factor applied to the chroma prediction |
|
* @param chroma_offset additive offset applied to the chroma prediction value |
|
*/ |
|
|
|
static void chroma_mc_uni(HEVCLocalContext *lc, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
uint8_t *dst0, |
|
ptrdiff_t dststride, const uint8_t *src0, ptrdiff_t srcstride, int reflist, |
|
int x_off, int y_off, int block_w, int block_h, |
|
const struct MvField *current_mv, int chroma_weight, int chroma_offset) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
int pic_width = sps->width >> sps->hshift[1]; |
|
int pic_height = sps->height >> sps->vshift[1]; |
|
const Mv *mv = ¤t_mv->mv[reflist]; |
|
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || |
|
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); |
|
int idx = hevc_pel_weight[block_w]; |
|
int hshift = sps->hshift[1]; |
|
int vshift = sps->vshift[1]; |
|
intptr_t mx = av_zero_extend(mv->x, 2 + hshift); |
|
intptr_t my = av_zero_extend(mv->y, 2 + vshift); |
|
intptr_t _mx = mx << (1 - hshift); |
|
intptr_t _my = my << (1 - vshift); |
|
int emu = src0 == s->cur_frame->f->data[1] || src0 == s->cur_frame->f->data[2]; |
|
|
|
x_off += mv->x >> (2 + hshift); |
|
y_off += mv->y >> (2 + vshift); |
|
src0 += y_off * srcstride + (x_off * (1 << sps->pixel_shift)); |
|
|
|
if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || |
|
x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off >= pic_height - block_h - EPEL_EXTRA_AFTER || |
|
emu) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << sps->pixel_shift)); |
|
int buf_offset0 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << sps->pixel_shift)); |
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0, |
|
edge_emu_stride, srcstride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off - EPEL_EXTRA_BEFORE, |
|
y_off - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src0 = lc->edge_emu_buffer + buf_offset0; |
|
srcstride = edge_emu_stride; |
|
} |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
|
block_h, _mx, _my, block_w); |
|
else |
|
s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
|
block_h, s->sh.chroma_log2_weight_denom, |
|
chroma_weight, chroma_offset, _mx, _my, block_w); |
|
} |
|
|
|
/** |
|
* 8.5.3.2.2.2 Chroma sample bidirectional interpolation process |
|
* |
|
* @param s HEVC decoding context |
|
* @param dst target buffer for block data at block position |
|
* @param dststride stride of the dst buffer |
|
* @param ref0 reference picture0 buffer at origin (0, 0) |
|
* @param mv0 motion vector0 (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block |
|
* @param block_h height of block |
|
* @param ref1 reference picture1 buffer at origin (0, 0) |
|
* @param mv1 motion vector1 (relative to block position) to get pixel data from |
|
* @param current_mv current motion vector structure |
|
* @param cidx chroma component(cb, cr) |
|
*/ |
|
static void chroma_mc_bi(HEVCLocalContext *lc, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
uint8_t *dst0, ptrdiff_t dststride, |
|
const AVFrame *ref0, const AVFrame *ref1, |
|
int x_off, int y_off, int block_w, int block_h, const MvField *current_mv, int cidx) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
const uint8_t *src1 = ref0->data[cidx+1]; |
|
const uint8_t *src2 = ref1->data[cidx+1]; |
|
ptrdiff_t src1stride = ref0->linesize[cidx+1]; |
|
ptrdiff_t src2stride = ref1->linesize[cidx+1]; |
|
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || |
|
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); |
|
int pic_width = sps->width >> sps->hshift[1]; |
|
int pic_height = sps->height >> sps->vshift[1]; |
|
const Mv *const mv0 = ¤t_mv->mv[0]; |
|
const Mv *const mv1 = ¤t_mv->mv[1]; |
|
int hshift = sps->hshift[1]; |
|
int vshift = sps->vshift[1]; |
|
|
|
intptr_t mx0 = av_zero_extend(mv0->x, 2 + hshift); |
|
intptr_t my0 = av_zero_extend(mv0->y, 2 + vshift); |
|
intptr_t mx1 = av_zero_extend(mv1->x, 2 + hshift); |
|
intptr_t my1 = av_zero_extend(mv1->y, 2 + vshift); |
|
intptr_t _mx0 = mx0 << (1 - hshift); |
|
intptr_t _my0 = my0 << (1 - vshift); |
|
intptr_t _mx1 = mx1 << (1 - hshift); |
|
intptr_t _my1 = my1 << (1 - vshift); |
|
|
|
int x_off0 = x_off + (mv0->x >> (2 + hshift)); |
|
int y_off0 = y_off + (mv0->y >> (2 + vshift)); |
|
int x_off1 = x_off + (mv1->x >> (2 + hshift)); |
|
int y_off1 = y_off + (mv1->y >> (2 + vshift)); |
|
int idx = hevc_pel_weight[block_w]; |
|
src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << sps->pixel_shift); |
|
src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << sps->pixel_shift); |
|
|
|
if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER || |
|
x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << sps->pixel_shift)); |
|
int buf_offset1 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << sps->pixel_shift)); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, |
|
edge_emu_stride, src1stride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off0 - EPEL_EXTRA_BEFORE, |
|
y_off0 - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src1 = lc->edge_emu_buffer + buf_offset1; |
|
src1stride = edge_emu_stride; |
|
} |
|
|
|
if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER || |
|
x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
|
y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
|
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; |
|
int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << sps->pixel_shift)); |
|
int buf_offset1 = EPEL_EXTRA_BEFORE * |
|
(edge_emu_stride + (1 << sps->pixel_shift)); |
|
|
|
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1, |
|
edge_emu_stride, src2stride, |
|
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
|
x_off1 - EPEL_EXTRA_BEFORE, |
|
y_off1 - EPEL_EXTRA_BEFORE, |
|
pic_width, pic_height); |
|
|
|
src2 = lc->edge_emu_buffer2 + buf_offset1; |
|
src2stride = edge_emu_stride; |
|
} |
|
|
|
s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride, |
|
block_h, _mx0, _my0, block_w); |
|
if (!weight_flag) |
|
s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1], |
|
src2, src2stride, lc->tmp, |
|
block_h, _mx1, _my1, block_w); |
|
else |
|
s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1], |
|
src2, src2stride, lc->tmp, |
|
block_h, |
|
s->sh.chroma_log2_weight_denom, |
|
s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx], |
|
s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx], |
|
s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx], |
|
s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx], |
|
_mx1, _my1, block_w); |
|
} |
|
|
|
static void hevc_await_progress(const HEVCContext *s, const HEVCFrame *ref, |
|
const Mv *mv, int y0, int height) |
|
{ |
|
if (s->avctx->active_thread_type == FF_THREAD_FRAME ) { |
|
int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9); |
|
|
|
ff_progress_frame_await(&ref->tf, y); |
|
} |
|
} |
|
|
|
static void hevc_luma_mv_mvp_mode(HEVCLocalContext *lc, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, int nPbW, |
|
int nPbH, int log2_cb_size, int part_idx, |
|
int merge_idx, MvField *mv) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
enum InterPredIdc inter_pred_idc = PRED_L0; |
|
int mvp_flag; |
|
|
|
ff_hevc_set_neighbour_available(lc, x0, y0, nPbW, nPbH, sps->log2_ctb_size); |
|
mv->pred_flag = 0; |
|
if (s->sh.slice_type == HEVC_SLICE_B) |
|
inter_pred_idc = ff_hevc_inter_pred_idc_decode(lc, nPbW, nPbH); |
|
|
|
if (inter_pred_idc != PRED_L1) { |
|
if (s->sh.nb_refs[L0]) |
|
mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L0]); |
|
|
|
mv->pred_flag = PF_L0; |
|
ff_hevc_hls_mvd_coding(lc, x0, y0, 0); |
|
mvp_flag = ff_hevc_mvp_lx_flag_decode(lc); |
|
ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, |
|
part_idx, merge_idx, mv, mvp_flag, 0); |
|
mv->mv[0].x += lc->pu.mvd.x; |
|
mv->mv[0].y += lc->pu.mvd.y; |
|
} |
|
|
|
if (inter_pred_idc != PRED_L0) { |
|
if (s->sh.nb_refs[L1]) |
|
mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L1]); |
|
|
|
if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { |
|
AV_ZERO32(&lc->pu.mvd); |
|
} else { |
|
ff_hevc_hls_mvd_coding(lc, x0, y0, 1); |
|
} |
|
|
|
mv->pred_flag += PF_L1; |
|
mvp_flag = ff_hevc_mvp_lx_flag_decode(lc); |
|
ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, |
|
part_idx, merge_idx, mv, mvp_flag, 1); |
|
mv->mv[1].x += lc->pu.mvd.x; |
|
mv->mv[1].y += lc->pu.mvd.y; |
|
} |
|
} |
|
|
|
static void hls_prediction_unit(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, int nPbW, int nPbH, |
|
int log2_cb_size, int partIdx, int idx) |
|
{ |
|
#define POS(c_idx, x, y) \ |
|
&s->cur_frame->f->data[c_idx][((y) >> sps->vshift[c_idx]) * linesize[c_idx] + \ |
|
(((x) >> sps->hshift[c_idx]) << sps->pixel_shift)] |
|
const HEVCContext *const s = lc->parent; |
|
int merge_idx = 0; |
|
struct MvField current_mv = {{{ 0 }}}; |
|
|
|
int min_pu_width = sps->min_pu_width; |
|
|
|
MvField *tab_mvf = s->cur_frame->tab_mvf; |
|
const RefPicList *refPicList = s->cur_frame->refPicList; |
|
const HEVCFrame *ref0 = NULL, *ref1 = NULL; |
|
const int *linesize = s->cur_frame->f->linesize; |
|
uint8_t *dst0 = POS(0, x0, y0); |
