mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1674 lines
46 KiB
1674 lines
46 KiB
/* |
|
Copyright (C) 2001-2002 Michael Niedermayer <michaelni@gmx.at> |
|
|
|
This program is free software; you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation; either version 2 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program; if not, write to the Free Software |
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
/* |
|
supported Input formats: YV12, I420, IYUV, YUY2, BGR32, BGR24, Y8, Y800 |
|
supported output formats: YV12, I420, IYUV, BGR15, BGR16, BGR24, BGR32 (grayscale soon too) |
|
BGR15/16 support dithering |
|
*/ |
|
|
|
#include <inttypes.h> |
|
#include <string.h> |
|
#include <math.h> |
|
#include <stdio.h> |
|
#include "../config.h" |
|
#include "../mangle.h" |
|
#ifdef HAVE_MALLOC_H |
|
#include <malloc.h> |
|
#endif |
|
#include "swscale.h" |
|
#include "../cpudetect.h" |
|
#include "../libvo/img_format.h" |
|
#undef MOVNTQ |
|
#undef PAVGB |
|
|
|
//#undef HAVE_MMX2 |
|
//#define HAVE_3DNOW |
|
//#undef HAVE_MMX |
|
//#undef ARCH_X86 |
|
#define DITHER1XBPP |
|
|
|
#define RET 0xC3 //near return opcode for X86 |
|
|
|
#ifdef MP_DEBUG |
|
#define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; } |
|
#else |
|
#define ASSERT(x) ; |
|
#endif |
|
|
|
#ifdef M_PI |
|
#define PI M_PI |
|
#else |
|
#define PI 3.14159265358979323846 |
|
#endif |
|
|
|
//FIXME replace this with something faster |
|
#define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420) |
|
#define isYUV(x) ((x)==IMGFMT_YUY2 || isPlanarYUV(x)) |
|
#define isHalfChrV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420) |
|
#define isHalfChrH(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_YV12 || (x)==IMGFMT_I420) |
|
#define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24) |
|
#define isGray(x) ((x)==IMGFMT_Y800) |
|
#define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YUY2 \ |
|
|| (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24\ |
|
|| (x)==IMGFMT_Y800) |
|
#define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 \ |
|
|| (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15) |
|
|
|
#define RGB2YUV_SHIFT 16 |
|
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5)) |
|
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5)) |
|
|
|
extern int verbose; // defined in mplayer.c |
|
/* |
|
NOTES |
|
|
|
known BUGS with known cause (no bugreports please!, but patches are welcome :) ) |
|
horizontal fast_bilinear MMX2 scaler reads 1-7 samples too much (might cause a sig11) |
|
|
|
Special versions: fast Y 1:1 scaling (no interpolation in y direction) |
|
|
|
TODO |
|
more intelligent missalignment avoidance for the horizontal scaler |
|
change the distance of the u & v buffer |
|
write special vertical cubic upscale version |
|
Optimize C code (yv12 / minmax) |
|
add support for packed pixel yuv input & output |
|
add support for Y8 output |
|
optimize bgr24 & bgr32 |
|
add BGR4 output support |
|
write special BGR->BGR scaler |
|
*/ |
|
|
|
#define ABS(a) ((a) > 0 ? (a) : (-(a))) |
|
#define MIN(a,b) ((a) > (b) ? (b) : (a)) |
|
#define MAX(a,b) ((a) < (b) ? (b) : (a)) |
|
|
|
#ifdef ARCH_X86 |
|
#define CAN_COMPILE_X86_ASM |
|
#endif |
|
|
|
#ifdef CAN_COMPILE_X86_ASM |
|
static uint64_t __attribute__((aligned(8))) yCoeff= 0x2568256825682568LL; |
|
static uint64_t __attribute__((aligned(8))) vrCoeff= 0x3343334333433343LL; |
|
static uint64_t __attribute__((aligned(8))) ubCoeff= 0x40cf40cf40cf40cfLL; |
|
static uint64_t __attribute__((aligned(8))) vgCoeff= 0xE5E2E5E2E5E2E5E2LL; |
|
static uint64_t __attribute__((aligned(8))) ugCoeff= 0xF36EF36EF36EF36ELL; |
|
static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL; |
|
static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL; |
|
static uint64_t __attribute__((aligned(8))) w400= 0x0400040004000400LL; |
|
static uint64_t __attribute__((aligned(8))) w80= 0x0080008000800080LL; |
|
static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL; |
|
static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL; |
|
static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL; |
|
static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL; |
|
static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL; |
|
static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL; |
|
|
|
static volatile uint64_t __attribute__((aligned(8))) b5Dither; |
|
static volatile uint64_t __attribute__((aligned(8))) g5Dither; |
|
static volatile uint64_t __attribute__((aligned(8))) g6Dither; |
|
static volatile uint64_t __attribute__((aligned(8))) r5Dither; |
|
|
|
static uint64_t __attribute__((aligned(8))) dither4[2]={ |
|
0x0103010301030103LL, |
|
0x0200020002000200LL,}; |
|
|
|
static uint64_t __attribute__((aligned(8))) dither8[2]={ |
|
0x0602060206020602LL, |
|
0x0004000400040004LL,}; |
|
|
|
static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL; |
|
static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL; |
|
static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL; |
|
static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL; |
|
static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL; |
|
static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL; |
|
|
|
static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL; |
|
static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL; |
|
static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL; |
|
|
|
// FIXME remove |
|
static uint64_t __attribute__((aligned(8))) asm_yalpha1; |
|
static uint64_t __attribute__((aligned(8))) asm_uvalpha1; |
|
#endif |
|
|
|
// clipping helper table for C implementations: |
|
static unsigned char clip_table[768]; |
|
|
|
static unsigned short clip_table16b[768]; |
|
static unsigned short clip_table16g[768]; |
|
static unsigned short clip_table16r[768]; |
|
static unsigned short clip_table15b[768]; |
|
static unsigned short clip_table15g[768]; |
