mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
401 lines
12 KiB
401 lines
12 KiB
/* |
|
* Copyright (c) 2001, 2002 Fabrice Bellard |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/mem.h" |
|
#include "dct32.h" |
|
#include "mathops.h" |
|
#include "mpegaudiodsp.h" |
|
#include "mpegaudio.h" |
|
#include "mpegaudiodata.h" |
|
|
|
#if CONFIG_FLOAT |
|
#define RENAME(n) n##_float |
|
|
|
static inline float round_sample(float *sum) |
|
{ |
|
float sum1=*sum; |
|
*sum = 0; |
|
return sum1; |
|
} |
|
|
|
#define MACS(rt, ra, rb) rt+=(ra)*(rb) |
|
#define MULS(ra, rb) ((ra)*(rb)) |
|
#define MULH3(x, y, s) ((s)*(y)*(x)) |
|
#define MLSS(rt, ra, rb) rt-=(ra)*(rb) |
|
#define MULLx(x, y, s) ((y)*(x)) |
|
#define FIXHR(x) ((float)(x)) |
|
#define FIXR(x) ((float)(x)) |
|
#define SHR(a,b) ((a)*(1.0f/(1<<(b)))) |
|
|
|
#else |
|
|
|
#define RENAME(n) n##_fixed |
|
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) |
|
|
|
static inline int round_sample(int64_t *sum) |
|
{ |
|
int sum1; |
|
sum1 = (int)((*sum) >> OUT_SHIFT); |
|
*sum &= (1<<OUT_SHIFT)-1; |
|
return av_clip_int16(sum1); |
|
} |
|
|
|
# define MULS(ra, rb) MUL64(ra, rb) |
|
# define MACS(rt, ra, rb) MAC64(rt, ra, rb) |
|
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb) |
|
# define MULH3(x, y, s) MULH((s)*(x), y) |
|
# define MULLx(x, y, s) MULL(x,y,s) |
|
# define SHR(a,b) ((a)>>(b)) |
|
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) |
|
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) |
|
#endif |
|
|
|
/** Window for MDCT. Actually only the elements in [0,17] and |
|
[MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest |
|
is just to preserve alignment for SIMD implementations. |
|
*/ |
|
DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE]; |
|
|
|
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; |
|
|
|
#define SUM8(op, sum, w, p) \ |
|
{ \ |
|
op(sum, (w)[0 * 64], (p)[0 * 64]); \ |
|
op(sum, (w)[1 * 64], (p)[1 * 64]); \ |
|
op(sum, (w)[2 * 64], (p)[2 * 64]); \ |
|
op(sum, (w)[3 * 64], (p)[3 * 64]); \ |
|
op(sum, (w)[4 * 64], (p)[4 * 64]); \ |
|
op(sum, (w)[5 * 64], (p)[5 * 64]); \ |
|
op(sum, (w)[6 * 64], (p)[6 * 64]); \ |
|
op(sum, (w)[7 * 64], (p)[7 * 64]); \ |
|
} |
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ |
|
{ \ |
|
INTFLOAT tmp;\ |
|
tmp = p[0 * 64];\ |
|
op1(sum1, (w1)[0 * 64], tmp);\ |
|
op2(sum2, (w2)[0 * 64], tmp);\ |
|
tmp = p[1 * 64];\ |
|
op1(sum1, (w1)[1 * 64], tmp);\ |
|
op2(sum2, (w2)[1 * 64], tmp);\ |
|
tmp = p[2 * 64];\ |
|
op1(sum1, (w1)[2 * 64], tmp);\ |
|
op2(sum2, (w2)[2 * 64], tmp);\ |
|
tmp = p[3 * 64];\ |
|
op1(sum1, (w1)[3 * 64], tmp);\ |
|
op2(sum2, (w2)[3 * 64], tmp);\ |
|
tmp = p[4 * 64];\ |
|
op1(sum1, (w1)[4 * 64], tmp);\ |
|
op2(sum2, (w2)[4 * 64], tmp);\ |
|
tmp = p[5 * 64];\ |
|
op1(sum1, (w1)[5 * 64], tmp);\ |
|
op2(sum2, (w2)[5 * 64], tmp);\ |
|
tmp = p[6 * 64];\ |
|
op1(sum1, (w1)[6 * 64], tmp);\ |
|
op2(sum2, (w2)[6 * 64], tmp);\ |
|
tmp = p[7 * 64];\ |
|
op1(sum1, (w1)[7 * 64], tmp);\ |
|
op2(sum2, (w2)[7 * 64], tmp);\ |
|
} |
|
|
|
void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window, |
|
int *dither_state, OUT_INT *samples, |
|
int incr) |
|
{ |
|
register const MPA_INT *w, *w2, *p; |
|
int j; |
|
OUT_INT *samples2; |
|
#if CONFIG_FLOAT |
|
float sum, sum2; |
|
#else |
|
int64_t sum, sum2; |
|
#endif |
|
|
|
/* copy to avoid wrap */ |
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); |
|
|
|
samples2 = samples + 31 * incr; |
|
w = window; |
|
w2 = window + 31; |
|
|
|
sum = *dither_state; |
|
p = synth_buf + 16; |
|
SUM8(MACS, sum, w, p); |
|
p = synth_buf + 48; |
|
SUM8(MLSS, sum, w + 32, p); |
|