|
uint8_t *dst1 = POS(1, x0, y0); |
|
uint8_t *dst2 = POS(2, x0, y0); |
|
int log2_min_cb_size = sps->log2_min_cb_size; |
|
int min_cb_width = sps->min_cb_width; |
|
int x_cb = x0 >> log2_min_cb_size; |
|
int y_cb = y0 >> log2_min_cb_size; |
|
int x_pu, y_pu; |
|
int i, j; |
|
|
|
int skip_flag = SAMPLE_CTB(l->skip_flag, x_cb, y_cb); |
|
|
|
if (!skip_flag) |
|
lc->pu.merge_flag = ff_hevc_merge_flag_decode(lc); |
|
|
|
if (skip_flag || lc->pu.merge_flag) { |
|
if (s->sh.max_num_merge_cand > 1) |
|
merge_idx = ff_hevc_merge_idx_decode(lc); |
|
else |
|
merge_idx = 0; |
|
|
|
ff_hevc_luma_mv_merge_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, |
|
partIdx, merge_idx, ¤t_mv); |
|
} else { |
|
hevc_luma_mv_mvp_mode(lc, pps, sps, x0, y0, nPbW, nPbH, log2_cb_size, |
|
partIdx, merge_idx, ¤t_mv); |
|
} |
|
|
|
x_pu = x0 >> sps->log2_min_pu_size; |
|
y_pu = y0 >> sps->log2_min_pu_size; |
|
|
|
for (j = 0; j < nPbH >> sps->log2_min_pu_size; j++) |
|
for (i = 0; i < nPbW >> sps->log2_min_pu_size; i++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; |
|
|
|
if (current_mv.pred_flag & PF_L0) { |
|
ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; |
|
if (!ref0 || !ref0->f) |
|
return; |
|
hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); |
|
} |
|
if (current_mv.pred_flag & PF_L1) { |
|
ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; |
|
if (!ref1 || !ref1->f) |
|
return; |
|
hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); |
|
} |
|
|
|
if (current_mv.pred_flag == PF_L0) { |
|
int x0_c = x0 >> sps->hshift[1]; |
|
int y0_c = y0 >> sps->vshift[1]; |
|
int nPbW_c = nPbW >> sps->hshift[1]; |
|
int nPbH_c = nPbH >> sps->vshift[1]; |
|
|
|
luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref0->f, |
|
¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
|
s->sh.luma_weight_l0[current_mv.ref_idx[0]], |
|
s->sh.luma_offset_l0[current_mv.ref_idx[0]]); |
|
|
|
if (sps->chroma_format_idc) { |
|
chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref0->f->data[1], ref0->f->linesize[1], |
|
0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]); |
|
chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref0->f->data[2], ref0->f->linesize[2], |
|
0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]); |
|
} |
|
} else if (current_mv.pred_flag == PF_L1) { |
|
int x0_c = x0 >> sps->hshift[1]; |
|
int y0_c = y0 >> sps->vshift[1]; |
|
int nPbW_c = nPbW >> sps->hshift[1]; |
|
int nPbH_c = nPbH >> sps->vshift[1]; |
|
|
|
luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref1->f, |
|
¤t_mv.mv[1], x0, y0, nPbW, nPbH, |
|
s->sh.luma_weight_l1[current_mv.ref_idx[1]], |
|
s->sh.luma_offset_l1[current_mv.ref_idx[1]]); |
|
|
|
if (sps->chroma_format_idc) { |
|
chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref1->f->data[1], ref1->f->linesize[1], |
|
1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]); |
|
|
|
chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref1->f->data[2], ref1->f->linesize[2], |
|
1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
|
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]); |
|
} |
|
} else if (current_mv.pred_flag == PF_BI) { |
|
int x0_c = x0 >> sps->hshift[1]; |
|
int y0_c = y0 >> sps->vshift[1]; |
|
int nPbW_c = nPbW >> sps->hshift[1]; |
|
int nPbH_c = nPbH >> sps->vshift[1]; |
|
|
|
luma_mc_bi(lc, pps, sps, dst0, linesize[0], ref0->f, |
|
¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
|
ref1->f, ¤t_mv.mv[1], ¤t_mv); |
|
|
|
if (sps->chroma_format_idc) { |
|
chroma_mc_bi(lc, pps, sps, dst1, linesize[1], ref0->f, ref1->f, |
|
x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0); |
|
|
|
chroma_mc_bi(lc, pps, sps, dst2, linesize[2], ref0->f, ref1->f, |
|
x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* 8.4.1 |
|
*/ |
|
static int luma_intra_pred_mode(HEVCLocalContext *lc, const HEVCLayerContext *l, |
|
const HEVCSPS *sps, |
|
int x0, int y0, int pu_size, |
|
int prev_intra_luma_pred_flag) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
int x_pu = x0 >> sps->log2_min_pu_size; |
|
int y_pu = y0 >> sps->log2_min_pu_size; |
|
int min_pu_width = sps->min_pu_width; |
|
int size_in_pus = pu_size >> sps->log2_min_pu_size; |
|
int x0b = av_zero_extend(x0, sps->log2_ctb_size); |
|
int y0b = av_zero_extend(y0, sps->log2_ctb_size); |
|
|
|
int cand_up = (lc->ctb_up_flag || y0b) ? |
|
l->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; |
|
int cand_left = (lc->ctb_left_flag || x0b) ? |
|
l->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; |
|
|
|
int y_ctb = (y0 >> (sps->log2_ctb_size)) << (sps->log2_ctb_size); |
|
|
|
MvField *tab_mvf = s->cur_frame->tab_mvf; |
|
int intra_pred_mode; |
|
int candidate[3]; |
|
int i, j; |
|
|
|
// intra_pred_mode prediction does not cross vertical CTB boundaries |
|
if ((y0 - 1) < y_ctb) |
|
cand_up = INTRA_DC; |
|
|
|
if (cand_left == cand_up) { |
|
if (cand_left < 2) { |
|
candidate[0] = INTRA_PLANAR; |
|
candidate[1] = INTRA_DC; |
|
candidate[2] = INTRA_ANGULAR_26; |
|
} else { |
|
candidate[0] = cand_left; |
|
candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); |
|
candidate[2] = 2 + ((cand_left - 2 + 1) & 31); |
|
} |
|
} else { |
|
candidate[0] = cand_left; |
|
candidate[1] = cand_up; |
|
if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { |
|
candidate[2] = INTRA_PLANAR; |
|
} else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { |
|
candidate[2] = INTRA_DC; |
|
} else { |
|
candidate[2] = INTRA_ANGULAR_26; |
|
} |
|
} |
|
|
|
if (prev_intra_luma_pred_flag) { |
|
intra_pred_mode = candidate[lc->pu.mpm_idx]; |
|
} else { |
|
if (candidate[0] > candidate[1]) |
|
FFSWAP(uint8_t, candidate[0], candidate[1]); |
|
if (candidate[0] > candidate[2]) |
|
FFSWAP(uint8_t, candidate[0], candidate[2]); |
|
if (candidate[1] > candidate[2]) |
|
FFSWAP(uint8_t, candidate[1], candidate[2]); |
|
|
|
intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; |
|
for (i = 0; i < 3; i++) |
|
if (intra_pred_mode >= candidate[i]) |
|
intra_pred_mode++; |
|
} |
|
|
|
/* write the intra prediction units into the mv array */ |
|
if (!size_in_pus) |
|
size_in_pus = 1; |
|
for (i = 0; i < size_in_pus; i++) { |
|
memset(&l->tab_ipm[(y_pu + i) * min_pu_width + x_pu], |
|
intra_pred_mode, size_in_pus); |
|
|
|
for (j = 0; j < size_in_pus; j++) { |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA; |
|
} |
|
} |
|
|
|
return intra_pred_mode; |
|
} |
|
|
|
static av_always_inline void set_ct_depth(const HEVCSPS *sps, uint8_t *tab_ct_depth, |
|
int x0, int y0, |
|
int log2_cb_size, int ct_depth) |
|
{ |
|
int length = (1 << log2_cb_size) >> sps->log2_min_cb_size; |
|
int x_cb = x0 >> sps->log2_min_cb_size; |
|
int y_cb = y0 >> sps->log2_min_cb_size; |
|
int y; |
|
|
|
for (y = 0; y < length; y++) |
|
memset(&tab_ct_depth[(y_cb + y) * sps->min_cb_width + x_cb], |
|
ct_depth, length); |
|
} |
|
|
|
static const uint8_t tab_mode_idx[] = { |
|
0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, |
|
21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31}; |
|
|
|
static void intra_prediction_unit(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, const HEVCSPS *sps, |
|
int x0, int y0, |
|
int log2_cb_size) |
|
{ |
|
static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; |
|
uint8_t prev_intra_luma_pred_flag[4]; |
|
int split = lc->cu.part_mode == PART_NxN; |
|
int pb_size = (1 << log2_cb_size) >> split; |
|
int side = split + 1; |
|
int chroma_mode; |
|
int i, j; |
|
|
|
for (i = 0; i < side; i++) |
|
for (j = 0; j < side; j++) |
|
prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(lc); |
|
|
|
for (i = 0; i < side; i++) { |
|
for (j = 0; j < side; j++) { |
|
if (prev_intra_luma_pred_flag[2 * i + j]) |
|
lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(lc); |
|
else |
|
lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(lc); |
|
|
|
lc->pu.intra_pred_mode[2 * i + j] = |
|
luma_intra_pred_mode(lc, l, sps, |
|
x0 + pb_size * j, y0 + pb_size * i, pb_size, |
|
prev_intra_luma_pred_flag[2 * i + j]); |
|
} |
|
} |
|
|
|
if (sps->chroma_format_idc == 3) { |
|
for (i = 0; i < side; i++) { |
|
for (j = 0; j < side; j++) { |
|
lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); |
|
if (chroma_mode != 4) { |
|
if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode]) |
|
lc->pu.intra_pred_mode_c[2 * i + j] = 34; |
|
else |
|
lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode]; |
|
} else { |
|
lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j]; |
|
} |
|
} |
|
} |
|
} else if (sps->chroma_format_idc == 2) { |
|
int mode_idx; |
|
lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); |
|
if (chroma_mode != 4) { |
|
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) |
|
mode_idx = 34; |
|
else |
|
mode_idx = intra_chroma_table[chroma_mode]; |
|
} else { |
|
mode_idx = lc->pu.intra_pred_mode[0]; |
|
} |
|
lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx]; |
|
} else if (sps->chroma_format_idc != 0) { |
|
chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); |
|
if (chroma_mode != 4) { |
|
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) |
|
lc->pu.intra_pred_mode_c[0] = 34; |