|
static unsigned short clip_table15r[768]; |
|
|
|
// yuv->rgb conversion tables: |
|
static int yuvtab_2568[256]; |
|
static int yuvtab_3343[256]; |
|
static int yuvtab_0c92[256]; |
|
static int yuvtab_1a1e[256]; |
|
static int yuvtab_40cf[256]; |
|
// Needed for cubic scaler to catch overflows |
|
static int clip_yuvtab_2568[768]; |
|
static int clip_yuvtab_3343[768]; |
|
static int clip_yuvtab_0c92[768]; |
|
static int clip_yuvtab_1a1e[768]; |
|
static int clip_yuvtab_40cf[768]; |
|
|
|
//global sws_flags from the command line |
|
int sws_flags=2; |
|
|
|
//global srcFilter |
|
SwsFilter src_filter= {NULL, NULL, NULL, NULL}; |
|
|
|
float sws_lum_gblur= 0.0; |
|
float sws_chr_gblur= 0.0; |
|
int sws_chr_vshift= 0; |
|
int sws_chr_hshift= 0; |
|
float sws_chr_sharpen= 0.0; |
|
float sws_lum_sharpen= 0.0; |
|
|
|
/* cpuCaps combined from cpudetect and whats actually compiled in |
|
(if there is no support for something compiled in it wont appear here) */ |
|
static CpuCaps cpuCaps; |
|
|
|
void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY, |
|
int srcSliceH, uint8_t* dst[], int dstStride[])=NULL; |
|
|
|
static SwsVector *getConvVec(SwsVector *a, SwsVector *b); |
|
|
|
#ifdef CAN_COMPILE_X86_ASM |
|
void in_asm_used_var_warning_killer() |
|
{ |
|
volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+ |
|
bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+ |
|
M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101; |
|
if(i) i=0; |
|
} |
|
#endif |
|
|
|
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, |
|
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, |
|
uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW) |
|
{ |
|
//FIXME Optimize (just quickly writen not opti..) |
|
int i; |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int val=0; |
|
int j; |
|
for(j=0; j<lumFilterSize; j++) |
|
val += lumSrc[j][i] * lumFilter[j]; |
|
|
|
dest[i]= MIN(MAX(val>>19, 0), 255); |
|
} |
|
|
|
if(uDest != NULL) |
|
for(i=0; i<(dstW>>1); i++) |
|
{ |
|
int u=0; |
|
int v=0; |
|
int j; |
|
for(j=0; j<chrFilterSize; j++) |
|
{ |
|
u += chrSrc[j][i] * chrFilter[j]; |
|
v += chrSrc[j][i + 2048] * chrFilter[j]; |
|
} |
|
|
|
uDest[i]= MIN(MAX(u>>19, 0), 255); |
|
vDest[i]= MIN(MAX(v>>19, 0), 255); |
|
} |
|
} |
|
|
|
static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, |
|
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, |
|
uint8_t *dest, int dstW, int dstFormat) |
|
{ |
|
if(dstFormat==IMGFMT_BGR32) |
|
{ |
|
int i; |
|
for(i=0; i<(dstW>>1); i++){ |
|
int j; |
|
int Y1=0; |
|
int Y2=0; |
|
int U=0; |
|
int V=0; |
|
int Cb, Cr, Cg; |
|
for(j=0; j<lumFilterSize; j++) |
|
{ |
|
Y1 += lumSrc[j][2*i] * lumFilter[j]; |
|
Y2 += lumSrc[j][2*i+1] * lumFilter[j]; |
|
} |
|
for(j=0; j<chrFilterSize; j++) |
|
{ |
|
U += chrSrc[j][i] * chrFilter[j]; |
|
V += chrSrc[j][i+2048] * chrFilter[j]; |
|
} |
|
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ]; |
|
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; |
|
U >>= 19; |
|
V >>= 19; |
|
|
|
Cb= clip_yuvtab_40cf[U+ 256]; |
|
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; |
|
Cr= clip_yuvtab_3343[V+ 256]; |
|
|
|
dest[8*i+0]=clip_table[((Y1 + Cb) >>13)]; |
|
dest[8*i+1]=clip_table[((Y1 + Cg) >>13)]; |
|
dest[8*i+2]=clip_table[((Y1 + Cr) >>13)]; |
|
|
|
dest[8*i+4]=clip_table[((Y2 + Cb) >>13)]; |
|
dest[8*i+5]=clip_table[((Y2 + Cg) >>13)]; |
|
dest[8*i+6]=clip_table[((Y2 + Cr) >>13)]; |
|
} |
|
} |
|
else if(dstFormat==IMGFMT_BGR24) |
|
{ |
|
int i; |
|
for(i=0; i<(dstW>>1); i++){ |
|
int j; |
|
int Y1=0; |
|
int Y2=0; |
|
int U=0; |
|
int V=0; |
|
int Cb, Cr, Cg; |
|
for(j=0; j<lumFilterSize; j++) |
|
{ |
|
Y1 += lumSrc[j][2*i] * lumFilter[j]; |
|
Y2 += lumSrc[j][2*i+1] * lumFilter[j]; |
|
} |
|
for(j=0; j<chrFilterSize; j++) |
|
{ |
|
U += chrSrc[j][i] * chrFilter[j]; |
|
V += chrSrc[j][i+2048] * chrFilter[j]; |
|
} |
|
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ]; |
|
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; |
|
U >>= 19; |
|
V >>= 19; |
|
|
|
Cb= clip_yuvtab_40cf[U+ 256]; |
|
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; |
|
Cr= clip_yuvtab_3343[V+ 256]; |
|
|
|
dest[0]=clip_table[((Y1 + Cb) >>13)]; |
|
dest[1]=clip_table[((Y1 + Cg) >>13)]; |
|
dest[2]=clip_table[((Y1 + Cr) >>13)]; |
|
|
|
dest[3]=clip_table[((Y2 + Cb) >>13)]; |
|
dest[4]=clip_table[((Y2 + Cg) >>13)]; |
|
dest[5]=clip_table[((Y2 + Cr) >>13)]; |
|
dest+=6; |
|
} |
|
} |
|
else if(dstFormat==IMGFMT_BGR16) |
|
{ |
|
int i; |
|
#ifdef DITHER1XBPP |
|
static int ditherb1=1<<14; |
|
static int ditherg1=1<<13; |
|
static int ditherr1=2<<14; |
|
static int ditherb2=3<<14; |
|
static int ditherg2=3<<13; |
|
static int ditherr2=0<<14; |
|
|
|
ditherb1 ^= (1^2)<<14; |
|
ditherg1 ^= (1^2)<<13; |
|
ditherr1 ^= (1^2)<<14; |
|
ditherb2 ^= (3^0)<<14; |
|
ditherg2 ^= (3^0)<<13; |
|
ditherr2 ^= (3^0)<<14; |
|
#else |
|
const int ditherb1=0; |
|
const int ditherg1=0; |
|
const int ditherr1=0; |
|
const int ditherb2=0; |
|
const int ditherg2=0; |
|
const int ditherr2=0; |
|
#endif |
|
for(i=0; i<(dstW>>1); i++){ |
|
int j; |
|
int Y1=0; |
|
int Y2=0; |
|
int U=0; |
|
int V=0; |
|
int Cb, Cr, Cg; |
|
for(j=0; j<lumFilterSize; j++) |
|
{ |
|
Y1 += lumSrc[j][2*i] * lumFilter[j]; |
|
Y2 += lumSrc[j][2*i+1] * lumFilter[j]; |
|
} |
|
for(j=0; j<chrFilterSize; j++) |
|
{ |
|
U += chrSrc[j][i] * chrFilter[j]; |
|
V += chrSrc[j][i+2048] * chrFilter[j]; |
|
} |
|
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ]; |
|
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; |
|
U >>= 19; |
|
V >>= 19; |
|
|
|
Cb= clip_yuvtab_40cf[U+ 256]; |
|
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; |
|
Cr= clip_yuvtab_3343[V+ 256]; |
|
|
|
((uint16_t*)dest)[2*i] = |
|
clip_table16b[(Y1 + Cb + ditherb1) >>13] | |
|
clip_table16g[(Y1 + Cg + ditherg1) >>13] | |
|
clip_table16r[(Y1 + Cr + ditherr1) >>13]; |
|
|
|
((uint16_t*)dest)[2*i+1] = |
|