*samples = round_sample(&sum); |
|
samples += incr; |
|
w++; |
|
|
|
/* we calculate two samples at the same time to avoid one memory |
|
access per two sample */ |
|
for(j=1;j<16;j++) { |
|
sum2 = 0; |
|
p = synth_buf + 16 + j; |
|
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); |
|
p = synth_buf + 48 - j; |
|
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); |
|
|
|
*samples = round_sample(&sum); |
|
samples += incr; |
|
sum += sum2; |
|
*samples2 = round_sample(&sum); |
|
samples2 -= incr; |
|
w++; |
|
w2--; |
|
} |
|
|
|
p = synth_buf + 32; |
|
SUM8(MLSS, sum, w + 32, p); |
|
*samples = round_sample(&sum); |
|
*dither_state= sum; |
|
} |
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: |
|
32 samples. */ |
|
void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr, |
|
int *synth_buf_offset, |
|
MPA_INT *window, int *dither_state, |
|
OUT_INT *samples, int incr, |
|
MPA_INT *sb_samples) |
|
{ |
|
MPA_INT *synth_buf; |
|
int offset; |
|
|
|
offset = *synth_buf_offset; |
|
synth_buf = synth_buf_ptr + offset; |
|
|
|
s->RENAME(dct32)(synth_buf, sb_samples); |
|
s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr); |
|
|
|
offset = (offset - 32) & 511; |
|
*synth_buf_offset = offset; |
|
} |
|
|
|
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window) |
|
{ |
|
int i, j; |
|
|
|
/* max = 18760, max sum over all 16 coefs : 44736 */ |
|
for(i=0;i<257;i++) { |
|
INTFLOAT v; |
|
v = ff_mpa_enwindow[i]; |
|
#if CONFIG_FLOAT |
|
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); |
|
#endif |
|
window[i] = v; |
|
if ((i & 63) != 0) |
|
v = -v; |
|
if (i != 0) |
|
window[512 - i] = v; |
|
} |
|
|
|
|
|
// Needed for avoiding shuffles in ASM implementations |
|
for(i=0; i < 8; i++) |
|
for(j=0; j < 16; j++) |
|
window[512+16*i+j] = window[64*i+32-j]; |
|
|
|
for(i=0; i < 8; i++) |
|
for(j=0; j < 16; j++) |
|
window[512+128+16*i+j] = window[64*i+48-j]; |
|
} |
|
|
|
void RENAME(ff_init_mpadsp_tabs)(void) |
|
{ |
|
int i, j; |
|
/* compute mdct windows */ |
|
for (i = 0; i < 36; i++) { |
|
for (j = 0; j < 4; j++) { |
|
double d; |
|
|
|
if (j == 2 && i % 3 != 1) |
|
continue; |
|
|
|
d = sin(M_PI * (i + 0.5) / 36.0); |
|
if (j == 1) { |
|
if (i >= 30) d = 0; |
|
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); |
|
else if (i >= 18) d = 1; |
|
} else if (j == 3) { |
|
if (i < 6) d = 0; |
|
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); |
|
else if (i < 18) d = 1; |
|
} |
|
//merge last stage of imdct into the window coefficients |
|
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72); |
|
|
|
if (j == 2) |
|
RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5))); |
|
else { |
|
int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18); |
|
RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5))); |
|
} |
|
} |
|
} |
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing |
|
the sign of the right window coefs */ |
|
for (j = 0; j < 4; j++) { |
|
for (i = 0; i < MDCT_BUF_SIZE; i += 2) { |
|
RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ]; |
|
RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1]; |
|
} |
|
} |
|
} |
|
/* cos(pi*i/18) */ |
|
#define C1 FIXHR(0.98480775301220805936/2) |
|
#define C2 FIXHR(0.93969262078590838405/2) |
|
#define C3 FIXHR(0.86602540378443864676/2) |
|
#define C4 FIXHR(0.76604444311897803520/2) |
|
#define C5 FIXHR(0.64278760968653932632/2) |
|
#define C6 FIXHR(0.5/2) |
|
#define C7 FIXHR(0.34202014332566873304/2) |
|
#define C8 FIXHR(0.17364817766693034885/2) |
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
static const INTFLOAT icos36[9] = { |
|
FIXR(0.50190991877167369479), |
|
FIXR(0.51763809020504152469), //0 |