|
else |
|
lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode]; |
|
} else { |
|
lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0]; |
|
} |
|
} |
|
} |
|
|
|
static void intra_prediction_unit_default_value(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCSPS *sps, |
|
int x0, int y0, |
|
int log2_cb_size) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
int pb_size = 1 << log2_cb_size; |
|
int size_in_pus = pb_size >> sps->log2_min_pu_size; |
|
int min_pu_width = sps->min_pu_width; |
|
MvField *tab_mvf = s->cur_frame->tab_mvf; |
|
int x_pu = x0 >> sps->log2_min_pu_size; |
|
int y_pu = y0 >> sps->log2_min_pu_size; |
|
int j, k; |
|
|
|
if (size_in_pus == 0) |
|
size_in_pus = 1; |
|
for (j = 0; j < size_in_pus; j++) |
|
memset(&l->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); |
|
if (lc->cu.pred_mode == MODE_INTRA) |
|
for (j = 0; j < size_in_pus; j++) |
|
for (k = 0; k < size_in_pus; k++) |
|
tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA; |
|
} |
|
|
|
static int hls_coding_unit(HEVCLocalContext *lc, const HEVCContext *s, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, int log2_cb_size) |
|
{ |
|
int cb_size = 1 << log2_cb_size; |
|
int log2_min_cb_size = sps->log2_min_cb_size; |
|
int length = cb_size >> log2_min_cb_size; |
|
int min_cb_width = sps->min_cb_width; |
|
int x_cb = x0 >> log2_min_cb_size; |
|
int y_cb = y0 >> log2_min_cb_size; |
|
int idx = log2_cb_size - 2; |
|
int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1; |
|
int x, y, ret; |
|
|
|
lc->cu.x = x0; |
|
lc->cu.y = y0; |
|
lc->cu.pred_mode = MODE_INTRA; |
|
lc->cu.part_mode = PART_2Nx2N; |
|
lc->cu.intra_split_flag = 0; |
|
|
|
SAMPLE_CTB(l->skip_flag, x_cb, y_cb) = 0; |
|
for (x = 0; x < 4; x++) |
|
lc->pu.intra_pred_mode[x] = 1; |
|
if (pps->transquant_bypass_enable_flag) { |
|
lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(lc); |
|
if (lc->cu.cu_transquant_bypass_flag) |
|
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size); |
|
} else |
|
lc->cu.cu_transquant_bypass_flag = 0; |
|
|
|
if (s->sh.slice_type != HEVC_SLICE_I) { |
|
const int x0b = av_zero_extend(x0, sps->log2_ctb_size); |
|
const int y0b = av_zero_extend(y0, sps->log2_ctb_size); |
|
uint8_t skip_flag = ff_hevc_skip_flag_decode(lc, l->skip_flag, |
|
x0b, y0b, x_cb, y_cb, |
|
min_cb_width); |
|
|
|
x = y_cb * min_cb_width + x_cb; |
|
for (y = 0; y < length; y++) { |
|
memset(&l->skip_flag[x], skip_flag, length); |
|
x += min_cb_width; |
|
} |
|
lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; |
|
} else { |
|
x = y_cb * min_cb_width + x_cb; |
|
for (y = 0; y < length; y++) { |
|
memset(&l->skip_flag[x], 0, length); |
|
x += min_cb_width; |
|
} |
|
} |
|
|
|
if (SAMPLE_CTB(l->skip_flag, x_cb, y_cb)) { |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); |
|
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size); |
|
|
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size); |
|
} else { |
|
int pcm_flag = 0; |
|
|
|
if (s->sh.slice_type != HEVC_SLICE_I) |
|
lc->cu.pred_mode = ff_hevc_pred_mode_decode(lc); |
|
if (lc->cu.pred_mode != MODE_INTRA || |
|
log2_cb_size == sps->log2_min_cb_size) { |
|
lc->cu.part_mode = ff_hevc_part_mode_decode(lc, sps, log2_cb_size); |
|
lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && |
|
lc->cu.pred_mode == MODE_INTRA; |
|
} |
|
|
|
if (lc->cu.pred_mode == MODE_INTRA) { |
|
if (lc->cu.part_mode == PART_2Nx2N && sps->pcm_enabled && |
|
log2_cb_size >= sps->pcm.log2_min_pcm_cb_size && |
|
log2_cb_size <= sps->pcm.log2_max_pcm_cb_size) { |
|
pcm_flag = ff_hevc_pcm_flag_decode(lc); |
|
} |
|
if (pcm_flag) { |
|
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size); |
|
ret = hls_pcm_sample(lc, l, pps, x0, y0, log2_cb_size); |
|
if (sps->pcm_loop_filter_disabled) |
|
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size); |
|
|
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
intra_prediction_unit(lc, l, sps, x0, y0, log2_cb_size); |
|
} |
|
} else { |
|
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size); |
|
switch (lc->cu.part_mode) { |
|
case PART_2Nx2N: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); |
|
break; |
|
case PART_2NxN: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx); |
|
break; |
|
case PART_Nx2N: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1); |
|
break; |
|
case PART_2NxnU: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx); |
|
break; |
|
case PART_2NxnD: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx); |
|
break; |
|
case PART_nLx2N: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2); |
|
break; |
|
case PART_nRx2N: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2); |
|
break; |
|
case PART_NxN: |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1); |
|
hls_prediction_unit(lc, l, pps, sps, |
|
x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1); |
|
break; |
|
} |
|
} |
|
|
|
if (!pcm_flag) { |
|
int rqt_root_cbf = 1; |
|
|
|
if (lc->cu.pred_mode != MODE_INTRA && |
|
!(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { |
|
rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(lc); |
|
} |
|
if (rqt_root_cbf) { |
|
const static int cbf[2] = { 0 }; |
|
lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? |
|
sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : |
|
sps->max_transform_hierarchy_depth_inter; |
|
ret = hls_transform_tree(lc, l, pps, sps, x0, y0, x0, y0, x0, y0, |
|
log2_cb_size, |
|
log2_cb_size, 0, 0, cbf, cbf); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
if (!s->sh.disable_deblocking_filter_flag) |
|
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size); |
|
} |
|
} |
|
} |
|
|
|
if (pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) |
|
ff_hevc_set_qPy(lc, l, pps, x0, y0, log2_cb_size); |
|
|
|
x = y_cb * min_cb_width + x_cb; |
|
for (y = 0; y < length; y++) { |
|
memset(&l->qp_y_tab[x], lc->qp_y, length); |
|
x += min_cb_width; |
|
} |
|
|
|
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
|
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) { |
|
lc->qPy_pred = lc->qp_y; |
|
} |
|
|
|
set_ct_depth(sps, l->tab_ct_depth, x0, y0, log2_cb_size, lc->ct_depth); |
|
|
|
return 0; |
|
} |
|
|
|
static int hls_coding_quadtree(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x0, int y0, |
|
int log2_cb_size, int cb_depth) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
const int cb_size = 1 << log2_cb_size; |
|
int ret; |
|
int split_cu; |
|
|
|
lc->ct_depth = cb_depth; |
|
if (x0 + cb_size <= sps->width && |
|
y0 + cb_size <= sps->height && |
|
log2_cb_size > sps->log2_min_cb_size) { |
|
split_cu = ff_hevc_split_coding_unit_flag_decode(lc, l->tab_ct_depth, |
|
sps, cb_depth, x0, y0); |
|
} else { |
|
split_cu = (log2_cb_size > sps->log2_min_cb_size); |
|
} |
|
if (pps->cu_qp_delta_enabled_flag && |
|
log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_qp_delta_depth) { |
|
lc->tu.is_cu_qp_delta_coded = 0; |
|
lc->tu.cu_qp_delta = 0; |
|
} |
|
|
|
if (s->sh.cu_chroma_qp_offset_enabled_flag && |
|
log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_chroma_qp_offset_depth) { |
|
lc->tu.is_cu_chroma_qp_offset_coded = 0; |
|
} |
|
|
|
if (split_cu) { |
|
int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1; |
|
const int cb_size_split = cb_size >> 1; |
|
const int x1 = x0 + cb_size_split; |
|
const int y1 = y0 + cb_size_split; |
|
|
|
int more_data = 0; |
|
|
|
more_data = hls_coding_quadtree(lc, l, pps, sps, |
|
x0, y0, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
|
|
if (more_data && x1 < sps->width) { |
|
more_data = hls_coding_quadtree(lc, l, pps, sps, |
|
x1, y0, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
if (more_data && y1 < sps->height) { |
|
more_data = hls_coding_quadtree(lc, l, pps, sps, |
|
x0, y1, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
if (more_data && x1 < sps->width && |
|
y1 < sps->height) { |
|
more_data = hls_coding_quadtree(lc, l, pps, sps, |
|
x1, y1, log2_cb_size - 1, cb_depth + 1); |
|
if (more_data < 0) |
|
return more_data; |
|
} |
|
|
|
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
|
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) |
|
lc->qPy_pred = lc->qp_y; |
|
|
|
if (more_data) |
|
return ((x1 + cb_size_split) < sps->width || |
|
(y1 + cb_size_split) < sps->height); |
|
else |
|
return 0; |
|
} else { |
|
ret = hls_coding_unit(lc, s, l, pps, sps, x0, y0, log2_cb_size); |
|
if (ret < 0) |
|
return ret; |
|
if ((!((x0 + cb_size) % |
|
(1 << (sps->log2_ctb_size))) || |
|
(x0 + cb_size >= sps->width)) && |
|
(!((y0 + cb_size) % |
|
(1 << (sps->log2_ctb_size))) || |
|
(y0 + cb_size >= sps->height))) { |
|
int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(lc); |
|
return !end_of_slice_flag; |
|
} else { |
|
return 1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void hls_decode_neighbour(HEVCLocalContext *lc, |
|
const HEVCLayerContext *l, |
|
const HEVCPPS *pps, const HEVCSPS *sps, |
|
int x_ctb, int y_ctb, int ctb_addr_ts) |
|
{ |
|
const HEVCContext *const s = lc->parent; |
|
int ctb_size = 1 << sps->log2_ctb_size; |
|
int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; |