clip_table16b[(Y2 + Cb + ditherb2) >>13] | |
|
clip_table16g[(Y2 + Cg + ditherg2) >>13] | |
|
clip_table16r[(Y2 + Cr + ditherr2) >>13]; |
|
} |
|
} |
|
else if(dstFormat==IMGFMT_BGR15) |
|
{ |
|
int i; |
|
#ifdef DITHER1XBPP |
|
static int ditherb1=1<<14; |
|
static int ditherg1=1<<14; |
|
static int ditherr1=2<<14; |
|
static int ditherb2=3<<14; |
|
static int ditherg2=3<<14; |
|
static int ditherr2=0<<14; |
|
|
|
ditherb1 ^= (1^2)<<14; |
|
ditherg1 ^= (1^2)<<14; |
|
ditherr1 ^= (1^2)<<14; |
|
ditherb2 ^= (3^0)<<14; |
|
ditherg2 ^= (3^0)<<14; |
|
ditherr2 ^= (3^0)<<14; |
|
#else |
|
const int ditherb1=0; |
|
const int ditherg1=0; |
|
const int ditherr1=0; |
|
const int ditherb2=0; |
|
const int ditherg2=0; |
|
const int ditherr2=0; |
|
#endif |
|
for(i=0; i<(dstW>>1); i++){ |
|
int j; |
|
int Y1=0; |
|
int Y2=0; |
|
int U=0; |
|
int V=0; |
|
int Cb, Cr, Cg; |
|
for(j=0; j<lumFilterSize; j++) |
|
{ |
|
Y1 += lumSrc[j][2*i] * lumFilter[j]; |
|
Y2 += lumSrc[j][2*i+1] * lumFilter[j]; |
|
} |
|
for(j=0; j<chrFilterSize; j++) |
|
{ |
|
U += chrSrc[j][i] * chrFilter[j]; |
|
V += chrSrc[j][i+2048] * chrFilter[j]; |
|
} |
|
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ]; |
|
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; |
|
U >>= 19; |
|
V >>= 19; |
|
|
|
Cb= clip_yuvtab_40cf[U+ 256]; |
|
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; |
|
Cr= clip_yuvtab_3343[V+ 256]; |
|
|
|
((uint16_t*)dest)[2*i] = |
|
clip_table15b[(Y1 + Cb + ditherb1) >>13] | |
|
clip_table15g[(Y1 + Cg + ditherg1) >>13] | |
|
clip_table15r[(Y1 + Cr + ditherr1) >>13]; |
|
|
|
((uint16_t*)dest)[2*i+1] = |
|
clip_table15b[(Y2 + Cb + ditherb2) >>13] | |
|
clip_table15g[(Y2 + Cg + ditherg2) >>13] | |
|
clip_table15r[(Y2 + Cr + ditherr2) >>13]; |
|
} |
|
} |
|
} |
|
|
|
|
|
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one |
|
//Plain C versions |
|
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) |
|
#define COMPILE_C |
|
#endif |
|
|
|
#ifdef CAN_COMPILE_X86_ASM |
|
|
|
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) |
|
#define COMPILE_MMX |
|
#endif |
|
|
|
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT) |
|
#define COMPILE_MMX2 |
|
#endif |
|
|
|
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) |
|
#define COMPILE_3DNOW |
|
#endif |
|
#endif //CAN_COMPILE_X86_ASM |
|
|
|
#undef HAVE_MMX |
|
#undef HAVE_MMX2 |
|
#undef HAVE_3DNOW |
|
|
|
#ifdef COMPILE_C |
|
#undef HAVE_MMX |
|
#undef HAVE_MMX2 |
|
#undef HAVE_3DNOW |
|
#define RENAME(a) a ## _C |
|
#include "swscale_template.c" |
|
#endif |
|
|
|
#ifdef CAN_COMPILE_X86_ASM |
|
|
|
//X86 versions |
|
/* |
|
#undef RENAME |
|
#undef HAVE_MMX |
|
#undef HAVE_MMX2 |
|
#undef HAVE_3DNOW |
|
#define ARCH_X86 |
|
#define RENAME(a) a ## _X86 |
|
#include "swscale_template.c" |
|
*/ |
|
//MMX versions |
|
#ifdef COMPILE_MMX |
|
#undef RENAME |
|
#define HAVE_MMX |
|
#undef HAVE_MMX2 |
|
#undef HAVE_3DNOW |
|
#define RENAME(a) a ## _MMX |
|
#include "swscale_template.c" |
|
#endif |
|
|
|
//MMX2 versions |
|
#ifdef COMPILE_MMX2 |
|
#undef RENAME |
|
#define HAVE_MMX |
|
#define HAVE_MMX2 |
|
#undef HAVE_3DNOW |
|
#define RENAME(a) a ## _MMX2 |
|
#include "swscale_template.c" |
|
#endif |
|
|
|
//3DNOW versions |
|
#ifdef COMPILE_3DNOW |
|
#undef RENAME |
|
#define HAVE_MMX |
|
#undef HAVE_MMX2 |
|
#define HAVE_3DNOW |
|
#define RENAME(a) a ## _3DNow |
|
#include "swscale_template.c" |
|
#endif |
|
|
|
#endif //CAN_COMPILE_X86_ASM |
|
|
|
// minor note: the HAVE_xyz is messed up after that line so dont use it |
|
|
|
|
|
// old global scaler, dont use for new code |
|
// will use sws_flags from the command line |
|
void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY , |
|
int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp, |
|
int srcW, int srcH, int dstW, int dstH){ |
|
|
|
static SwsContext *context=NULL; |
|
int dstFormat; |
|
int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1}; |
|
|
|
switch(dstbpp) |
|
{ |
|
case 8 : dstFormat= IMGFMT_Y8; break; |
|
case 12: dstFormat= IMGFMT_YV12; break; |
|
case 15: dstFormat= IMGFMT_BGR15; break; |
|
case 16: dstFormat= IMGFMT_BGR16; break; |
|
case 24: dstFormat= IMGFMT_BGR24; break; |
|
case 32: dstFormat= IMGFMT_BGR32; break; |
|
default: return; |
|
} |
|
|
|
if(!context) context=getSwsContextFromCmdLine(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat); |
|
|
|
swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3); |
|
} |
|
|
|
// will use sws_flags & src_filter (from cmd line) |
|
SwsContext *getSwsContextFromCmdLine(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat) |
|
{ |
|
int flags=0; |
|
static int firstTime=1; |
|
|
|
#ifdef ARCH_X86 |
|
if(gCpuCaps.hasMMX) |
|
asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) |
|
#endif |
|
if(firstTime) |
|
{ |
|
firstTime=0; |
|
flags= SWS_PRINT_INFO; |
|
} |
|
else if(verbose>1) flags= SWS_PRINT_INFO; |
|
|
|
if(src_filter.lumH) freeVec(src_filter.lumH); |
|
if(src_filter.lumV) freeVec(src_filter.lumV); |
|
if(src_filter.chrH) freeVec(src_filter.chrH); |
|
if(src_filter.chrV) freeVec(src_filter.chrV); |
|
|
|
if(sws_lum_gblur!=0.0){ |
|
src_filter.lumH= getGaussianVec(sws_lum_gblur, 3.0); |
|
src_filter.lumV= getGaussianVec(sws_lum_gblur, 3.0); |
|
}else{ |
|
src_filter.lumH= getIdentityVec(); |
|
src_filter.lumV= getIdentityVec(); |
|
} |
|
|
|
if(sws_chr_gblur!=0.0){ |
|
src_filter.chrH= getGaussianVec(sws_chr_gblur, 3.0); |
|
src_filter.chrV= getGaussianVec(sws_chr_gblur, 3.0); |
|
}else{ |
|
src_filter.chrH= getIdentityVec(); |
|
src_filter.chrV= getIdentityVec(); |
|
} |
|
|
|
if(sws_chr_sharpen!=0.0){ |
|
SwsVector *g= getConstVec(-1.0, 3); |
|
SwsVector *id= getConstVec(10.0/sws_chr_sharpen, 1); |
|
g->coeff[1]=2.0; |
|
addVec(id, g); |
|
convVec(src_filter.chrH, id); |
|
convVec(src_filter.chrV, id); |
|
freeVec(g); |
|
freeVec(id); |
|
} |
|
|
|
if(sws_lum_sharpen!=0.0){ |
|
SwsVector *g= getConstVec(-1.0, 3); |
|