|
FIXR(0.55168895948124587824), |
|
FIXR(0.61038729438072803416), |
|
FIXR(0.70710678118654752439), //1 |
|
FIXR(0.87172339781054900991), |
|
FIXR(1.18310079157624925896), |
|
FIXR(1.93185165257813657349), //2 |
|
FIXR(5.73685662283492756461), |
|
}; |
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
static const INTFLOAT icos36h[9] = { |
|
FIXHR(0.50190991877167369479/2), |
|
FIXHR(0.51763809020504152469/2), //0 |
|
FIXHR(0.55168895948124587824/2), |
|
FIXHR(0.61038729438072803416/2), |
|
FIXHR(0.70710678118654752439/2), //1 |
|
FIXHR(0.87172339781054900991/2), |
|
FIXHR(1.18310079157624925896/4), |
|
FIXHR(1.93185165257813657349/4), //2 |
|
// FIXHR(5.73685662283492756461), |
|
}; |
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */ |
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) |
|
{ |
|
int i, j; |
|
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; |
|
INTFLOAT tmp[18], *tmp1, *in1; |
|
|
|
for (i = 17; i >= 1; i--) |
|
in[i] += in[i-1]; |
|
for (i = 17; i >= 3; i -= 2) |
|
in[i] += in[i-2]; |
|
|
|
for (j = 0; j < 2; j++) { |
|
tmp1 = tmp + j; |
|
in1 = in + j; |
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2]; |
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1); |
|
t1 = in1[2*0] - in1[2*6]; |
|
tmp1[ 6] = t1 - SHR(t2,1); |
|
tmp1[16] = t1 + t2; |
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); |
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); |
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); |
|
|
|
tmp1[10] = t3 - t0 - t2; |
|
tmp1[ 2] = t3 + t0 + t1; |
|
tmp1[14] = t3 + t2 - t1; |
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); |
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); |
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); |
|
t0 = MULH3(in1[2*3], C3, 2); |
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); |
|
|
|
tmp1[ 0] = t2 + t3 + t0; |
|
tmp1[12] = t2 + t1 - t0; |
|
tmp1[ 8] = t3 - t1 - t0; |
|
} |
|
|
|
i = 0; |
|
for (j = 0; j < 4; j++) { |
|
t0 = tmp[i]; |
|
t1 = tmp[i + 2]; |
|
s0 = t1 + t0; |
|
s2 = t1 - t0; |
|
|
|
t2 = tmp[i + 1]; |
|
t3 = tmp[i + 3]; |
|
s1 = MULH3(t3 + t2, icos36h[ j], 2); |
|
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS); |
|
|
|
t0 = s0 + s1; |
|
t1 = s0 - s1; |
|
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)]; |
|
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)]; |
|
buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1); |
|
buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1); |
|
|
|
t0 = s2 + s3; |
|
t1 = s2 - s3; |
|
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)]; |
|
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)]; |
|
buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1); |
|
buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1); |
|
i += 4; |
|
} |
|
|
|
s0 = tmp[16]; |
|
s1 = MULH3(tmp[17], icos36h[4], 2); |
|
t0 = s0 + s1; |
|
t1 = s0 - s1; |
|
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)]; |
|
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)]; |
|
buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1); |
|
buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1); |
|
} |
|
|
|
void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, |
|
int count, int switch_point, int block_type) |
|
{ |
|
int j; |
|
for (j=0 ; j < count; j++) { |
|
/* apply window & overlap with previous buffer */ |
|
|
|
/* select window */ |
|
int win_idx = (switch_point && j < 2) ? 0 : block_type; |
|
INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))]; |
|
|
|
imdct36(out, buf, in, win); |
|
|
|
in += 18; |
|
buf += ((j&3) != 3 ? 1 : (72-3)); |
|
out++; |
|
} |
|
} |
|
|
|
|