|
|
|
l->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; |
|
|
|
if (pps->entropy_coding_sync_enabled_flag) { |
|
if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) |
|
lc->first_qp_group = 1; |
|
lc->end_of_tiles_x = sps->width; |
|
} else if (pps->tiles_enabled_flag) { |
|
if (ctb_addr_ts && pps->tile_id[ctb_addr_ts] != pps->tile_id[ctb_addr_ts - 1]) { |
|
int idxX = pps->col_idxX[x_ctb >> sps->log2_ctb_size]; |
|
lc->end_of_tiles_x = x_ctb + (pps->column_width[idxX] << sps->log2_ctb_size); |
|
lc->first_qp_group = 1; |
|
} |
|
} else { |
|
lc->end_of_tiles_x = sps->width; |
|
} |
|
|
|
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, sps->height); |
|
|
|
lc->boundary_flags = 0; |
|
if (pps->tiles_enabled_flag) { |
|
if (x_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]]) |
|
lc->boundary_flags |= BOUNDARY_LEFT_TILE; |
|
if (x_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - 1]) |
|
lc->boundary_flags |= BOUNDARY_LEFT_SLICE; |
|
if (y_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]]) |
|
lc->boundary_flags |= BOUNDARY_UPPER_TILE; |
|
if (y_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - sps->ctb_width]) |
|
lc->boundary_flags |= BOUNDARY_UPPER_SLICE; |
|
} else { |
|
if (ctb_addr_in_slice <= 0) |
|
lc->boundary_flags |= BOUNDARY_LEFT_SLICE; |
|
if (ctb_addr_in_slice < sps->ctb_width) |
|
lc->boundary_flags |= BOUNDARY_UPPER_SLICE; |
|
} |
|
|
|
lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE)); |
|
lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE)); |
|
lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - sps->ctb_width]])); |
|
lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - sps->ctb_width]])); |
|
} |
|
|
|
static int hls_decode_entry(HEVCContext *s, GetBitContext *gb) |
|
{ |
|
HEVCLocalContext *const lc = &s->local_ctx[0]; |
|
const HEVCLayerContext *const l = &s->layers[s->cur_layer]; |
|
const HEVCPPS *const pps = s->pps; |
|
const HEVCSPS *const sps = pps->sps; |
|
const uint8_t *slice_data = gb->buffer + s->sh.data_offset; |
|
const size_t slice_size = gb->buffer_end - gb->buffer - s->sh.data_offset; |
|
int ctb_size = 1 << sps->log2_ctb_size; |
|
int more_data = 1; |
|
int x_ctb = 0; |
|
int y_ctb = 0; |
|
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; |
|
int ret; |
|
|
|
while (more_data && ctb_addr_ts < sps->ctb_size) { |
|
int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
|
|
x_ctb = (ctb_addr_rs % ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size; |
|
y_ctb = (ctb_addr_rs / ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size; |
|
hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts); |
|
|
|
ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, slice_data, slice_size, 0); |
|
if (ret < 0) { |
|
l->tab_slice_address[ctb_addr_rs] = -1; |
|
return ret; |
|
} |
|
|
|
hls_sao_param(lc, l, pps, sps, |
|
x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size); |
|
|
|
l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; |
|
l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; |
|
l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; |
|
|
|
more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0); |
|
if (more_data < 0) { |
|
l->tab_slice_address[ctb_addr_rs] = -1; |
|
return more_data; |
|
} |
|
|
|
|
|
ctb_addr_ts++; |
|
ff_hevc_save_states(lc, pps, ctb_addr_ts); |
|
ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size); |
|
} |
|
|
|
if (x_ctb + ctb_size >= sps->width && |
|
y_ctb + ctb_size >= sps->height) |
|
ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size); |
|
|
|
return ctb_addr_ts; |
|
} |
|
|
|
static int hls_decode_entry_wpp(AVCodecContext *avctx, void *hevc_lclist, |
|
int job, int thread) |
|
{ |
|
HEVCLocalContext *lc = &((HEVCLocalContext*)hevc_lclist)[thread]; |
|
const HEVCContext *const s = lc->parent; |
|
const HEVCLayerContext *const l = &s->layers[s->cur_layer]; |
|
const HEVCPPS *const pps = s->pps; |
|
const HEVCSPS *const sps = pps->sps; |
|
int ctb_size = 1 << sps->log2_ctb_size; |
|
int more_data = 1; |
|
int ctb_row = job; |
|
int ctb_addr_rs = s->sh.slice_ctb_addr_rs + ctb_row * ((sps->width + ctb_size - 1) >> sps->log2_ctb_size); |
|
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[ctb_addr_rs]; |
|
|
|
const uint8_t *data = s->data + s->sh.offset[ctb_row]; |
|
const size_t data_size = s->sh.size[ctb_row]; |
|
|
|
int progress = 0; |
|
|
|
int ret; |
|
|
|
if (ctb_row) |
|
ff_init_cabac_decoder(&lc->cc, data, data_size); |
|
|
|
while(more_data && ctb_addr_ts < sps->ctb_size) { |
|
int x_ctb = (ctb_addr_rs % sps->ctb_width) << sps->log2_ctb_size; |
|
int y_ctb = (ctb_addr_rs / sps->ctb_width) << sps->log2_ctb_size; |
|
|
|
hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts); |
|
|
|
if (ctb_row) |
|
ff_thread_progress_await(&s->wpp_progress[ctb_row - 1], |
|
progress + SHIFT_CTB_WPP + 1); |
|
|
|
/* atomic_load's prototype requires a pointer to non-const atomic variable |
|
* (due to implementations via mutexes, where reads involve writes). |
|
* Of course, casting const away here is nevertheless safe. */ |
|
if (atomic_load((atomic_int*)&s->wpp_err)) { |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX); |
|
return 0; |
|
} |
|
|
|
ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, data, data_size, 1); |
|
if (ret < 0) |
|
goto error; |
|
hls_sao_param(lc, l, pps, sps, |
|
x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size); |
|
|
|
l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; |
|
l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; |
|
l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; |
|
|
|
more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0); |
|
|
|
if (more_data < 0) { |
|
ret = more_data; |
|
goto error; |
|
} |
|
|
|
ctb_addr_ts++; |
|
|
|
ff_hevc_save_states(lc, pps, ctb_addr_ts); |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], ++progress); |
|
ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size); |
|
|
|
if (!more_data && (x_ctb+ctb_size) < sps->width && ctb_row != s->sh.num_entry_point_offsets) { |
|
/* Casting const away here is safe, because it is an atomic operation. */ |
|
atomic_store((atomic_int*)&s->wpp_err, 1); |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX); |
|
return 0; |
|
} |
|
|
|
if ((x_ctb+ctb_size) >= sps->width && (y_ctb+ctb_size) >= sps->height ) { |
|
ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size); |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX); |
|
return ctb_addr_ts; |
|
} |
|
ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
|
x_ctb+=ctb_size; |
|
|
|
if(x_ctb >= sps->width) { |
|
break; |
|
} |
|
} |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX); |
|
|
|
return 0; |
|
error: |
|
l->tab_slice_address[ctb_addr_rs] = -1; |
|
/* Casting const away here is safe, because it is an atomic operation. */ |
|
atomic_store((atomic_int*)&s->wpp_err, 1); |
|
ff_thread_progress_report(&s->wpp_progress[ctb_row], INT_MAX); |
|
return ret; |
|
} |
|
|
|
static int wpp_progress_init(HEVCContext *s, unsigned count) |
|
{ |
|
if (s->nb_wpp_progress < count) { |
|
void *tmp = av_realloc_array(s->wpp_progress, count, |
|
sizeof(*s->wpp_progress)); |
|
if (!tmp) |
|
return AVERROR(ENOMEM); |
|
|
|
s->wpp_progress = tmp; |
|
memset(s->wpp_progress + s->nb_wpp_progress, 0, |
|
(count - s->nb_wpp_progress) * sizeof(*s->wpp_progress)); |
|
|
|
for (int i = s->nb_wpp_progress; i < count; i++) { |
|
int ret = ff_thread_progress_init(&s->wpp_progress[i], 1); |
|
if (ret < 0) |
|
return ret; |
|
s->nb_wpp_progress = i + 1; |
|
} |
|
} |
|
|
|
for (int i = 0; i < count; i++) |
|
ff_thread_progress_reset(&s->wpp_progress[i]); |
|
|
|
return 0; |
|
} |
|
|
|
static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal) |
|
{ |
|
const HEVCPPS *const pps = s->pps; |
|
const HEVCSPS *const sps = pps->sps; |
|
const uint8_t *data = nal->data; |
|
int length = nal->size; |
|
int *ret; |
|
int64_t offset; |
|
int64_t startheader, cmpt = 0; |
|
int i, j, res = 0; |
|
|
|
if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * sps->ctb_width >= sps->ctb_width * sps->ctb_height) { |
|
av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n", |
|
s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets, |
|
sps->ctb_width, sps->ctb_height |
|
); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->avctx->thread_count > s->nb_local_ctx) { |
|
HEVCLocalContext *tmp = av_malloc_array(s->avctx->thread_count, sizeof(*s->local_ctx)); |
|
|
|
if (!tmp) |
|
return AVERROR(ENOMEM); |
|
|
|
memcpy(tmp, s->local_ctx, sizeof(*s->local_ctx) * s->nb_local_ctx); |
|
av_free(s->local_ctx); |
|
s->local_ctx = tmp; |
|
|
|
for (unsigned i = s->nb_local_ctx; i < s->avctx->thread_count; i++) { |
|
tmp = &s->local_ctx[i]; |
|
|
|
memset(tmp, 0, sizeof(*tmp)); |
|
|
|
tmp->logctx = s->avctx; |
|
tmp->parent = s; |
|
tmp->common_cabac_state = &s->cabac; |
|
} |
|
|
|
s->nb_local_ctx = s->avctx->thread_count; |
|
} |
|
|
|
offset = s->sh.data_offset; |
|
|
|
for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) { |
|
if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) { |