SwsVector *id= getConstVec(10.0/sws_lum_sharpen, 1); |
|
g->coeff[1]=2.0; |
|
addVec(id, g); |
|
convVec(src_filter.lumH, id); |
|
convVec(src_filter.lumV, id); |
|
freeVec(g); |
|
freeVec(id); |
|
} |
|
|
|
if(sws_chr_hshift) |
|
shiftVec(src_filter.chrH, sws_chr_hshift); |
|
|
|
if(sws_chr_vshift) |
|
shiftVec(src_filter.chrV, sws_chr_vshift); |
|
|
|
normalizeVec(src_filter.chrH, 1.0); |
|
normalizeVec(src_filter.chrV, 1.0); |
|
normalizeVec(src_filter.lumH, 1.0); |
|
normalizeVec(src_filter.lumV, 1.0); |
|
|
|
if(verbose > 1) printVec(src_filter.chrH); |
|
if(verbose > 1) printVec(src_filter.lumH); |
|
|
|
switch(sws_flags) |
|
{ |
|
case 0: flags|= SWS_FAST_BILINEAR; break; |
|
case 1: flags|= SWS_BILINEAR; break; |
|
case 2: flags|= SWS_BICUBIC; break; |
|
case 3: flags|= SWS_X; break; |
|
case 4: flags|= SWS_POINT; break; |
|
case 5: flags|= SWS_AREA; break; |
|
default:flags|= SWS_BILINEAR; break; |
|
} |
|
|
|
return getSwsContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, &src_filter, NULL); |
|
} |
|
|
|
|
|
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, |
|
int srcW, int dstW, int filterAlign, int one, int flags, |
|
SwsVector *srcFilter, SwsVector *dstFilter) |
|
{ |
|
int i; |
|
int filterSize; |
|
int filter2Size; |
|
int minFilterSize; |
|
double *filter=NULL; |
|
double *filter2=NULL; |
|
#ifdef ARCH_X86 |
|
if(gCpuCaps.hasMMX) |
|
asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) |
|
#endif |
|
|
|
*filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t)); |
|
(*filterPos)[dstW]=0; // the MMX scaler will read over the end |
|
|
|
if(ABS(xInc - 0x10000) <10) // unscaled |
|
{ |
|
int i; |
|
filterSize= 1; |
|
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); |
|
for(i=0; i<dstW*filterSize; i++) filter[i]=0; |
|
|
|
for(i=0; i<dstW; i++) |
|
{ |
|
filter[i*filterSize]=1; |
|
(*filterPos)[i]=i; |
|
} |
|
|
|
} |
|
else if(flags&SWS_POINT) // lame looking point sampling mode |
|
{ |
|
int i; |
|
int xDstInSrc; |
|
filterSize= 1; |
|
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); |
|
|
|
xDstInSrc= xInc/2 - 0x8000; |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int xx= (xDstInSrc>>16) - (filterSize>>1) + 1; |
|
|
|
(*filterPos)[i]= xx; |
|
filter[i]= 1.0; |
|
xDstInSrc+= xInc; |
|
} |
|
} |
|
else if(xInc <= (1<<16) || (flags&SWS_FAST_BILINEAR)) // upscale |
|
{ |
|
int i; |
|
int xDstInSrc; |
|
if (flags&SWS_BICUBIC) filterSize= 4; |
|
else if(flags&SWS_X ) filterSize= 4; |
|
else filterSize= 2; // SWS_BILINEAR / SWS_AREA |
|
// printf("%d %d %d\n", filterSize, srcW, dstW); |
|
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); |
|
|
|
xDstInSrc= xInc/2 - 0x8000; |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int xx= (xDstInSrc>>16) - (filterSize>>1) + 1; |
|
int j; |
|
|
|
(*filterPos)[i]= xx; |
|
if((flags & SWS_BICUBIC) || (flags & SWS_X)) |
|
{ |
|
double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16); |
|
double y1,y2,y3,y4; |
|
double A= -0.6; |
|
if(flags & SWS_BICUBIC){ |
|
// Equation is from VirtualDub |
|
y1 = ( + A*d - 2.0*A*d*d + A*d*d*d); |
|
y2 = (+ 1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d); |
|
y3 = ( - A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d); |
|
y4 = ( + A*d*d - A*d*d*d); |
|
}else{ |
|
// cubic interpolation (derived it myself) |
|
y1 = ( -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0; |
|
y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0; |
|
y3 = ( +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0; |
|
y4 = ( -1.0*d + 1.0*d*d*d)/6.0; |
|
} |
|
|
|
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc); |
|
filter[i*filterSize + 0]= y1; |
|
filter[i*filterSize + 1]= y2; |
|
filter[i*filterSize + 2]= y3; |
|
filter[i*filterSize + 3]= y4; |
|
// printf("%1.3f %1.3f %1.3f %1.3f %1.3f\n",d , y1, y2, y3, y4); |
|
} |
|
else |
|
{ |
|
//Bilinear upscale / linear interpolate / Area averaging |
|
for(j=0; j<filterSize; j++) |
|
{ |
|
double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16); |
|
double coeff= 1.0 - d; |
|
if(coeff<0) coeff=0; |
|
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc); |
|
filter[i*filterSize + j]= coeff; |
|
xx++; |
|
} |
|
} |
|
xDstInSrc+= xInc; |
|
} |
|
} |
|
else // downscale |
|
{ |
|
int xDstInSrc; |
|
if(flags&SWS_BICUBIC) filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW); |
|
else if(flags&SWS_X) filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW); |
|
else if(flags&SWS_AREA) filterSize= (int)ceil(1 + 1.0*srcW / (double)dstW); |
|
else /* BILINEAR */ filterSize= (int)ceil(1 + 2.0*srcW / (double)dstW); |
|
// printf("%d %d %d\n", *filterSize, srcW, dstW); |
|
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); |
|
|
|
xDstInSrc= xInc/2 - 0x8000; |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int xx= (int)((double)xDstInSrc/(double)(1<<16) - (filterSize-1)*0.5 + 0.5); |
|
int j; |
|
(*filterPos)[i]= xx; |
|
for(j=0; j<filterSize; j++) |
|
{ |
|
double d= ABS((xx<<16) - xDstInSrc)/(double)xInc; |
|
double coeff; |
|
if((flags & SWS_BICUBIC) || (flags & SWS_X)) |
|
{ |
|
double A= -0.75; |
|
// d*=2; |
|
// Equation is from VirtualDub |
|
if(d<1.0) |
|
coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d); |
|
else if(d<2.0) |
|
coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d); |
|
else |
|
coeff=0.0; |
|
} |
|
else if(flags & SWS_AREA) |
|
{ |
|
double srcPixelSize= (1<<16)/(double)xInc; |
|
if(d + srcPixelSize/2 < 0.5) coeff= 1.0; |
|
else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5; |
|
else coeff=0.0; |
|
} |
|
else |
|
{ |
|
coeff= 1.0 - d; |
|
if(coeff<0) coeff=0; |
|
} |
|
// printf("%1.3f %2.3f %d \n", coeff, d, xDstInSrc); |
|
filter[i*filterSize + j]= coeff; |
|
xx++; |
|
} |
|
xDstInSrc+= xInc; |
|
} |
|
} |
|
|
|
/* apply src & dst Filter to filter -> filter2 |
|
free(filter); |
|
*/ |
|
filter2Size= filterSize; |
|
if(srcFilter) filter2Size+= srcFilter->length - 1; |
|
if(dstFilter) filter2Size+= dstFilter->length - 1; |