|
startheader--; |
|
cmpt++; |
|
} |
|
} |
|
|
|
for (i = 1; i < s->sh.num_entry_point_offsets; i++) { |
|
offset += (s->sh.entry_point_offset[i - 1] - cmpt); |
|
for (j = 0, cmpt = 0, startheader = offset |
|
+ s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) { |
|
if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) { |
|
startheader--; |
|
cmpt++; |
|
} |
|
} |
|
s->sh.size[i] = s->sh.entry_point_offset[i] - cmpt; |
|
s->sh.offset[i] = offset; |
|
|
|
} |
|
|
|
offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt; |
|
if (length < offset) { |
|
av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->sh.size [s->sh.num_entry_point_offsets] = length - offset; |
|
s->sh.offset[s->sh.num_entry_point_offsets] = offset; |
|
|
|
s->sh.offset[0] = s->sh.data_offset; |
|
s->sh.size[0] = s->sh.offset[1] - s->sh.offset[0]; |
|
|
|
s->data = data; |
|
|
|
for (i = 1; i < s->nb_local_ctx; i++) { |
|
s->local_ctx[i].first_qp_group = 1; |
|
s->local_ctx[i].qp_y = s->local_ctx[0].qp_y; |
|
} |
|
|
|
atomic_store(&s->wpp_err, 0); |
|
res = wpp_progress_init(s, s->sh.num_entry_point_offsets + 1); |
|
if (res < 0) |
|
return res; |
|
|
|
ret = av_calloc(s->sh.num_entry_point_offsets + 1, sizeof(*ret)); |
|
if (!ret) |
|
return AVERROR(ENOMEM); |
|
|
|
if (pps->entropy_coding_sync_enabled_flag) |
|
s->avctx->execute2(s->avctx, hls_decode_entry_wpp, s->local_ctx, ret, s->sh.num_entry_point_offsets + 1); |
|
|
|
for (i = 0; i <= s->sh.num_entry_point_offsets; i++) |
|
res += ret[i]; |
|
|
|
av_free(ret); |
|
return res; |
|
} |
|
|
|
static int decode_slice_data(HEVCContext *s, const HEVCLayerContext *l, |
|
const H2645NAL *nal, GetBitContext *gb) |
|
{ |
|
const HEVCPPS *pps = s->pps; |
|
int ret; |
|
|
|
if (!s->sh.first_slice_in_pic_flag) |
|
s->slice_idx += !s->sh.dependent_slice_segment_flag; |
|
|
|
if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != HEVC_SLICE_I) { |
|
ret = ff_hevc_slice_rpl(s); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Error constructing the reference lists for the current slice.\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
s->slice_initialized = 1; |
|
|
|
if (s->avctx->hwaccel) |
|
return FF_HW_CALL(s->avctx, decode_slice, nal->raw_data, nal->raw_size); |
|
|
|
if (s->avctx->profile == AV_PROFILE_HEVC_SCC) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"SCC profile is not yet implemented in hevc native decoder.\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (s->sh.dependent_slice_segment_flag) { |
|
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; |
|
int prev_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1]; |
|
if (l->tab_slice_address[prev_rs] != s->sh.slice_addr) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
s->local_ctx[0].first_qp_group = !s->sh.dependent_slice_segment_flag; |
|
|
|
if (!pps->cu_qp_delta_enabled_flag) |
|
s->local_ctx[0].qp_y = s->sh.slice_qp; |
|
|
|
s->local_ctx[0].tu.cu_qp_offset_cb = 0; |
|
s->local_ctx[0].tu.cu_qp_offset_cr = 0; |
|
|
|
if (s->avctx->active_thread_type == FF_THREAD_SLICE && |
|
s->sh.num_entry_point_offsets > 0 && |
|
pps->num_tile_rows == 1 && pps->num_tile_columns == 1) |
|
return hls_slice_data_wpp(s, nal); |
|
|
|
return hls_decode_entry(s, gb); |
|
} |
|
|
|
static int set_side_data(HEVCContext *s) |
|
{ |
|
const HEVCSPS *sps = s->cur_frame->pps->sps; |
|
AVFrame *out = s->cur_frame->f; |
|
int ret; |
|
|
|
// Decrement the mastering display and content light level flag when IRAP |
|
// frame has no_rasl_output_flag=1 so the side data persists for the entire |
|
// coded video sequence. |
|
if (IS_IRAP(s) && s->no_rasl_output_flag) { |
|
if (s->sei.common.mastering_display.present > 0) |
|
s->sei.common.mastering_display.present--; |
|
|
|
if (s->sei.common.content_light.present > 0) |
|
s->sei.common.content_light.present--; |
|
} |
|
|
|
ret = ff_h2645_sei_to_frame(out, &s->sei.common, AV_CODEC_ID_HEVC, s->avctx, |
|
&sps->vui.common, |
|
sps->bit_depth, sps->bit_depth_chroma, |
|
s->cur_frame->poc /* no poc_offset in HEVC */); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (s->sei.timecode.present) { |
|
uint32_t *tc_sd; |
|
char tcbuf[AV_TIMECODE_STR_SIZE]; |
|
AVFrameSideData *tcside; |
|
ret = ff_frame_new_side_data(s->avctx, out, AV_FRAME_DATA_S12M_TIMECODE, |
|
sizeof(uint32_t) * 4, &tcside); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (tcside) { |
|
tc_sd = (uint32_t*)tcside->data; |
|
tc_sd[0] = s->sei.timecode.num_clock_ts; |
|
|
|
for (int i = 0; i < tc_sd[0]; i++) { |
|
int drop = s->sei.timecode.cnt_dropped_flag[i]; |
|
int hh = s->sei.timecode.hours_value[i]; |
|
int mm = s->sei.timecode.minutes_value[i]; |
|
int ss = s->sei.timecode.seconds_value[i]; |
|
int ff = s->sei.timecode.n_frames[i]; |
|
|
|
tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff); |
|
av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0); |
|
av_dict_set(&out->metadata, "timecode", tcbuf, 0); |
|
} |
|
} |
|
|
|
s->sei.timecode.num_clock_ts = 0; |
|
} |
|
|
|
if (s->sei.common.dynamic_hdr_plus.info) { |
|
AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_plus.info); |
|
if (!info_ref) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = ff_frame_new_side_data_from_buf(s->avctx, out, AV_FRAME_DATA_DYNAMIC_HDR_PLUS, &info_ref); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
if (s->rpu_buf) { |
|
AVFrameSideData *rpu = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DOVI_RPU_BUFFER, s->rpu_buf); |
|
if (!rpu) |
|
return AVERROR(ENOMEM); |
|
|
|
s->rpu_buf = NULL; |
|
} |
|
|
|
if ((ret = ff_dovi_attach_side_data(&s->dovi_ctx, out)) < 0) |
|
return ret; |
|
|
|
if (s->sei.common.dynamic_hdr_vivid.info) { |
|
AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_vivid.info); |
|
if (!info_ref) |
|
return AVERROR(ENOMEM); |
|
|
|
if (!av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DYNAMIC_HDR_VIVID, info_ref)) { |
|
av_buffer_unref(&info_ref); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int find_finish_setup_nal(const HEVCContext *s) |
|
{ |
|
int nal_idx = 0; |
|
|
|
for (int i = nal_idx; i < s->pkt.nb_nals; i++) { |
|
const H2645NAL *nal = &s->pkt.nals[i]; |
|
const int layer_id = nal->nuh_layer_id; |
|
GetBitContext gb = nal->gb; |
|
|
|
if (layer_id > HEVC_MAX_NUH_LAYER_ID || s->vps->layer_idx[layer_id] < 0 || |
|
!(s->layers_active_decode & (1 << s->vps->layer_idx[layer_id]))) |
|
continue; |
|
|
|
switch (nal->type) { |
|
case HEVC_NAL_TRAIL_R: |
|
case HEVC_NAL_TRAIL_N: |
|
case HEVC_NAL_TSA_N: |
|
case HEVC_NAL_TSA_R: |
|
case HEVC_NAL_STSA_N: |
|
case HEVC_NAL_STSA_R: |
|
case HEVC_NAL_BLA_W_LP: |
|
case HEVC_NAL_BLA_W_RADL: |
|
case HEVC_NAL_BLA_N_LP: |
|
case HEVC_NAL_IDR_W_RADL: |
|
case HEVC_NAL_IDR_N_LP: |
|
case HEVC_NAL_CRA_NUT: |
|
case HEVC_NAL_RADL_N: |
|
case HEVC_NAL_RADL_R: |
|
case HEVC_NAL_RASL_N: |
|
case HEVC_NAL_RASL_R: |
|
if (!get_bits1(&gb)) // first_slice_segment_in_pic_flag |
|
continue; |
|
case HEVC_NAL_VPS: |
|
case HEVC_NAL_SPS: |
|
case HEVC_NAL_PPS: |
|
nal_idx = i; |
|
break; |
|
} |
|
} |
|
|
|
return nal_idx; |
|
} |
|
|
|
static int hevc_frame_start(HEVCContext *s, HEVCLayerContext *l, |
|
unsigned nal_idx) |
|
{ |
|
const HEVCPPS *const pps = s->ps.pps_list[s->sh.pps_id]; |
|
const HEVCSPS *const sps = pps->sps; |
|
int pic_size_in_ctb = ((sps->width >> sps->log2_min_cb_size) + 1) * |
|
((sps->height >> sps->log2_min_cb_size) + 1); |
|
int new_sequence = (l == &s->layers[0]) && |
|
(IS_IDR(s) || IS_BLA(s) || s->last_eos); |
|
int prev_layers_active_decode = s->layers_active_decode; |
|
int prev_layers_active_output = s->layers_active_output; |
|
int ret; |
|
|
|
if (sps->vps != s->vps && l != &s->layers[0]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "VPS changed in a non-base layer\n"); |
|
set_sps(s, l, NULL); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ff_refstruct_replace(&s->pps, pps); |
|
if (l->sps != sps) { |
|
const HEVCSPS *sps_base = s->layers[0].sps; |
|
enum AVPixelFormat pix_fmt = sps->pix_fmt; |
|
|
|
if (l != &s->layers[0]) { |
|
if (!sps_base) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Access unit starts with a non-base layer frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Files produced by Vision Pro lack VPS extension VUI, |
|
// so the secondary layer has no range information. |
|
// This check avoids failing in such a case. |
|
if (sps_base->pix_fmt == AV_PIX_FMT_YUVJ420P && |
|
sps->pix_fmt == AV_PIX_FMT_YUV420P && |
|
!sps->vui.common.video_signal_type_present_flag) |
|
pix_fmt = sps_base->pix_fmt; |
|
|
|
if (pix_fmt != sps_base->pix_fmt || |
|
sps->width != sps_base->width || |
|
sps->height != sps_base->height) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Base/non-base layer SPS have unsupported parameter combination\n"); |
|
return AVERROR(ENOSYS); |
|
} |
|
} |
|
|
|
ff_hevc_clear_refs(l); |
|
|
|
ret = set_sps(s, l, sps); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (l == &s->layers[0]) { |
|
export_stream_params(s, sps); |
|
|
|
ret = get_format(s, sps); |
|
if (ret < 0) { |
|
set_sps(s, l, NULL); |
|
return ret; |
|
} |
|
|
|
new_sequence = 1; |
|
} |
|
} |
|
|