|
filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double)); |
|
|
|
for(i=0; i<dstW; i++) |
|
{ |
|
int j; |
|
SwsVector scaleFilter; |
|
SwsVector *outVec; |
|
|
|
scaleFilter.coeff= filter + i*filterSize; |
|
scaleFilter.length= filterSize; |
|
|
|
if(srcFilter) outVec= getConvVec(srcFilter, &scaleFilter); |
|
else outVec= &scaleFilter; |
|
|
|
ASSERT(outVec->length == filter2Size) |
|
//FIXME dstFilter |
|
|
|
for(j=0; j<outVec->length; j++) |
|
{ |
|
filter2[i*filter2Size + j]= outVec->coeff[j]; |
|
} |
|
|
|
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2; |
|
|
|
if(outVec != &scaleFilter) freeVec(outVec); |
|
} |
|
free(filter); filter=NULL; |
|
|
|
/* try to reduce the filter-size (step1 find size and shift left) */ |
|
// Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not) |
|
minFilterSize= 0; |
|
for(i=dstW-1; i>=0; i--) |
|
{ |
|
int min= filter2Size; |
|
int j; |
|
double cutOff=0.0; |
|
|
|
/* get rid off near zero elements on the left by shifting left */ |
|
for(j=0; j<filter2Size; j++) |
|
{ |
|
int k; |
|
cutOff += ABS(filter2[i*filter2Size]); |
|
|
|
if(cutOff > SWS_MAX_REDUCE_CUTOFF) break; |
|
|
|
/* preserve Monotonicity because the core cant handle the filter otherwise */ |
|
if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break; |
|
|
|
// Move filter coeffs left |
|
for(k=1; k<filter2Size; k++) |
|
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k]; |
|
filter2[i*filter2Size + k - 1]= 0.0; |
|
(*filterPos)[i]++; |
|
} |
|
|
|
cutOff=0.0; |
|
/* count near zeros on the right */ |
|
for(j=filter2Size-1; j>0; j--) |
|
{ |
|
cutOff += ABS(filter2[i*filter2Size + j]); |
|
|
|
if(cutOff > SWS_MAX_REDUCE_CUTOFF) break; |
|
min--; |
|
} |
|
|
|
if(min>minFilterSize) minFilterSize= min; |
|
} |
|
|
|
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1)); |
|
filter= (double*)memalign(8, filterSize*dstW*sizeof(double)); |
|
*outFilterSize= filterSize; |
|
|
|
if((flags&SWS_PRINT_INFO) && verbose) |
|
printf("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); |
|
/* try to reduce the filter-size (step2 reduce it) */ |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int j; |
|
|
|
for(j=0; j<filterSize; j++) |
|
{ |
|
if(j>=filter2Size) filter[i*filterSize + j]= 0.0; |
|
else filter[i*filterSize + j]= filter2[i*filter2Size + j]; |
|
} |
|
} |
|
free(filter2); filter2=NULL; |
|
|
|
ASSERT(filterSize > 0) |
|
|
|
//FIXME try to align filterpos if possible |
|
|
|
//fix borders |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int j; |
|
if((*filterPos)[i] < 0) |
|
{ |
|
// Move filter coeffs left to compensate for filterPos |
|
for(j=1; j<filterSize; j++) |
|
{ |
|
int left= MAX(j + (*filterPos)[i], 0); |
|
filter[i*filterSize + left] += filter[i*filterSize + j]; |
|
filter[i*filterSize + j]=0; |
|
} |
|
(*filterPos)[i]= 0; |
|
} |
|
|
|
if((*filterPos)[i] + filterSize > srcW) |
|
{ |
|
int shift= (*filterPos)[i] + filterSize - srcW; |
|
// Move filter coeffs right to compensate for filterPos |
|
for(j=filterSize-2; j>=0; j--) |
|
{ |
|
int right= MIN(j + shift, filterSize-1); |
|
filter[i*filterSize +right] += filter[i*filterSize +j]; |
|
filter[i*filterSize +j]=0; |
|
} |
|
(*filterPos)[i]= srcW - filterSize; |
|
} |
|
} |
|
|
|
// Note the +1 is for the MMXscaler which reads over the end |
|
*outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t)); |
|
memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t)); |
|
|
|
/* Normalize & Store in outFilter */ |
|
for(i=0; i<dstW; i++) |
|
{ |
|
int j; |
|
double sum=0; |
|
double scale= one; |
|
for(j=0; j<filterSize; j++) |
|
{ |
|
sum+= filter[i*filterSize + j]; |
|
} |
|
scale/= sum; |
|
for(j=0; j<filterSize; j++) |
|
{ |
|
(*outFilter)[i*(*outFilterSize) + j]= (int)(filter[i*filterSize + j]*scale); |
|
} |
|
} |
|
|
|
free(filter); |
|
} |
|
|
|
#ifdef ARCH_X86 |
|
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode) |
|
{ |
|
uint8_t *fragment; |
|
int imm8OfPShufW1; |
|
int imm8OfPShufW2; |
|
int fragmentLength; |
|
|
|
int xpos, i; |
|
|
|
// create an optimized horizontal scaling routine |
|
|
|
//code fragment |
|
|
|
asm volatile( |
|
"jmp 9f \n\t" |
|
// Begin |
|
"0: \n\t" |
|
"movq (%%esi), %%mm0 \n\t" //FIXME Alignment |
|
"movq %%mm0, %%mm1 \n\t" |
|
"psrlq $8, %%mm0 \n\t" |
|
"punpcklbw %%mm7, %%mm1 \n\t" |
|
"movq %%mm2, %%mm3 \n\t" |
|
"punpcklbw %%mm7, %%mm0 \n\t" |
|
"addw %%bx, %%cx \n\t" //2*xalpha += (4*lumXInc)&0xFFFF |
|
"pshufw $0xFF, %%mm1, %%mm1 \n\t" |
|
"1: \n\t" |
|
"adcl %%edx, %%esi \n\t" //xx+= (4*lumXInc)>>16 + carry |
|
"pshufw $0xFF, %%mm0, %%mm0 \n\t" |
|
"2: \n\t" |
|
"psrlw $9, %%mm3 \n\t" |
|
"psubw %%mm1, %%mm0 \n\t" |
|
"pmullw %%mm3, %%mm0 \n\t" |
|
"paddw %%mm6, %%mm2 \n\t" // 2*alpha += xpos&0xFFFF |
|
"psllw $7, %%mm1 \n\t" |
|
"paddw %%mm1, %%mm0 \n\t" |
|
|
|
"movq %%mm0, (%%edi, %%eax) \n\t" |
|
|
|
"addl $8, %%eax \n\t" |
|
// End |
|
"9: \n\t" |
|
// "int $3\n\t" |
|
"leal 0b, %0 \n\t" |
|
"leal 1b, %1 \n\t" |
|
"leal 2b, %2 \n\t" |
|
"decl %1 \n\t" |
|
"decl %2 \n\t" |
|
"subl %0, %1 \n\t" |
|
"subl %0, %2 \n\t" |
|
"leal 9b, %3 \n\t" |
|
"subl %0, %3 \n\t" |
|
:"=r" (fragment), "=r" (imm8OfPShufW1), "=r" (imm8OfPShufW2), |
|
"=r" (fragmentLength) |
|
); |
|
|
|
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers |
|
|
|
for(i=0; i<dstW/8; i++) |
|
{ |
|
int xx=xpos>>16; |
|
|
|
if((i&3) == 0) |
|
{ |
|
int a=0; |
|
int b=((xpos+xInc)>>16) - xx; |
|
int c=((xpos+xInc*2)>>16) - xx; |
|
int d=((xpos+xInc*3)>>16) - xx; |
|
|
|
memcpy(funnyCode + fragmentLength*i/4, fragment, fragmentLength); |
|
|
|
funnyCode[fragmentLength*i/4 + imm8OfPShufW1]= |
|
funnyCode[fragmentLength*i/4 + imm8OfPShufW2]= |
|
a | (b<<2) | (c<<4) | (d<<6); |
|
|
|
// if we dont need to read 8 bytes than dont :), reduces the chance of |
|
// crossing a cache line |
|
if(d<3) funnyCode[fragmentLength*i/4 + 1]= 0x6E; |
|
|
|
funnyCode[fragmentLength*(i+4)/4]= RET; |
|
} |
|
xpos+=xInc; |
|
} |
|
} |
|
#endif // ARCH_X86 |
|
|
|
//FIXME remove |
|
void SwScale_Init(){ |
|
} |
|
|
|
static void globalInit(){ |
|
// generating tables: |
|
int i; |
|
for(i=0; i<768; i++){ |
|
int c= MIN(MAX(i-256, 0), 255); |
|
clip_table[i]=c; |
|
yuvtab_2568[c]= clip_yuvtab_2568[i]=(0x2568*(c-16))+(256<<13); |
|
yuvtab_3343[c]= clip_yuvtab_3343[i]=0x3343*(c-128); |
|
yuvtab_0c92[c]= clip_yuvtab_0c92[i]=-0x0c92*(c-128); |
|
yuvtab_1a1e[c]= clip_yuvtab_1a1e[i]=-0x1a1e*(c-128); |
|
yuvtab_40cf[c]= clip_yuvtab_40cf[i]=0x40cf*(c-128); |
|
} |
|
|
|
for(i=0; i<768; i++) |
|
{ |
|
int v= clip_table[i]; |
|
clip_table16b[i]= v>>3; |
|
clip_table16g[i]= (v<<3)&0x07E0; |
|
clip_table16r[i]= (v<<8)&0xF800; |
|
clip_table15b[i]= v>>3; |
|
clip_table15g[i]= (v<<2)&0x03E0; |
|
clip_table15r[i]= (v<<7)&0x7C00; |
|
} |
|
|
|
cpuCaps= gCpuCaps; |
|
|
|
#ifdef RUNTIME_CPUDETECT |
|
#ifdef CAN_COMPILE_X86_ASM |
|
// ordered per speed fasterst first |
|
if(gCpuCaps.hasMMX2) |
|
swScale= swScale_MMX2; |
|
else if(gCpuCaps.has3DNow) |
|
swScale= swScale_3DNow; |
|
else if(gCpuCaps.hasMMX) |
|
swScale= swScale_MMX; |
|
else |
|
swScale= swScale_C; |
|
|
|
#else |
|
swScale= swScale_C; |
|
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; |
|
#endif |
|
#else //RUNTIME_CPUDETECT |
|
#ifdef HAVE_MMX2 |
|
swScale= swScale_MMX2; |
|
cpuCaps.has3DNow = 0; |
|
#elif defined (HAVE_3DNOW) |
|
swScale= swScale_3DNow; |
|
cpuCaps.hasMMX2 = 0; |
|
#elif defined (HAVE_MMX) |
|
swScale= swScale_MMX; |
|
cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0; |
|
#else |
|
swScale= swScale_C; |
|
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; |
|
#endif |
|
#endif //!RUNTIME_CPUDETECT |
|
} |
|
|
|
|
|
SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags, |
|
SwsFilter *srcFilter, SwsFilter *dstFilter){ |
|
|
|
SwsContext *c; |
|
int i; |
|
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL}; |
|
|
|
#ifdef ARCH_X86 |
|
if(gCpuCaps.hasMMX) |
|
asm volatile("emms\n\t"::: "memory"); |
|
#endif |
|
|
|
if(swScale==NULL) globalInit(); |
|
|
|
/* avoid dupplicate Formats, so we dont need to check to much */ |
|
if(srcFormat==IMGFMT_IYUV) srcFormat=IMGFMT_I420; |
|
if(srcFormat==IMGFMT_Y8) srcFormat=IMGFMT_Y800; |
|
|
|
if(!isSupportedIn(srcFormat)) return NULL; |
|
if(!isSupportedOut(dstFormat)) return NULL; |
|
|
|
/* sanity check */ |
|
if(srcW<4 || srcH<1 || dstW<8 || dstH<1) return NULL; //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code |
|
|
|
if(!dstFilter) dstFilter= &dummyFilter; |
|
if(!srcFilter) srcFilter= &dummyFilter; |
|
|
|
c= memalign(64, sizeof(SwsContext)); |
|
memset(c, 0, sizeof(SwsContext)); |
|
|
|
c->srcW= srcW; |
|
c->srcH= srcH; |
|
c->dstW= dstW; |
|
c->dstH= dstH; |
|
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; |
|
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; |
|
c->flags= flags; |
|
c->dstFormat= dstFormat; |
|
c->srcFormat= srcFormat; |
|
|
|
if(cpuCaps.hasMMX2) |
|
{ |
|
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; |
|
if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) |
|
{ |
|
if(flags&SWS_PRINT_INFO) |
|
fprintf(stderr, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n"); |
|
} |
|
} |
|
else |
|
c->canMMX2BeUsed=0; |
|
|
|
|
|
/* dont use full vertical UV input/internaly if the source doesnt even have it */ |
|
if(isHalfChrV(srcFormat)) c->flags= flags= flags&(~SWS_FULL_CHR_V); |
|
/* dont use full horizontal UV input if the source doesnt even have it */ |
|
if(isHalfChrH(srcFormat)) c->flags= flags= flags&(~SWS_FULL_CHR_H_INP); |
|
/* dont use full horizontal UV internally if the destination doesnt even have it */ |
|
if(isHalfChrH(dstFormat)) c->flags= flags= flags&(~SWS_FULL_CHR_H_INT); |
|
|
|
if(flags&SWS_FULL_CHR_H_INP) c->chrSrcW= srcW; |
|
else c->chrSrcW= (srcW+1)>>1; |
|
|
|
if(flags&SWS_FULL_CHR_H_INT) c->chrDstW= dstW; |
|
else c->chrDstW= (dstW+1)>>1; |
|
|
|
if(flags&SWS_FULL_CHR_V) c->chrSrcH= srcH; |
|
else c->chrSrcH= (srcH+1)>>1; |
|
|
|
if(isHalfChrV(dstFormat)) c->chrDstH= (dstH+1)>>1; |
|
else c->chrDstH= dstH; |
|
|
|
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW; |
|
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH; |
|
|
|
|
|
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst |
|
// but only for the FAST_BILINEAR mode otherwise do correct scaling |
|
// n-2 is the last chrominance sample available |
|
// this is not perfect, but noone shuld notice the difference, the more correct variant |
|
// would be like the vertical one, but that would require some special code for the |
|
// first and last pixel |
|
if(flags&SWS_FAST_BILINEAR) |
|
{ |
|
if(c->canMMX2BeUsed) |
|
{ |
|
c->lumXInc+= 20; |
|
c->chrXInc+= 20; |
|
} |
|
//we dont use the x86asm scaler if mmx is available |
|
else if(cpuCaps.hasMMX) |
|
{ |
|
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; |
|
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20; |
|
} |
|
} |
|
|
|
/* precalculate horizontal scaler filter coefficients */ |
|
{ |
|
const int filterAlign= cpuCaps.hasMMX ? 4 : 1; |
|
|
|
initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, |
|
srcW , dstW, filterAlign, 1<<14, flags, |
|
srcFilter->lumH, dstFilter->lumH); |
|
initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, |
|
(srcW+1)>>1, c->chrDstW, filterAlign, 1<<14, flags, |
|
srcFilter->chrH, dstFilter->chrH); |
|
|
|
#ifdef ARCH_X86 |
|
// cant downscale !!! |
|
if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) |
|
{ |
|
initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode); |
|
initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode); |
|
} |
|
#endif |
|
} // Init Horizontal stuff |
|
|
|
|
|
|
|
/* precalculate vertical scaler filter coefficients */ |
|
initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, |
|
srcH , dstH, 1, (1<<12)-4, flags, |
|
srcFilter->lumV, dstFilter->lumV); |
|
initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, |