|
memset(l->horizontal_bs, 0, l->bs_width * l->bs_height); |
|
memset(l->vertical_bs, 0, l->bs_width * l->bs_height); |
|
memset(l->cbf_luma, 0, sps->min_tb_width * sps->min_tb_height); |
|
memset(l->is_pcm, 0, (sps->min_pu_width + 1) * (sps->min_pu_height + 1)); |
|
memset(l->tab_slice_address, -1, pic_size_in_ctb * sizeof(*l->tab_slice_address)); |
|
|
|
if (IS_IDR(s)) |
|
ff_hevc_clear_refs(l); |
|
|
|
s->slice_idx = 0; |
|
s->first_nal_type = s->nal_unit_type; |
|
s->poc = s->sh.poc; |
|
|
|
if (IS_IRAP(s)) |
|
s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || |
|
(s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos); |
|
|
|
/* 8.3.1 */ |
|
if (s->temporal_id == 0 && |
|
s->nal_unit_type != HEVC_NAL_TRAIL_N && |
|
s->nal_unit_type != HEVC_NAL_TSA_N && |
|
s->nal_unit_type != HEVC_NAL_STSA_N && |
|
s->nal_unit_type != HEVC_NAL_RADL_N && |
|
s->nal_unit_type != HEVC_NAL_RADL_R && |
|
s->nal_unit_type != HEVC_NAL_RASL_N && |
|
s->nal_unit_type != HEVC_NAL_RASL_R) |
|
s->poc_tid0 = s->poc; |
|
|
|
if (pps->tiles_enabled_flag) |
|
s->local_ctx[0].end_of_tiles_x = pps->column_width[0] << sps->log2_ctb_size; |
|
|
|
if (new_sequence) { |
|
ret = ff_hevc_output_frames(s, prev_layers_active_decode, prev_layers_active_output, |
|
0, 0, s->sh.no_output_of_prior_pics_flag); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
ret = export_stream_params_from_sei(s); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = ff_hevc_set_new_ref(s, l, s->poc); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
ret = ff_hevc_frame_rps(s, l); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n"); |
|
goto fail; |
|
} |
|
|
|
if (IS_IRAP(s)) |
|
s->cur_frame->f->flags |= AV_FRAME_FLAG_KEY; |
|
else |
|
s->cur_frame->f->flags &= ~AV_FRAME_FLAG_KEY; |
|
|
|
s->cur_frame->needs_fg = ((s->sei.common.film_grain_characteristics && |
|
s->sei.common.film_grain_characteristics->present) || |
|
s->sei.common.aom_film_grain.enable) && |
|
!(s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN) && |
|
!s->avctx->hwaccel; |
|
|
|
ret = set_side_data(s); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
if (s->cur_frame->needs_fg && |
|
(s->sei.common.film_grain_characteristics && s->sei.common.film_grain_characteristics->present && |
|
!ff_h274_film_grain_params_supported(s->sei.common.film_grain_characteristics->model_id, |
|
s->cur_frame->f->format) || |
|
!av_film_grain_params_select(s->cur_frame->f))) { |
|
av_log_once(s->avctx, AV_LOG_WARNING, AV_LOG_DEBUG, &s->film_grain_warning_shown, |
|
"Unsupported film grain parameters. Ignoring film grain.\n"); |
|
s->cur_frame->needs_fg = 0; |
|
} |
|
|
|
if (s->cur_frame->needs_fg) { |
|
s->cur_frame->frame_grain->format = s->cur_frame->f->format; |
|
s->cur_frame->frame_grain->width = s->cur_frame->f->width; |
|
s->cur_frame->frame_grain->height = s->cur_frame->f->height; |
|
if ((ret = ff_thread_get_buffer(s->avctx, s->cur_frame->frame_grain, 0)) < 0) |
|
goto fail; |
|
|
|
ret = av_frame_copy_props(s->cur_frame->frame_grain, s->cur_frame->f); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
s->cur_frame->f->pict_type = 3 - s->sh.slice_type; |
|
|
|
ret = ff_hevc_output_frames(s, s->layers_active_decode, s->layers_active_output, |
|
sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics, |
|
sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering, 0); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
if (s->avctx->hwaccel) { |
|
ret = FF_HW_CALL(s->avctx, start_frame, NULL, 0); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
// after starting the base-layer frame we know which layers will be decoded, |
|
// so we can now figure out which NALUs to wait for before we can call |
|
// ff_thread_finish_setup() |
|
if (l == &s->layers[0]) |
|
s->finish_setup_nal_idx = find_finish_setup_nal(s); |
|
|
|
if (nal_idx >= s->finish_setup_nal_idx) |
|
ff_thread_finish_setup(s->avctx); |
|
|
|
return 0; |
|
|
|
fail: |
|
if (l->cur_frame) |
|
ff_hevc_unref_frame(l->cur_frame, ~0); |
|
l->cur_frame = NULL; |
|
s->cur_frame = s->collocated_ref = NULL; |
|
s->slice_initialized = 0; |
|
return ret; |
|
} |
|
|
|
static int verify_md5(HEVCContext *s, AVFrame *frame) |
|
{ |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format); |
|
char msg_buf[4 * (50 + 2 * 2 * 16 /* MD5-size */)]; |
|
int pixel_shift; |
|
int err = 0; |
|
int i, j; |
|
|
|
if (!desc) |
|
return AVERROR(EINVAL); |
|
|
|
pixel_shift = desc->comp[0].depth > 8; |
|
|
|
/* the checksums are LE, so we have to byteswap for >8bpp formats |
|
* on BE arches */ |
|
#if HAVE_BIGENDIAN |
|
if (pixel_shift && !s->checksum_buf) { |
|
av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size, |
|
FFMAX3(frame->linesize[0], frame->linesize[1], |
|
frame->linesize[2])); |
|
if (!s->checksum_buf) |
|
return AVERROR(ENOMEM); |
|
} |
|
#endif |
|
|
|
msg_buf[0] = '\0'; |
|
for (i = 0; frame->data[i]; i++) { |
|
int width = s->avctx->coded_width; |
|
int height = s->avctx->coded_height; |
|
int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width; |
|
int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height; |
|
uint8_t md5[16]; |
|
|
|
av_md5_init(s->md5_ctx); |
|
for (j = 0; j < h; j++) { |
|
const uint8_t *src = frame->data[i] + j * frame->linesize[i]; |
|
#if HAVE_BIGENDIAN |
|
if (pixel_shift) { |
|
s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf, |
|
(const uint16_t *) src, w); |
|
src = s->checksum_buf; |
|
} |
|
#endif |
|
av_md5_update(s->md5_ctx, src, w << pixel_shift); |
|
} |
|
av_md5_final(s->md5_ctx, md5); |
|
|
|
#define MD5_PRI "%016" PRIx64 "%016" PRIx64 |
|
#define MD5_PRI_ARG(buf) AV_RB64(buf), AV_RB64((const uint8_t*)(buf) + 8) |
|
|
|
if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) { |
|
av_strlcatf(msg_buf, sizeof(msg_buf), |
|
"plane %d - correct " MD5_PRI "; ", |
|
i, MD5_PRI_ARG(md5)); |
|
} else { |
|
av_strlcatf(msg_buf, sizeof(msg_buf), |
|
"mismatching checksum of plane %d - " MD5_PRI " != " MD5_PRI "; ", |
|
i, MD5_PRI_ARG(md5), MD5_PRI_ARG(s->sei.picture_hash.md5[i])); |
|
err = AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
av_log(s->avctx, err < 0 ? AV_LOG_ERROR : AV_LOG_DEBUG, |
|
"Verifying checksum for frame with POC %d: %s\n", |
|
s->poc, msg_buf); |
|
|
|
return err; |
|
} |
|
|
|
static int hevc_frame_end(HEVCContext *s, HEVCLayerContext *l) |
|
{ |
|
HEVCFrame *out = l->cur_frame; |
|
const AVFilmGrainParams *fgp; |
|
av_unused int ret; |
|
|
|
if (out->needs_fg) { |
|
av_assert0(out->frame_grain->buf[0]); |
|
fgp = av_film_grain_params_select(out->f); |
|
switch (fgp->type) { |
|
case AV_FILM_GRAIN_PARAMS_NONE: |
|
av_assert0(0); |
|
return AVERROR_BUG; |
|
case AV_FILM_GRAIN_PARAMS_H274: |
|
ret = ff_h274_apply_film_grain(out->frame_grain, out->f, |
|
&s->h274db, fgp); |
|
break; |
|
case AV_FILM_GRAIN_PARAMS_AV1: |
|
ret = ff_aom_apply_film_grain(out->frame_grain, out->f, fgp); |
|
break; |
|
} |
|
av_assert1(ret >= 0); |
|
} |
|
|
|
if (s->avctx->hwaccel) { |
|
ret = FF_HW_SIMPLE_CALL(s->avctx, end_frame); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"hardware accelerator failed to decode picture\n"); |
|
return ret; |
|
} |
|
} else { |
|
if (s->avctx->err_recognition & AV_EF_CRCCHECK && |
|
s->sei.picture_hash.is_md5) { |
|
ret = verify_md5(s, out->f); |
|
if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return ret; |
|
} |
|
} |
|
s->sei.picture_hash.is_md5 = 0; |
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "Decoded frame with POC %zu/%d.\n", |
|
l - s->layers, s->poc); |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_slice(HEVCContext *s, unsigned nal_idx, GetBitContext *gb) |
|
{ |
|
const int layer_idx = s->vps ? s->vps->layer_idx[s->nuh_layer_id] : 0; |
|
HEVCLayerContext *l; |
|
int ret; |
|
|
|
// skip layers not requested to be decoded |
|
// layers_active_decode can only change while decoding a base-layer frame, |
|
// so we can check it for non-base layers |
|
if (layer_idx < 0 || |
|
(s->nuh_layer_id > 0 && !(s->layers_active_decode & (1 << layer_idx)))) |
|
return 0; |
|
|
|
ret = hls_slice_header(&s->sh, s, gb); |
|
if (ret < 0) { |
|
// hls_slice_header() does not cleanup on failure thus the state now is inconsistant so we cannot use it on depandant slices |
|
s->slice_initialized = 0; |
|
return ret; |
|
} |
|
|
|
if ((s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) || |
|
(s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) || |
|
(s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s)) || |
|
((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) && |
|
s->no_rasl_output_flag)) { |
|
return 0; |
|
} |
|
|
|
// switching to a new layer, mark previous layer's frame (if any) as done |
|
if (s->cur_layer != layer_idx && |
|
s->layers[s->cur_layer].cur_frame && |
|
s->avctx->active_thread_type == FF_THREAD_FRAME) |
|
ff_progress_frame_report(&s->layers[s->cur_layer].cur_frame->tf, INT_MAX); |
|
|
|
s->cur_layer = layer_idx; |
|
l = &s->layers[s->cur_layer]; |
|
|
|
if (s->sh.first_slice_in_pic_flag) { |
|
if (l->cur_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ret = hevc_frame_start(s, l, nal_idx); |
|
if (ret < 0) |