|
(srcH+1)>>1, c->chrDstH, 1, (1<<12)-4, flags, |
|
srcFilter->chrV, dstFilter->chrV); |
|
|
|
// Calculate Buffer Sizes so that they wont run out while handling these damn slices |
|
c->vLumBufSize= c->vLumFilterSize; |
|
c->vChrBufSize= c->vChrFilterSize; |
|
for(i=0; i<dstH; i++) |
|
{ |
|
int chrI= i*c->chrDstH / dstH; |
|
int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, |
|
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<1)); |
|
nextSlice&= ~1; // Slices start at even boundaries |
|
if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) |
|
c->vLumBufSize= nextSlice - c->vLumFilterPos[i ]; |
|
if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>1)) |
|
c->vChrBufSize= (nextSlice>>1) - c->vChrFilterPos[chrI]; |
|
} |
|
|
|
// allocate pixbufs (we use dynamic allocation because otherwise we would need to |
|
c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*)); |
|
c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*)); |
|
//Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000) |
|
for(i=0; i<c->vLumBufSize; i++) |
|
c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000); |
|
for(i=0; i<c->vChrBufSize; i++) |
|
c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000); |
|
|
|
//try to avoid drawing green stuff between the right end and the stride end |
|
for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000); |
|
for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000); |
|
|
|
ASSERT(c->chrDstH <= dstH) |
|
|
|
// pack filter data for mmx code |
|
if(cpuCaps.hasMMX) |
|
{ |
|
c->lumMmxFilter= (int16_t*)memalign(8, c->vLumFilterSize* dstH*4*sizeof(int16_t)); |
|
c->chrMmxFilter= (int16_t*)memalign(8, c->vChrFilterSize*c->chrDstH*4*sizeof(int16_t)); |
|
for(i=0; i<c->vLumFilterSize*dstH; i++) |
|
c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]= |
|
c->vLumFilter[i]; |
|
for(i=0; i<c->vChrFilterSize*c->chrDstH; i++) |
|
c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]= |
|
c->vChrFilter[i]; |
|
} |
|
|
|
if(flags&SWS_PRINT_INFO) |
|
{ |
|
#ifdef DITHER1XBPP |
|
char *dither= " dithered"; |
|
#else |
|
char *dither= ""; |
|
#endif |
|
if(flags&SWS_FAST_BILINEAR) |
|
fprintf(stderr, "\nSwScaler: FAST_BILINEAR scaler, "); |
|
else if(flags&SWS_BILINEAR) |
|
fprintf(stderr, "\nSwScaler: BILINEAR scaler, "); |
|
else if(flags&SWS_BICUBIC) |
|
fprintf(stderr, "\nSwScaler: BICUBIC scaler, "); |
|
else if(flags&SWS_X) |
|
fprintf(stderr, "\nSwScaler: Experimental scaler, "); |
|
else if(flags&SWS_POINT) |
|
fprintf(stderr, "\nSwScaler: Nearest Neighbor / POINT scaler, "); |
|
else if(flags&SWS_AREA) |
|
fprintf(stderr, "\nSwScaler: Area Averageing scaler, "); |
|
else |
|
fprintf(stderr, "\nSwScaler: ehh flags invalid?! "); |
|
|
|
if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16) |
|
fprintf(stderr, "from %s to%s %s ", |
|
vo_format_name(srcFormat), dither, vo_format_name(dstFormat)); |
|
else |
|
fprintf(stderr, "from %s to %s ", |
|
vo_format_name(srcFormat), vo_format_name(dstFormat)); |
|
|
|
if(cpuCaps.hasMMX2) |
|
fprintf(stderr, "using MMX2\n"); |
|
else if(cpuCaps.has3DNow) |
|
fprintf(stderr, "using 3DNOW\n"); |
|
else if(cpuCaps.hasMMX) |
|
fprintf(stderr, "using MMX\n"); |
|
else |
|
fprintf(stderr, "using C\n"); |
|
} |
|
|
|
if((flags & SWS_PRINT_INFO) && verbose) |
|
{ |
|
if(cpuCaps.hasMMX) |
|
{ |
|
if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR)) |
|
printf("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n"); |
|
else |
|
{ |
|
if(c->hLumFilterSize==4) |
|
printf("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n"); |
|
else if(c->hLumFilterSize==8) |
|
printf("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n"); |
|
else |
|
printf("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n"); |
|
|
|
if(c->hChrFilterSize==4) |
|
printf("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n"); |
|
else if(c->hChrFilterSize==8) |
|
printf("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n"); |
|
else |
|
printf("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n"); |
|
} |
|
} |
|
else |
|
{ |
|
#ifdef ARCH_X86 |
|
printf("SwScaler: using X86-Asm scaler for horizontal scaling\n"); |
|
#else |
|
if(flags & SWS_FAST_BILINEAR) |
|
printf("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n"); |
|
else |
|
printf("SwScaler: using C scaler for horizontal scaling\n"); |
|
#endif |
|
} |
|
if(isPlanarYUV(dstFormat)) |
|
{ |
|
if(c->vLumFilterSize==1) |
|
printf("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
else |
|
printf("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
} |
|
else |
|
{ |
|
if(c->vLumFilterSize==1 && c->vChrFilterSize==2) |
|
printf("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n" |
|
"SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C"); |
|
else if(c->vLumFilterSize==2 && c->vChrFilterSize==2) |
|
printf("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
else |
|
printf("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
} |
|
|
|
if(dstFormat==IMGFMT_BGR24) |
|
printf("SwScaler: using %s YV12->BGR24 Converter\n", |
|
cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C")); |
|
else if(dstFormat==IMGFMT_BGR32) |
|
printf("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
else if(dstFormat==IMGFMT_BGR16) |
|
printf("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
else if(dstFormat==IMGFMT_BGR15) |
|
printf("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); |
|
|
|
printf("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); |
|
} |
|
if((flags & SWS_PRINT_INFO) && verbose>1) |
|
{ |
|
printf("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", |
|
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); |
|
printf("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", |
|
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); |
|
} |
|
|
|
return c; |
|
} |
|
|
|
/** |
|
* returns a normalized gaussian curve used to filter stuff |