|
return ret; |
|
} else if (!l->cur_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->nal_unit_type != s->first_nal_type) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Non-matching NAL types of the VCL NALUs: %d %d\n", |
|
s->first_nal_type, s->nal_unit_type); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ret = decode_slice_data(s, l, &s->pkt.nals[nal_idx], gb); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_nal_unit(HEVCContext *s, unsigned nal_idx) |
|
{ |
|
H2645NAL *nal = &s->pkt.nals[nal_idx]; |
|
GetBitContext gb = nal->gb; |
|
int ret; |
|
|
|
s->nal_unit_type = nal->type; |
|
s->nuh_layer_id = nal->nuh_layer_id; |
|
s->temporal_id = nal->temporal_id; |
|
|
|
if (FF_HW_HAS_CB(s->avctx, decode_params) && |
|
(s->nal_unit_type == HEVC_NAL_VPS || |
|
s->nal_unit_type == HEVC_NAL_SPS || |
|
s->nal_unit_type == HEVC_NAL_PPS || |
|
s->nal_unit_type == HEVC_NAL_SEI_PREFIX || |
|
s->nal_unit_type == HEVC_NAL_SEI_SUFFIX)) { |
|
ret = FF_HW_CALL(s->avctx, decode_params, |
|
nal->type, nal->raw_data, nal->raw_size); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
switch (s->nal_unit_type) { |
|
case HEVC_NAL_VPS: |
|
ret = ff_hevc_decode_nal_vps(&gb, s->avctx, &s->ps); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case HEVC_NAL_SPS: |
|
ret = ff_hevc_decode_nal_sps(&gb, s->avctx, &s->ps, |
|
nal->nuh_layer_id, s->apply_defdispwin); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case HEVC_NAL_PPS: |
|
ret = ff_hevc_decode_nal_pps(&gb, s->avctx, &s->ps); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case HEVC_NAL_SEI_PREFIX: |
|
case HEVC_NAL_SEI_SUFFIX: |
|
ret = ff_hevc_decode_nal_sei(&gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case HEVC_NAL_TRAIL_R: |
|
case HEVC_NAL_TRAIL_N: |
|
case HEVC_NAL_TSA_N: |
|
case HEVC_NAL_TSA_R: |
|
case HEVC_NAL_STSA_N: |
|
case HEVC_NAL_STSA_R: |
|
case HEVC_NAL_BLA_W_LP: |
|
case HEVC_NAL_BLA_W_RADL: |
|
case HEVC_NAL_BLA_N_LP: |
|
case HEVC_NAL_IDR_W_RADL: |
|
case HEVC_NAL_IDR_N_LP: |
|
case HEVC_NAL_CRA_NUT: |
|
case HEVC_NAL_RADL_N: |
|
case HEVC_NAL_RADL_R: |
|
case HEVC_NAL_RASL_N: |
|
case HEVC_NAL_RASL_R: |
|
ret = decode_slice(s, nal_idx, &gb); |
|
if (ret < 0) |
|
goto fail; |
|
break; |
|
case HEVC_NAL_EOS_NUT: |
|
case HEVC_NAL_EOB_NUT: |
|
case HEVC_NAL_AUD: |
|
case HEVC_NAL_FD_NUT: |
|
case HEVC_NAL_UNSPEC62: |
|
break; |
|
default: |
|
av_log(s->avctx, AV_LOG_INFO, |
|
"Skipping NAL unit %d\n", s->nal_unit_type); |
|
} |
|
|
|
return 0; |
|
fail: |
|
if (ret == AVERROR_INVALIDDATA && |
|
!(s->avctx->err_recognition & AV_EF_EXPLODE)) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Skipping invalid undecodable NALU: %d\n", s->nal_unit_type); |
|
return 0; |
|
} |
|
return ret; |
|
} |
|
|
|
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length) |
|
{ |
|
int i, ret = 0; |
|
int eos_at_start = 1; |
|
int flags = (H2645_FLAG_IS_NALFF * !!s->is_nalff) | H2645_FLAG_SMALL_PADDING; |
|
|
|
s->cur_frame = s->collocated_ref = NULL; |
|
s->last_eos = s->eos; |
|
s->eos = 0; |
|
s->slice_initialized = 0; |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) { |
|
HEVCLayerContext *l = &s->layers[i]; |
|
l->cur_frame = NULL; |
|
} |
|
|
|
/* split the input packet into NAL units, so we know the upper bound on the |
|
* number of slices in the frame */ |
|
ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, |
|
s->nal_length_size, s->avctx->codec_id, flags); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Error splitting the input into NAL units.\n"); |
|
return ret; |
|
} |
|
|
|
for (i = 0; i < s->pkt.nb_nals; i++) { |
|
if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT || |
|
s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) { |
|
if (eos_at_start) { |
|
s->last_eos = 1; |
|
} else { |
|
s->eos = 1; |
|
} |
|
} else { |
|
eos_at_start = 0; |
|
} |
|
} |
|
|
|
/* |
|
* Check for RPU delimiter. |
|
* |
|
* Dolby Vision RPUs masquerade as unregistered NALs of type 62. |
|
* |
|
* We have to do this check here an create the rpu buffer, since RPUs are appended |
|
* to the end of an AU; they are the last non-EOB/EOS NAL in the AU. |
|
*/ |
|
if (s->pkt.nb_nals > 1 && s->pkt.nals[s->pkt.nb_nals - 1].type == HEVC_NAL_UNSPEC62 && |
|
s->pkt.nals[s->pkt.nb_nals - 1].size > 2 && !s->pkt.nals[s->pkt.nb_nals - 1].nuh_layer_id |
|
&& !s->pkt.nals[s->pkt.nb_nals - 1].temporal_id) { |
|
H2645NAL *nal = &s->pkt.nals[s->pkt.nb_nals - 1]; |
|
if (s->rpu_buf) { |
|
av_buffer_unref(&s->rpu_buf); |
|
av_log(s->avctx, AV_LOG_WARNING, "Multiple Dolby Vision RPUs found in one AU. Skipping previous.\n"); |
|
} |
|
|
|
s->rpu_buf = av_buffer_alloc(nal->raw_size - 2); |
|
if (!s->rpu_buf) |
|
return AVERROR(ENOMEM); |
|
memcpy(s->rpu_buf->data, nal->raw_data + 2, nal->raw_size - 2); |
|
|
|
ret = ff_dovi_rpu_parse(&s->dovi_ctx, nal->data + 2, nal->size - 2, |
|
s->avctx->err_recognition); |
|
if (ret < 0) { |
|
av_buffer_unref(&s->rpu_buf); |
|
av_log(s->avctx, AV_LOG_WARNING, "Error parsing DOVI NAL unit.\n"); |
|
/* ignore */ |
|
} |
|
} |
|
|
|
/* decode the NAL units */ |
|
for (i = 0; i < s->pkt.nb_nals; i++) { |
|
H2645NAL *nal = &s->pkt.nals[i]; |
|
|
|
if (s->avctx->skip_frame >= AVDISCARD_ALL || |
|
(s->avctx->skip_frame >= AVDISCARD_NONREF && ff_hevc_nal_is_nonref(nal->type))) |
|
continue; |
|
|
|
ret = decode_nal_unit(s, i); |
|
if (ret < 0) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"Error parsing NAL unit #%d.\n", i); |
|
goto fail; |
|
} |
|
} |
|
|
|
fail: |
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) { |
|
HEVCLayerContext *l = &s->layers[i]; |
|
|
|
if (!l->cur_frame) |
|
continue; |
|
|
|
if (ret >= 0) |
|
ret = hevc_frame_end(s, l); |
|
|
|
if (s->avctx->active_thread_type == FF_THREAD_FRAME) |
|
ff_progress_frame_report(&l->cur_frame->tf, INT_MAX); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first) |
|
{ |
|
int ret, i; |
|
|
|
ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff, |
|
&s->nal_length_size, s->avctx->err_recognition, |
|
s->apply_defdispwin, s->avctx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* export stream parameters from the first SPS */ |
|
for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) { |
|
if (first && s->ps.sps_list[i]) { |
|
const HEVCSPS *sps = s->ps.sps_list[i]; |
|
export_stream_params(s, sps); |
|
|
|
ret = export_multilayer(s, sps->vps); |
|
if (ret < 0) |
|
return ret; |
|
|
|
break; |
|
} |
|
} |
|
|
|
/* export stream parameters from SEI */ |
|
ret = export_stream_params_from_sei(s); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
static int hevc_receive_frame(AVCodecContext *avctx, AVFrame *frame) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
AVCodecInternal *avci = avctx->internal; |
|
AVPacket *avpkt = avci->in_pkt; |
|
|
|
int ret; |
|
uint8_t *sd; |
|
size_t sd_size; |
|
|
|
s->pkt_dts = AV_NOPTS_VALUE; |
|
|
|
if (ff_container_fifo_can_read(s->output_fifo)) |
|
goto do_output; |
|
|
|
av_packet_unref(avpkt); |
|
ret = ff_decode_get_packet(avctx, avpkt); |
|
if (ret == AVERROR_EOF) { |
|
ret = ff_hevc_output_frames(s, s->layers_active_decode, |
|
s->layers_active_output, 0, 0, 0); |
|
if (ret < 0) |
|
return ret; |
|
goto do_output; |
|
} else if (ret < 0) |
|
return ret; |
|
|
|
s->pkt_dts = avpkt->dts; |
|
|
|
sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &sd_size); |
|
if (sd && sd_size > 0) { |
|
ret = hevc_decode_extradata(s, sd, sd_size, 0); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_DOVI_CONF, &sd_size); |
|
if (sd && sd_size >= sizeof(s->dovi_ctx.cfg)) { |
|
int old = s->dovi_ctx.cfg.dv_profile; |
|
s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd; |
|
if (old) |
|
av_log(avctx, AV_LOG_DEBUG, |
|
"New DOVI configuration record from input packet (profile %d -> %u).\n", |
|
old, s->dovi_ctx.cfg.dv_profile); |
|
} |
|
|
|
ret = decode_nal_units(s, avpkt->data, avpkt->size); |
|
if (ret < 0) |
|
return ret; |
|
|
|
do_output: |
|
if (ff_container_fifo_read(s->output_fifo, frame) >= 0) { |
|
if (!(avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN)) |
|
av_frame_remove_side_data(frame, AV_FRAME_DATA_FILM_GRAIN_PARAMS); |
|
|
|
return 0; |
|
} |
|
|
|
return avci->draining ? AVERROR_EOF : AVERROR(EAGAIN); |
|
} |
|
|
|
static int hevc_ref_frame(HEVCFrame *dst, const HEVCFrame *src) |
|
{ |
|
int ret; |
|
|
|
ff_progress_frame_ref(&dst->tf, &src->tf); |
|
|
|
if (src->needs_fg) { |
|
ret = av_frame_ref(dst->frame_grain, src->frame_grain); |
|
if (ret < 0) { |
|
ff_hevc_unref_frame(dst, ~0); |
|
return ret; |
|
} |
|
dst->needs_fg = 1; |
|
} |
|
|
|
dst->pps = ff_refstruct_ref_c(src->pps); |
|
dst->tab_mvf = ff_refstruct_ref(src->tab_mvf); |
|
dst->rpl_tab = ff_refstruct_ref(src->rpl_tab); |
|
dst->rpl = ff_refstruct_ref(src->rpl); |
|
dst->nb_rpl_elems = src->nb_rpl_elems; |
|
|
|
dst->poc = src->poc; |
|
dst->ctb_count = src->ctb_count; |
|
dst->flags = src->flags; |
|
|
|
dst->base_layer_frame = src->base_layer_frame; |
|
|
|
ff_refstruct_replace(&dst->hwaccel_picture_private, |
|
src->hwaccel_picture_private); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int hevc_decode_free(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) { |
|
pic_arrays_free(&s->layers[i]); |
|
ff_refstruct_unref(&s->layers[i].sps); |
|
} |
|
|
|
ff_refstruct_unref(&s->vps); |
|
ff_refstruct_unref(&s->pps); |
|
|
|
ff_dovi_ctx_unref(&s->dovi_ctx); |
|
av_buffer_unref(&s->rpu_buf); |
|
|
|
av_freep(&s->md5_ctx); |
|
|
|
ff_container_fifo_free(&s->output_fifo); |
|
|
|
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) { |
|
HEVCLayerContext *l = &s->layers[layer]; |
|
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) { |
|
ff_hevc_unref_frame(&l->DPB[i], ~0); |
|
av_frame_free(&l->DPB[i].frame_grain); |
|
} |
|
} |
|
|
|
ff_hevc_ps_uninit(&s->ps); |
|
|
|
for (int i = 0; i < s->nb_wpp_progress; i++) |
|
ff_thread_progress_destroy(&s->wpp_progress[i]); |
|
av_freep(&s->wpp_progress); |
|
|
|
av_freep(&s->sh.entry_point_offset); |
|
av_freep(&s->sh.offset); |
|
av_freep(&s->sh.size); |
|
|
|
av_freep(&s->local_ctx); |
|
|
|
ff_h2645_packet_uninit(&s->pkt); |
|
|
|
ff_hevc_reset_sei(&s->sei); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int hevc_init_context(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
|
|
s->avctx = avctx; |
|
|
|
s->local_ctx = av_mallocz(sizeof(*s->local_ctx)); |
|
if (!s->local_ctx) |
|
return AVERROR(ENOMEM); |
|
s->nb_local_ctx = 1; |
|
|
|
s->local_ctx[0].parent = s; |
|
s->local_ctx[0].logctx = avctx; |
|
s->local_ctx[0].common_cabac_state = &s->cabac; |
|
|
|
s->output_fifo = ff_container_fifo_alloc_avframe(0); |
|
if (!s->output_fifo) |
|
return AVERROR(ENOMEM); |
|
|
|
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) { |
|
HEVCLayerContext *l = &s->layers[layer]; |
|
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) { |
|
l->DPB[i].frame_grain = av_frame_alloc(); |
|
if (!l->DPB[i].frame_grain) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
s->md5_ctx = av_md5_alloc(); |
|
if (!s->md5_ctx) |
|
return AVERROR(ENOMEM); |
|
|
|
ff_bswapdsp_init(&s->bdsp); |
|
|
|
s->dovi_ctx.logctx = avctx; |
|
s->eos = 0; |
|
|
|
ff_hevc_reset_sei(&s->sei); |
|
|
|
return 0; |
|
} |
|
|
|
#if HAVE_THREADS |
|
static int hevc_update_thread_context(AVCodecContext *dst, |
|
const AVCodecContext *src) |
|
{ |
|
HEVCContext *s = dst->priv_data; |
|
HEVCContext *s0 = src->priv_data; |
|
int ret; |
|
|
|
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) { |
|
HEVCLayerContext *l = &s->layers[layer]; |
|
const HEVCLayerContext *l0 = &s0->layers[layer]; |
|
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) { |
|
ff_hevc_unref_frame(&l->DPB[i], ~0); |
|
if (l0->DPB[i].f) { |
|
ret = hevc_ref_frame(&l->DPB[i], &l0->DPB[i]); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
if (l->sps != l0->sps) { |
|
ret = set_sps(s, l, l0->sps); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) |
|
ff_refstruct_replace(&s->ps.vps_list[i], s0->ps.vps_list[i]); |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) |
|
ff_refstruct_replace(&s->ps.sps_list[i], s0->ps.sps_list[i]); |
|
|
|
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) |
|
ff_refstruct_replace(&s->ps.pps_list[i], s0->ps.pps_list[i]); |
|
|
|
// PPS do not persist between frames |
|
ff_refstruct_unref(&s->pps); |
|
|
|
s->poc_tid0 = s0->poc_tid0; |
|
s->eos = s0->eos; |
|
s->no_rasl_output_flag = s0->no_rasl_output_flag; |
|
|
|
s->is_nalff = s0->is_nalff; |
|
s->nal_length_size = s0->nal_length_size; |
|
s->layers_active_decode = s0->layers_active_decode; |
|
s->layers_active_output = s0->layers_active_output; |
|
|
|
s->film_grain_warning_shown = s0->film_grain_warning_shown; |
|
|
|
if (s->nb_view_ids != s0->nb_view_ids || |
|
memcmp(s->view_ids, s0->view_ids, sizeof(*s->view_ids) * s->nb_view_ids)) { |
|
av_freep(&s->view_ids); |
|
s->nb_view_ids = 0; |
|
|
|
if (s0->nb_view_ids) { |
|
s->view_ids = av_memdup(s0->view_ids, s0->nb_view_ids * sizeof(*s0->view_ids)); |
|
if (!s->view_ids) |
|
return AVERROR(ENOMEM); |
|
s->nb_view_ids = s0->nb_view_ids; |
|
} |
|
} |
|
|
|
ret = ff_h2645_sei_ctx_replace(&s->sei.common, &s0->sei.common); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = av_buffer_replace(&s->sei.common.dynamic_hdr_plus.info, |
|
s0->sei.common.dynamic_hdr_plus.info); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = av_buffer_replace(&s->rpu_buf, s0->rpu_buf); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ff_dovi_ctx_replace(&s->dovi_ctx, &s0->dovi_ctx); |
|
|
|
ret = av_buffer_replace(&s->sei.common.dynamic_hdr_vivid.info, |
|
s0->sei.common.dynamic_hdr_vivid.info); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->sei.common.frame_packing = s0->sei.common.frame_packing; |
|
s->sei.common.display_orientation = s0->sei.common.display_orientation; |
|
s->sei.common.alternative_transfer = s0->sei.common.alternative_transfer; |
|
s->sei.tdrdi = s0->sei.tdrdi; |
|
|
|
return 0; |
|
} |
|
#endif |
|
|
|
static av_cold int hevc_decode_init(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
int ret; |
|
|
|
ret = hevc_init_context(avctx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->sei.picture_timing.picture_struct = 0; |
|
s->eos = 1; |
|
|
|
atomic_init(&s->wpp_err, 0); |
|
|
|
if (!avctx->internal->is_copy) { |
|
const AVPacketSideData *sd; |
|
|
|
if (avctx->extradata_size > 0 && avctx->extradata) { |
|
ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
ret = ff_h2645_sei_to_context(avctx, &s->sei.common); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
sd = ff_get_coded_side_data(avctx, AV_PKT_DATA_DOVI_CONF); |
|
if (sd && sd->size >= sizeof(s->dovi_ctx.cfg)) |
|
s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd->data; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void hevc_decode_flush(AVCodecContext *avctx) |
|
{ |
|
HEVCContext *s = avctx->priv_data; |
|
ff_hevc_flush_dpb(s); |
|
ff_hevc_reset_sei(&s->sei); |
|
ff_dovi_ctx_flush(&s->dovi_ctx); |
|
av_buffer_unref(&s->rpu_buf); |
|
s->eos = 1; |
|
|
|
if (FF_HW_HAS_CB(avctx, flush)) |
|
FF_HW_SIMPLE_CALL(avctx, flush); |
|
} |
|
|
|
#define OFFSET(x) offsetof(HEVCContext, x) |
|
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) |
|
|
|
static const AVOption options[] = { |
|
{ "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin), |
|
AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR }, |
|
{ "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin), |
|
AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR }, |
|
{ "view_ids", "Array of view IDs that should be decoded and output; a single -1 to decode all views", |
|
.offset = OFFSET(view_ids), .type = AV_OPT_TYPE_INT | AV_OPT_TYPE_FLAG_ARRAY, |
|
.min = -1, .max = INT_MAX, .flags = PAR }, |
|
{ "view_ids_available", "Array of available view IDs is exported here", |
|
.offset = OFFSET(view_ids_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY, |
|
.flags = PAR | AV_OPT_FLAG_EXPORT | AV_OPT_FLAG_READONLY }, |
|
{ "view_pos_available", "Array of view positions for view_ids_available is exported here, as AVStereo3DView", |
|
.offset = OFFSET(view_pos_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY, |
|
.flags = PAR | AV_OPT_FLAG_EXPORT | AV_OPT_FLAG_READONLY, .unit = "view_pos" }, |
|
{ "unspecified", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_UNSPEC }, .unit = "view_pos" }, |
|
{ "left", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_LEFT }, .unit = "view_pos" }, |
|
{ "right", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_RIGHT }, .unit = "view_pos" }, |
|
|
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass hevc_decoder_class = { |
|
.class_name = "HEVC decoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
const FFCodec ff_hevc_decoder = { |
|
.p.name = "hevc", |
|
CODEC_LONG_NAME("HEVC (High Efficiency Video Coding)"), |
|
.p.type = AVMEDIA_TYPE_VIDEO, |
|
.p.id = AV_CODEC_ID_HEVC, |
|
.priv_data_size = sizeof(HEVCContext), |
|
.p.priv_class = &hevc_decoder_class, |
|
.init = hevc_decode_init, |
|
.close = hevc_decode_free, |
|
FF_CODEC_RECEIVE_FRAME_CB(hevc_receive_frame), |
|
.flush = hevc_decode_flush, |
|
UPDATE_THREAD_CONTEXT(hevc_update_thread_context), |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | |
|
AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, |
|
.caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING | |
|
FF_CODEC_CAP_USES_PROGRESSFRAMES | |
|
FF_CODEC_CAP_INIT_CLEANUP, |
|
.p.profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles), |
|
.hw_configs = (const AVCodecHWConfigInternal *const []) { |
|
#if CONFIG_HEVC_DXVA2_HWACCEL |
|
HWACCEL_DXVA2(hevc), |
|
#endif |
|
#if CONFIG_HEVC_D3D11VA_HWACCEL |
|
HWACCEL_D3D11VA(hevc), |
|
#endif |
|
#if CONFIG_HEVC_D3D11VA2_HWACCEL |
|
HWACCEL_D3D11VA2(hevc), |
|
#endif |
|
#if CONFIG_HEVC_D3D12VA_HWACCEL |
|
HWACCEL_D3D12VA(hevc), |
|
#endif |
|
#if CONFIG_HEVC_NVDEC_HWACCEL |
|
HWACCEL_NVDEC(hevc), |
|
#endif |
|
#if CONFIG_HEVC_VAAPI_HWACCEL |
|
HWACCEL_VAAPI(hevc), |
|
#endif |
|
#if CONFIG_HEVC_VDPAU_HWACCEL |
|
HWACCEL_VDPAU(hevc), |
|
#endif |
|
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL |
|
HWACCEL_VIDEOTOOLBOX(hevc), |
|
#endif |
|
#if CONFIG_HEVC_VULKAN_HWACCEL |
|
HWACCEL_VULKAN(hevc), |
|
#endif |
|
NULL |
|
}, |
|
};
|
|
|