|
* quality=3 is high quality, lowwer is lowwer quality |
|
*/ |
|
|
|
SwsVector *getGaussianVec(double variance, double quality){ |
|
const int length= (int)(variance*quality + 0.5) | 1; |
|
int i; |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
double middle= (length-1)*0.5; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) |
|
{ |
|
double dist= i-middle; |
|
coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI); |
|
} |
|
|
|
normalizeVec(vec, 1.0); |
|
|
|
return vec; |
|
} |
|
|
|
SwsVector *getConstVec(double c, int length){ |
|
int i; |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) |
|
coeff[i]= c; |
|
|
|
return vec; |
|
} |
|
|
|
|
|
SwsVector *getIdentityVec(void){ |
|
double *coeff= memalign(sizeof(double), sizeof(double)); |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
coeff[0]= 1.0; |
|
|
|
vec->coeff= coeff; |
|
vec->length= 1; |
|
|
|
return vec; |
|
} |
|
|
|
void normalizeVec(SwsVector *a, double height){ |
|
int i; |
|
double sum=0; |
|
double inv; |
|
|
|
for(i=0; i<a->length; i++) |
|
sum+= a->coeff[i]; |
|
|
|
inv= height/sum; |
|
|
|
for(i=0; i<a->length; i++) |
|
a->coeff[i]*= height; |
|
} |
|
|
|
void scaleVec(SwsVector *a, double scalar){ |
|
int i; |
|
|
|
for(i=0; i<a->length; i++) |
|
a->coeff[i]*= scalar; |
|
} |
|
|
|
static SwsVector *getConvVec(SwsVector *a, SwsVector *b){ |
|
int length= a->length + b->length - 1; |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
int i, j; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) coeff[i]= 0.0; |
|
|
|
for(i=0; i<a->length; i++) |
|
{ |
|
for(j=0; j<b->length; j++) |
|
{ |
|
coeff[i+j]+= a->coeff[i]*b->coeff[j]; |
|
} |
|
} |
|
|
|
return vec; |
|
} |
|
|
|
static SwsVector *sumVec(SwsVector *a, SwsVector *b){ |
|
int length= MAX(a->length, b->length); |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
int i; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) coeff[i]= 0.0; |
|
|
|
for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; |
|
for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; |
|
|
|
return vec; |
|
} |
|
|
|
static SwsVector *diffVec(SwsVector *a, SwsVector *b){ |
|
int length= MAX(a->length, b->length); |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
int i; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) coeff[i]= 0.0; |
|
|
|
for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; |
|
for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; |
|
|
|
return vec; |
|
} |
|
|
|
/* shift left / or right if "shift" is negative */ |
|
static SwsVector *getShiftedVec(SwsVector *a, int shift){ |
|
int length= a->length + ABS(shift)*2; |
|
double *coeff= memalign(sizeof(double), length*sizeof(double)); |
|
int i; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= length; |
|
|
|
for(i=0; i<length; i++) coeff[i]= 0.0; |
|
|
|
for(i=0; i<a->length; i++) |
|
{ |
|
coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; |
|
} |
|
|
|
return vec; |
|
} |
|
|
|
void shiftVec(SwsVector *a, int shift){ |
|
SwsVector *shifted= getShiftedVec(a, shift); |
|
free(a->coeff); |
|
a->coeff= shifted->coeff; |
|
a->length= shifted->length; |
|
free(shifted); |
|
} |
|
|
|
void addVec(SwsVector *a, SwsVector *b){ |
|
SwsVector *sum= sumVec(a, b); |
|
free(a->coeff); |
|
a->coeff= sum->coeff; |
|
a->length= sum->length; |
|
free(sum); |
|
} |
|
|
|
void subVec(SwsVector *a, SwsVector *b){ |
|
SwsVector *diff= diffVec(a, b); |
|
free(a->coeff); |
|
a->coeff= diff->coeff; |
|
a->length= diff->length; |
|
free(diff); |
|
} |
|
|
|
void convVec(SwsVector *a, SwsVector *b){ |
|
SwsVector *conv= getConvVec(a, b); |
|
free(a->coeff); |
|
a->coeff= conv->coeff; |
|
a->length= conv->length; |
|
free(conv); |
|
} |
|
|
|
SwsVector *cloneVec(SwsVector *a){ |
|
double *coeff= memalign(sizeof(double), a->length*sizeof(double)); |
|
int i; |
|
SwsVector *vec= malloc(sizeof(SwsVector)); |
|
|
|
vec->coeff= coeff; |
|
vec->length= a->length; |
|
|
|
for(i=0; i<a->length; i++) coeff[i]= a->coeff[i]; |
|
|
|
return vec; |
|
} |
|
|
|
void printVec(SwsVector *a){ |
|
int i; |
|
double max=0; |
|
double min=0; |
|
double range; |
|
|
|
for(i=0; i<a->length; i++) |
|
if(a->coeff[i]>max) max= a->coeff[i]; |
|
|
|
for(i=0; i<a->length; i++) |
|
if(a->coeff[i]<min) min= a->coeff[i]; |
|
|
|
range= max - min; |
|
|
|
for(i=0; i<a->length; i++) |
|
{ |
|
int x= (int)((a->coeff[i]-min)*60.0/range +0.5); |
|
printf("%1.3f ", a->coeff[i]); |
|
for(;x>0; x--) printf(" "); |
|
printf("|\n"); |
|
} |
|
} |
|
|
|
void freeVec(SwsVector *a){ |
|
if(!a) return; |
|
if(a->coeff) free(a->coeff); |
|
a->coeff=NULL; |
|
a->length=0; |
|
free(a); |
|
} |
|
|
|
void freeSwsContext(SwsContext *c){ |
|
int i; |
|
|
|
if(!c) return; |
|
|
|
if(c->lumPixBuf) |
|
{ |
|
for(i=0; i<c->vLumBufSize; i++) |
|
{ |
|
if(c->lumPixBuf[i]) free(c->lumPixBuf[i]); |
|
c->lumPixBuf[i]=NULL; |
|
} |
|
free(c->lumPixBuf); |
|
c->lumPixBuf=NULL; |
|
} |
|
|
|
if(c->chrPixBuf) |
|
{ |
|
for(i=0; i<c->vChrBufSize; i++) |
|
{ |
|
if(c->chrPixBuf[i]) free(c->chrPixBuf[i]); |
|
c->chrPixBuf[i]=NULL; |
|
} |
|
free(c->chrPixBuf); |
|
c->chrPixBuf=NULL; |
|
} |
|
|
|
if(c->vLumFilter) free(c->vLumFilter); |
|
c->vLumFilter = NULL; |
|
if(c->vChrFilter) free(c->vChrFilter); |
|
c->vChrFilter = NULL; |
|
if(c->hLumFilter) free(c->hLumFilter); |
|
c->hLumFilter = NULL; |
|
if(c->hChrFilter) free(c->hChrFilter); |
|
c->hChrFilter = NULL; |
|
|
|
if(c->vLumFilterPos) free(c->vLumFilterPos); |
|
c->vLumFilterPos = NULL; |
|
if(c->vChrFilterPos) free(c->vChrFilterPos); |
|
c->vChrFilterPos = NULL; |
|
if(c->hLumFilterPos) free(c->hLumFilterPos); |
|
c->hLumFilterPos = NULL; |
|
if(c->hChrFilterPos) free(c->hChrFilterPos); |
|
c->hChrFilterPos = NULL; |
|
|
|
if(c->lumMmxFilter) free(c->lumMmxFilter); |
|
c->lumMmxFilter = NULL; |
|
if(c->chrMmxFilter) free(c->chrMmxFilter); |
|
c->chrMmxFilter = NULL; |
|
|
|
free(c); |
|
} |
|
|
|
|
|
|